Skip to main content
Top

2014 | OriginalPaper | Chapter

3. A Theoretical Basis for Maximum Entropy Production

Authors : Roderick C. Dewar, Amos Maritan

Published in: Beyond the Second Law

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Maximum entropy production (MaxEP) is a conjectured selection criterion for the stationary states of non-equilibrium systems. In the absence of a firm theoretical basis, MaxEP has largely been applied in an ad hoc manner. Consequently its apparent successes remain something of a curiosity while the interpretation of its apparent failures is fraught with ambiguity. Here we show how Jaynes’ maximum entropy (MaxEnt) formulation of statistical mechanics provides a theoretical basis for MaxEP which answers two outstanding questions that have so far hampered its wider application: What do the apparent successes and failures of MaxEP actually mean physically? And what is the appropriate entropy production that is maximized in any given problem? As illustrative examples, we show how MaxEnt underpins previous applications of MaxEP to planetary climates and fluid turbulence. We also discuss the relationship of MaxEP to the fluctuation theorem and Ziegler’s maximum dissipation principle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The constraints themselves may be perfectly accurate (e.g. global energy balance). In that case it is the completeness of the chosen set that is being tested.
 
2
If instead we had I 0 > I max(C) then, since I ≤ I max(C) by definition, we would have I < I 0 and so μ = 0.
 
3
With μ = 0+ (Eq. 3.11), \( S = S(\boldsymbol{\uplambda },\boldsymbol{\upalpha }) \) is a functional of \( {\boldsymbol{\uplambda }} \,{\text{and}}\,{\boldsymbol{\upalpha }} \) alone. We have \( S({\boldsymbol{\uplambda }},{\boldsymbol{\upalpha}}) \le S({\boldsymbol{\uplambda}} = {\mathbf{0}},{\boldsymbol{\upalpha}}) \) because removing a constraint—in this case, the auxiliary constraint (3.7)—cannot lead to a decrease in S. Therefore the MaxEnt solution for p(f) in the case \( {\boldsymbol{\Upphi}^{\text{A}}} \ne {\mathbf{0}} \) has \( {\boldsymbol{\uplambda}} = {\mathbf{0}}. \) Note that we cannot set \( {\boldsymbol{\uplambda}} = {\mathbf{0}} \) in the case \( {\boldsymbol{\Upphi}^{\text{A}}} = {\mathbf{0}} \) (i.e. the case S/AS) because (3.13) would then give I(F) = 0 which contravenes I(F) > I min(C); in this case I(F) is given by (3.15).
 
4
Paltridge [1] also maximized the vertical flux of latent and sensible heat from ground to atmosphere in each zone. However, this additional constraint does not alter the MaxEnt derivation of (3.19) as the appropriate EP function for predicting the meridional flux.
 
5
Note that under \( \varvec{u} \to -\varvec{u},\varvec{v} \to - 2U\left( z \right)\hat{\varvec{x}} - \varvec{v} \) so that v x v z  → v x v z  + 2U(z)v z , and since ∥v z ∥ = 0 the terms involving v x v z do not contribute to Φ 1 A (z) or Φ 2 A .
 
6
In fact with d so defined, the fluctuation theorem is a purely mathematical result (see Chap.​ 1, Footnote 12). As we have seen, the physical interpretation of \( \langle d\rangle \) as entropy production emerges in MaxEnt through the physical constraints that determine p(f).
 
