Skip to main content
Erschienen in: Rheologica Acta 5/2017

10.04.2017 | Original Contribution

In search of physical meaning: defining transient parameters for nonlinear viscoelasticity

verfasst von: Simon A. Rogers

Erschienen in: Rheologica Acta | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A complete set of model-independent viscoelastic functions for understanding responses to transient nonlinear rheological tests is presented, using large-amplitude oscillatory shear strain as a model nonlinear protocol. The derivation makes no assumptions about symmetries, and is therefore applicable to the responses to any input, allowing researchers to unambiguously define time-dependent moduli, viscosities, compliances, fluidities, and normal stress coefficients. A legend for interpreting the dynamic trajectories in modulus space is provided, along with explicit definitions of the rates at which the moduli change. These provide a quantitative mechanism to identify when, and by how much, a material response stiffens, softens, thickens, or thins while being deformed. In addition to providing analytical expressions for the moduli, the derivation requires the definition of a conceptually new term. This means there exist three, not two, time-dependent nonlinear viscoelastic functions by which any response can be fully described. The third function accounts for nonlinear properties such as yield stresses and the shifting of the strain equilibrium. This complete analysis scheme is unique in making a distinction between the strains in the lab and material frames. The quantitative sequence of physical process analysis, which is fully developed in this work, allows for comprehensive physical interpretations of responses to transient deformations of any kind to be made, including the steady alternance responses to large-amplitude oscillatory shear (LAOS), time-dependent oscillatory shear startup responses, and thixotropic and anti-thixotropic responses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJWA, Klein-Nulend J (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315:823–829CrossRef Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJWA, Klein-Nulend J (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315:823–829CrossRef
Zurück zum Zitat Barnes HA, Walters K (1985) The yield stress myth? Rheol Acta 24:323–326CrossRef Barnes HA, Walters K (1985) The yield stress myth? Rheol Acta 24:323–326CrossRef
Zurück zum Zitat Berret JF, Roux D, Porte G (1994). Isotropic-to-nematic transition in wormlike micelles under shear. Journal de Physique II, EDP Sciences, 4(8):1261–1279 Berret JF, Roux D, Porte G (1994). Isotropic-to-nematic transition in wormlike micelles under shear. Journal de Physique II, EDP Sciences, 4(8):1261–1279
Zurück zum Zitat Calabrese MA, Wagner NJ, Rogers SA (2016) An optimized protocol for the analysis of time-resolved elastic scattering experiments. Soft Matter 12:2301CrossRef Calabrese MA, Wagner NJ, Rogers SA (2016) An optimized protocol for the analysis of time-resolved elastic scattering experiments. Soft Matter 12:2301CrossRef
Zurück zum Zitat Cho KS, Ahn KH, Lee SJ (2005) A geometrical interpretation of large-amplitude oscillatory shear response. J Rheol 49(3):747–758CrossRef Cho KS, Ahn KH, Lee SJ (2005) A geometrical interpretation of large-amplitude oscillatory shear response. J Rheol 49(3):747–758CrossRef
Zurück zum Zitat Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRef Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRef
Zurück zum Zitat de Souza Mendes PR (2009) Modeling the thixotropic behavior of structured fluids. J Non-Newtonian Fluid Mech 164:66–75CrossRef de Souza Mendes PR (2009) Modeling the thixotropic behavior of structured fluids. J Non-Newtonian Fluid Mech 164:66–75CrossRef
Zurück zum Zitat de Souza Mendes PR (2011) Thixotropic elasto-viscoplastic model for structured fluid. Soft Matter 7:2471–2483CrossRef de Souza Mendes PR (2011) Thixotropic elasto-viscoplastic model for structured fluid. Soft Matter 7:2471–2483CrossRef
Zurück zum Zitat de Souza Mendes PR, Thompson RL (2012) A critical overview of elasto-viscoplastic thixotropic modeling. J Non-Newtonian Fluid Mech 187-188:8–15CrossRef de Souza Mendes PR, Thompson RL (2012) A critical overview of elasto-viscoplastic thixotropic modeling. J Non-Newtonian Fluid Mech 187-188:8–15CrossRef