7
For an alternative perspective, see Chap.​ 5. See also Chap.​ 1, Sect.​ 1.​4.​5.
 
8
Here we assume units such that Boltzmann’s constant equals 1.
 
Literature
1.
go back to reference Paltridge, G.W.: Global dynamics and climate—a system of minimum entropy exchange. Q. J. Roy. Meteorol. Soc. 101, 475–484 (1975); The steady-state format of global climate. Ibid. 104, 927–945 (1978); Thermodynamic dissipation and the global climate system. Ibid. 107, 531–547 (1981) Paltridge, G.W.: Global dynamics and climate—a system of minimum entropy exchange. Q. J. Roy. Meteorol. Soc. 101, 475–484 (1975); The steady-state format of global climate. Ibid. 104, 927–945 (1978); Thermodynamic dissipation and the global climate system. Ibid. 107, 531–547 (1981)
2.
go back to reference Lorenz, R.D., Lunine, J.I., Withers, P.G., McKay, C.P.: Titan, mars and earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415–418 (2001)CrossRef Lorenz, R.D., Lunine, J.I., Withers, P.G., McKay, C.P.: Titan, mars and earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415–418 (2001)CrossRef
3.
go back to reference Ozawa, H., Shimokawa, S., Sakuma, H.: Thermodynamics of fluid turbulence: a unified approach to the maximum transport properties. Phys. Rev. E 64, 026303 (2001)CrossRef Ozawa, H., Shimokawa, S., Sakuma, H.: Thermodynamics of fluid turbulence: a unified approach to the maximum transport properties. Phys. Rev. E 64, 026303 (2001)CrossRef
5.
go back to reference Hill, A.: Entropy production as a selection rule between different growth morphologies. Nature 348, 426–428 (1990)CrossRef Hill, A.: Entropy production as a selection rule between different growth morphologies. Nature 348, 426–428 (1990)CrossRef
6.
go back to reference Martyushev, L.M., Serebrennikov, S.V.: Morphological stability of a crystal with respect to arbitrary boundary perturbation. Tech. Phys. Lett. 32, 614–617 (2006)CrossRef Martyushev, L.M., Serebrennikov, S.V.: Morphological stability of a crystal with respect to arbitrary boundary perturbation. Tech. Phys. Lett. 32, 614–617 (2006)CrossRef
7.
go back to reference Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. Comp. Biol. Chem. 27, 541–553 (2003)CrossRefMATH Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. Comp. Biol. Chem. 27, 541–553 (2003)CrossRefMATH
8.
go back to reference Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182 (2006)CrossRef Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182 (2006)CrossRef
9.
go back to reference Dewar, R.C.: Maximum entropy production and plant optimization theories. Phil. Trans. R. Soc. B 365, 1429–1435 (2010)CrossRef Dewar, R.C.: Maximum entropy production and plant optimization theories. Phil. Trans. R. Soc. B 365, 1429–1435 (2010)CrossRef
10.
go back to reference Franklin, O., Johansson, J., Dewar, R.C., Dieckmann, U., McMurtrie, R.E., Brännström, Å., Dybzinski, R.: Modeling carbon allocation in trees: a search for principles. Tree Physiol. 32, 648–666 (2012)CrossRef Franklin, O., Johansson, J., Dewar, R.C., Dieckmann, U., McMurtrie, R.E., Brännström, Å., Dybzinski, R.: Modeling carbon allocation in trees: a search for principles. Tree Physiol. 32, 648–666 (2012)CrossRef
11.
go back to reference Main, I.G., Naylor, M.: Maximum entropy production and earthquake dynamics. Geophys. Res. Lett. 35, L19311 (2008)CrossRef Main, I.G., Naylor, M.: Maximum entropy production and earthquake dynamics. Geophys. Res. Lett. 35, L19311 (2008)CrossRef
12.
go back to reference Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)MathSciNetCrossRef Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)MathSciNetCrossRef
13.
go back to reference Essex, C.: Radiation and the irreversible thermodynamics of climate. J. Atmos. Sci. 41, 1985–1991 (1984)CrossRef Essex, C.: Radiation and the irreversible thermodynamics of climate. J. Atmos. Sci. 41, 1985–1991 (1984)CrossRef
14.
go back to reference Pascale, S., Gregory, J.M., Ambaum, M.H.P., Tailleux, R.: A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn. 38, 1211–1227 (2012)CrossRef Pascale, S., Gregory, J.M., Ambaum, M.H.P., Tailleux, R.: A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn. 38, 1211–1227 (2012)CrossRef
15.
go back to reference Kerswell, R.R.: Upper bounds on general dissipation functionals in turbulent shear flows: revisiting the ‘efficiency’ functional. J. Fluid Mech. 461, 239–275 (2002)MathSciNetCrossRefMATH Kerswell, R.R.: Upper bounds on general dissipation functionals in turbulent shear flows: revisiting the ‘efficiency’ functional. J. Fluid Mech. 461, 239–275 (2002)MathSciNetCrossRefMATH
16.
go back to reference Meysman, F.J.R., Bruers, S.: Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Phil. Trans. R. Soc. B 365, 1405–1416 (2010)CrossRef Meysman, F.J.R., Bruers, S.: Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Phil. Trans. R. Soc. B 365, 1405–1416 (2010)CrossRef
17.
go back to reference Kawazura, Y., Yoshida, Z.: Entropy production rate in a flux-driven self-organizing system. Phys. Rev. E 82(066403), 1–8 (2010)MathSciNet Kawazura, Y., Yoshida, Z.: Entropy production rate in a flux-driven self-organizing system. Phys. Rev. E 82(066403), 1–8 (2010)MathSciNet
18.
go back to reference Dewar, R.C.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: Don’t shoot the messenger. Entropy 11, 931–944 (2009)CrossRef Dewar, R.C.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: Don’t shoot the messenger. Entropy 11, 931–944 (2009)CrossRef
19.
go back to reference Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957); Information theory and statistical mechanics II. Ibid. 108, 171–190 (1957) Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957); Information theory and statistical mechanics II. Ibid. 108, 171–190 (1957)