Zurück zum Zitat de Souza Mendes PR, Thompson RL (2013) A unified approach to model elastic-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheol Acta 52:673–694CrossRef de Souza Mendes PR, Thompson RL (2013) A unified approach to model elastic-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheol Acta 52:673–694CrossRef
Zurück zum Zitat de Souza Mendes PR, Thompson RL, Alicke AA, Leite RT (2014) The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter. J Rheol 58:537–561CrossRef de Souza Mendes PR, Thompson RL, Alicke AA, Leite RT (2014) The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter. J Rheol 58:537–561CrossRef
Zurück zum Zitat Dealy JM, Morris J, Morrison F, Vlassopoulos D (2013) Official symbols and nomenclature of the Society of Rheology. J Rheol 57:1047–1055CrossRef Dealy JM, Morris J, Morrison F, Vlassopoulos D (2013) Official symbols and nomenclature of the Society of Rheology. J Rheol 57:1047–1055CrossRef
Zurück zum Zitat Dodge JS, Krieger IM (1971) Oscillatory shear of nonlinear fluids. I Preliminary investigation Trans Soc Rheol 15(4):589–601 Dodge JS, Krieger IM (1971) Oscillatory shear of nonlinear fluids. I Preliminary investigation Trans Soc Rheol 15(4):589–601
Zurück zum Zitat Evans, A. G. (1974) Slow crack growth in brittle materials under dynamic loading conditions. International Journal of Fracture, 10:251–259 Evans, A. G. (1974) Slow crack growth in brittle materials under dynamic loading conditions. International Journal of Fracture, 10:251–259
Zurück zum Zitat Ewoldt RH (2013) Defining nonlinear rheological material functions for oscillatory shear. J Rheol 57:177CrossRef Ewoldt RH (2013) Defining nonlinear rheological material functions for oscillatory shear. J Rheol 57:177CrossRef
Zurück zum Zitat Ewoldt HE, Bharadwaj NA (2015) Constitutive model fingerprints in medium-amplitude oscillatory shear. J Rheol Acta 59:557 Ewoldt HE, Bharadwaj NA (2015) Constitutive model fingerprints in medium-amplitude oscillatory shear. J Rheol Acta 59:557
Zurück zum Zitat Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large-amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRef Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large-amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRef
Zurück zum Zitat Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49:191–212CrossRef Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49:191–212CrossRef
Zurück zum Zitat Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York
Zurück zum Zitat Frenet F (1852) Sur les courbes à double courbure. Journal de mathématiques pures et appliquées 1re série, tome 17:437–447 Frenet F (1852) Sur les courbes à double courbure. Journal de mathématiques pures et appliquées 1re série, tome 17:437–447
Zurück zum Zitat Giacomin AJ, Bird RB, Johnson LM, Mix AW (2011) Large amplitude oscillatory shear flow from the corotational Maxwell model. J Non-Newtonian Fluid Mech 166:1081–1099CrossRef Giacomin AJ, Bird RB, Johnson LM, Mix AW (2011) Large amplitude oscillatory shear flow from the corotational Maxwell model. J Non-Newtonian Fluid Mech 166:1081–1099CrossRef
Zurück zum Zitat Gurnon AK, Lopez-Barron CR, Eberle APR, Porcar L, Wagner NJ (2014) Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions. Soft Matter 10:2889CrossRef Gurnon AK, Lopez-Barron CR, Eberle APR, Porcar L, Wagner NJ (2014) Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions. Soft Matter 10:2889CrossRef
Zurück zum Zitat Harris J, Bogie K (1967) The experimental analysis of non-linear waves in mechanical systems. Rheol Acta 6(1):3–5CrossRef Harris J, Bogie K (1967) The experimental analysis of non-linear waves in mechanical systems. Rheol Acta 6(1):3–5CrossRef
Zurück zum Zitat Hyun K, Wilhelm M (2009) Establishing a new mechanical nonlinear Q coefficient from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42:411–422CrossRef Hyun K, Wilhelm M (2009) Establishing a new mechanical nonlinear Q coefficient from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42:411–422CrossRef
Zurück zum Zitat Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and applications of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753CrossRef Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and applications of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753CrossRef
Zurück zum Zitat Kim J, Merger D, Wilhelm M, Helgeson ME (2014) Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. J Rheol 58:1359–1390CrossRef Kim J, Merger D, Wilhelm M, Helgeson ME (2014) Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. J Rheol 58:1359–1390CrossRef
Zurück zum Zitat Klein CO, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40:4250–4259CrossRef Klein CO, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40:4250–4259CrossRef
Zurück zum Zitat Koumakis N, Brady JF, Petekidis G (2013) Complex oscillatory yielding of model hard-sphere glasses. PRL 110:178301CrossRef Koumakis N, Brady JF, Petekidis G (2013) Complex oscillatory yielding of model hard-sphere glasses. PRL 110:178301CrossRef
Zurück zum Zitat Läuger J, Stettin H (2010) Differences between stress and strain control in the non-linear behavior of complex fluids. Rheol Acta 49(9):909–930CrossRef Läuger J, Stettin H (2010) Differences between stress and strain control in the non-linear behavior of complex fluids. Rheol Acta 49(9):909–930CrossRef
Zurück zum Zitat Lettinga MP, Holmqvist P, Ballesta P, Rogers S, Kleshchanok D, Struth B (2012) Nonlinear behavior of nematic platelet dispersions in shear flow. PRL 109:246001CrossRef Lettinga MP, Holmqvist P, Ballesta P, Rogers S, Kleshchanok D, Struth B (2012) Nonlinear behavior of nematic platelet dispersions in shear flow. PRL 109:246001CrossRef
Zurück zum Zitat Lonetti B, Kohlbrecher J, Willner L, Dhont JKG, Lettinga MP (2008) Dynamic response of block copolymer wormlike micelles to shear flow. J Phys Condens Matter 20:404207CrossRef Lonetti B, Kohlbrecher J, Willner L, Dhont JKG, Lettinga MP (2008) Dynamic response of block copolymer wormlike micelles to shear flow. J Phys Condens Matter 20:404207CrossRef
Zurück zum Zitat Lopez-Barron CR, Porcar L, Eberle APR, Wagner NJ (2012) Dynamics of melting and recrystallization in a polymeric micellar crystal subjected to large amplitude oscillatory shear flow. PRL 108:258301CrossRef Lopez-Barron CR, Porcar L, Eberle APR, Wagner NJ (2012) Dynamics of melting and recrystallization in a polymeric micellar crystal subjected to large amplitude oscillatory shear flow. PRL 108:258301CrossRef
Zurück zum Zitat Lyklema J, van Olphen H (1979) Terminology and symbols in colloid and surface chemistry part 1.13. Definitions, terminology and symbols for rheological properties. Pure & Appl Chem 51:1213–1218 Lyklema J, van Olphen H (1979) Terminology and symbols in colloid and surface chemistry part 1.13. Definitions, terminology and symbols for rheological properties. Pure & Appl Chem 51:1213–1218
Zurück zum Zitat Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Colloidal Suspension Rheology Cambridge University Press, Cambridge, England, 2011 Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Colloidal Suspension Rheology Cambridge University Press, Cambridge, England, 2011
Zurück zum Zitat Onogi S, Masuda T, Matsumoto T (1970) Non-linear behavior of viscoelastic materials. I Disperse systems of polystyrene solution and carbon black J Rheol 14(2):275–294 Onogi S, Masuda T, Matsumoto T (1970) Non-linear behavior of viscoelastic materials. I Disperse systems of polystyrene solution and carbon black J Rheol 14(2):275–294
Zurück zum Zitat Park JD, Ahn KH, Lee SJ (2015) Structural change and dynamics of colloidal gels under oscillatory shear flow. Soft Matter 11:9262CrossRef Park JD, Ahn KH, Lee SJ (2015) Structural change and dynamics of colloidal gels under oscillatory shear flow. Soft Matter 11:9262CrossRef
Zurück zum Zitat Pearson DS, Rochefort WE (1982) Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J. Polym. Sci., Polym. Phys Ed 20(1):83–98CrossRef Pearson DS, Rochefort WE (1982) Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J. Polym. Sci., Polym. Phys Ed 20(1):83–98CrossRef
Zurück zum Zitat Phillippoff W (1966) Vibrational measurements with large amplitudes. Trans Soc Rheol 10:317–334CrossRef Phillippoff W (1966) Vibrational measurements with large amplitudes. Trans Soc Rheol 10:317–334CrossRef
Zurück zum Zitat Pipkin AC (1972) Lectures on viscoelasticity theory. Springer, New YorkCrossRef Pipkin AC (1972) Lectures on viscoelasticity theory. Springer, New YorkCrossRef
Zurück zum Zitat Poulos AS, Stellbrink J, Petekidis G (2013) Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear. Rheol Acta 52:785–800CrossRef Poulos AS, Stellbrink J, Petekidis G (2013) Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear. Rheol Acta 52:785–800CrossRef