20.
go back to reference Gibbs, J.W.: Elementary Principles of Statistical Mechanics. Ox Bow Press, Woodridge (1981). (Reprinted) Gibbs, J.W.: Elementary Principles of Statistical Mechanics. Ox Bow Press, Woodridge (1981). (Reprinted)
21.
go back to reference Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423, 623–656 (1948) Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423, 623–656 (1948)
22.
go back to reference Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Urbana (1949)MATH Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Urbana (1949)MATH
23.
go back to reference Jaynes, E.T.: Probability Theory: the Logic of Science. Bretthorst, G.L. (ed.). CUP, Cambridge (2003) Jaynes, E.T.: Probability Theory: the Logic of Science. Bretthorst, G.L. (ed.). CUP, Cambridge (2003)
24.
go back to reference Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Info. Theor. 26, 26–37 (1980)MathSciNetCrossRefMATH Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Info. Theor. 26, 26–37 (1980)MathSciNetCrossRefMATH
25.
go back to reference Jaynes, E.T.: Where do we stand on maximum entropy? In: Levine, R.D., Tribus, M. (eds.) The maximum entropy formalism, pp. 15–118. MIT Press, Cambridge (1978) Jaynes, E.T.: Where do we stand on maximum entropy? In: Levine, R.D., Tribus, M. (eds.) The maximum entropy formalism, pp. 15–118. MIT Press, Cambridge (1978)
26.
go back to reference Dewar, R.C.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631–641 (2003)MathSciNetCrossRefMATH Dewar, R.C.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631–641 (2003)MathSciNetCrossRefMATH
28.
29.
go back to reference Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717–9720 (2007)MathSciNetCrossRefMATH Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717–9720 (2007)MathSciNetCrossRefMATH
30.
go back to reference Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113 (2009)CrossRef Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113 (2009)CrossRef
31.
go back to reference Virgo, N.: From maximum entropy to maximum entropy production: a new approach. Entropy 12, 107–126 (2010)CrossRef Virgo, N.: From maximum entropy to maximum entropy production: a new approach. Entropy 12, 107–126 (2010)CrossRef
32.
go back to reference Evans, D.J., Searle, D.J.: The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2005)CrossRef Evans, D.J., Searle, D.J.: The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2005)CrossRef
33.
go back to reference Seifert, U.: Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423–431 (2008)CrossRefMATH Seifert, U.: Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423–431 (2008)CrossRefMATH
34.
go back to reference Sevick, E.M., Prabhakar, R., Williams, S.R., Searles, D.J.: Fluctuation theorems. Ann Rev. Phys. Chem. 59, 603–633 (2008)CrossRef Sevick, E.M., Prabhakar, R., Williams, S.R., Searles, D.J.: Fluctuation theorems. Ann Rev. Phys. Chem. 59, 603–633 (2008)CrossRef
35.
go back to reference Ziegler, H.: An introduction to thermomechanics. North-Holland, Amsterdam (1983)MATH Ziegler, H.: An introduction to thermomechanics. North-Holland, Amsterdam (1983)MATH
36.
go back to reference Jaynes, E.T.: Information theory and statistical mechanics. In: Ford, K. (ed.) Statistical Physics, pp. 181–218. Benjamin, New York (1963) Jaynes, E.T.: Information theory and statistical mechanics. In: Ford, K. (ed.) Statistical Physics, pp. 181–218. Benjamin, New York (1963)
37.
go back to reference Niven, R.K.: Non-asymptotic thermodynamic ensembles. Europhys. Lett. 86, 20010 (2009)CrossRef Niven, R.K.: Non-asymptotic thermodynamic ensembles. Europhys. Lett. 86, 20010 (2009)CrossRef
38.
go back to reference Niven, R.K., Grendar, M.: Generalized classical, quantum and intermediate statistics and the Pólya urn model. Phys. Lett. A 373, 621–626 (2009)MathSciNetCrossRefMATH Niven, R.K., Grendar, M.: Generalized classical, quantum and intermediate statistics and the Pólya urn model. Phys. Lett. A 373, 621–626 (2009)MathSciNetCrossRefMATH
39.
go back to reference Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp 481–492. UCA, Berkeley (1951) Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp 481–492. UCA, Berkeley (1951)
40.
go back to reference Paltridge, G.W., Farquhar, G.D., Cuntz, M.: Maximum entropy production, cloud feedback, and climate change. Geophys. Res. Lett. 34, L14708 (2007)CrossRef Paltridge, G.W., Farquhar, G.D., Cuntz, M.: Maximum entropy production, cloud feedback, and climate change. Geophys. Res. Lett. 34, L14708 (2007)CrossRef
41.
go back to reference Malkus, W.V.R.: The heat transport and spectrum of thermal turbulence. Proc. R. Soc. 225, 196–212 (1954); Outline of a theory for turbulent shear flow. J. Fluid Mech. 1, 521–539 (1956) Malkus, W.V.R.: The heat transport and spectrum of thermal turbulence. Proc. R. Soc. 225, 196–212 (1954); Outline of a theory for turbulent shear flow. J. Fluid Mech. 1, 521–539 (1956)
43.
44.
go back to reference Shimokawa, S., Ozawa, H.: On the thermodynamics of the oceanic general circulation: Irreversible transition to a state with higher rate of entropy production. Q. J. Roy. Meteorol. Soc. 128, 2115–2128 (2002)CrossRef Shimokawa, S., Ozawa, H.: On the thermodynamics of the oceanic general circulation: Irreversible transition to a state with higher rate of entropy production. Q. J. Roy. Meteorol. Soc. 128, 2115–2128 (2002)CrossRef
Metadata
Title
A Theoretical Basis for Maximum Entropy Production
Authors
Roderick C. Dewar
Amos Maritan
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40154-1_3