Zurück zum Zitat Pressley, A. (ed) (2010) Elementary differential geometry, Springer London Pressley, A. (ed) (2010) Elementary differential geometry, Springer London
Zurück zum Zitat Rehage H, Hoffmann H (1988) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92(16):4712–4719CrossRef Rehage H, Hoffmann H (1988) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92(16):4712–4719CrossRef
Zurück zum Zitat Rogers SA (2012) A sequence of physical processes determined and quantified in LAOS: an instantaneous local 2D/3D approach. J Rheol 56(5):1129–1151CrossRef Rogers SA (2012) A sequence of physical processes determined and quantified in LAOS: an instantaneous local 2D/3D approach. J Rheol 56(5):1129–1151CrossRef
Zurück zum Zitat Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in large amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J Rheol 56(1):1–25CrossRef Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in large amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J Rheol 56(1):1–25CrossRef
Zurück zum Zitat Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J Rheol 55(2):435–458CrossRef Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J Rheol 55(2):435–458CrossRef
Zurück zum Zitat Rogers S, Kohlbrecher J, Lettinga MP (2012) The molecular origin of stress generation in worm-like micelles, using a rheo-SANS LAOS approach. Soft Matter 8:7831CrossRef Rogers S, Kohlbrecher J, Lettinga MP (2012) The molecular origin of stress generation in worm-like micelles, using a rheo-SANS LAOS approach. Soft Matter 8:7831CrossRef
Zurück zum Zitat Saengow CA, Giacomin J, Kolitawong C (2015) Exact analytical solution for large-amplitude oscillatory shear flow. Macromol Theory Simul 24:352–392CrossRef Saengow CA, Giacomin J, Kolitawong C (2015) Exact analytical solution for large-amplitude oscillatory shear flow. Macromol Theory Simul 24:352–392CrossRef
Zurück zum Zitat Serret J-A (1851) Sur quelques formules relatives à la théorie des courbes à double courbure. Journal de mathématiques pures et appliquées 1re série, tome 16:193–207 Serret J-A (1851) Sur quelques formules relatives à la théorie des courbes à double courbure. Journal de mathématiques pures et appliquées 1re série, tome 16:193–207
Zurück zum Zitat Sharma V, McKinley GH (2012) An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheol Acta 51:487–495CrossRef Sharma V, McKinley GH (2012) An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheol Acta 51:487–495CrossRef
Zurück zum Zitat Tee TT, Dealy JM (1975) Nonlinear viscoelasticity of polymer melts. Trans Soc Rheol 19(4):595–615CrossRef Tee TT, Dealy JM (1975) Nonlinear viscoelasticity of polymer melts. Trans Soc Rheol 19(4):595–615CrossRef
Zurück zum Zitat Thompson RL, Alicke AA, de Souza Mendes PR (2015) Model-based material functions for SAOS and LAOS analyses. J Non-Newtonian Fluid Mech 215:19–30CrossRef Thompson RL, Alicke AA, de Souza Mendes PR (2015) Model-based material functions for SAOS and LAOS analyses. J Non-Newtonian Fluid Mech 215:19–30CrossRef
Zurück zum Zitat van der Vaart K, Rahmani Y, Zargar R, Hu Z, Bonn D, Schall P (2013) Rheology of concentrated soft and hard-sphere suspensions. J Rheol 57:1195CrossRef van der Vaart K, Rahmani Y, Zargar R, Hu Z, Bonn D, Schall P (2013) Rheology of concentrated soft and hard-sphere suspensions. J Rheol 57:1195CrossRef
Zurück zum Zitat Wang Y-C, Gunasekaran S, Giacomin AJ (2001) The lodge rubberlike liquid behavior for cheese in large amplitude oscillatory shear. Appl Rheol 11(6):312–319 Wang Y-C, Gunasekaran S, Giacomin AJ (2001) The lodge rubberlike liquid behavior for cheese in large amplitude oscillatory shear. Appl Rheol 11(6):312–319
Zurück zum Zitat Yoshimura AS, Prud’homme RK (1987) Response of an elastic Bingham fluid to oscillatory shear. Rheol Acta 26:428–436CrossRef Yoshimura AS, Prud’homme RK (1987) Response of an elastic Bingham fluid to oscillatory shear. Rheol Acta 26:428–436CrossRef
Metadaten
Titel
In search of physical meaning: defining transient parameters for nonlinear viscoelasticity
verfasst von
Simon A. Rogers
Publikationsdatum
10.04.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Rheologica Acta / Ausgabe 5/2017
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-017-1008-1

Weitere Artikel der Ausgabe 5/2017

Rheologica Acta 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.