Skip to main content
Top
Published in: Microsystem Technologies 8/2017

17-09-2016 | Technical Paper

AC magnetohydrodynamic slip flow in microchannel with sinusoidal roughness

Authors: Mandula Buren, Yongjun Jian, Long Chang, Quansheng Liu, Guangpu Zhao

Published in: Microsystem Technologies | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Perturbation solutions for the velocity and electric potential of a time periodic magnetohydrodynamic slip flow in a microchannel with sinusoidal wall corrugations are obtained using perturbation method. The effects of wall corrugations, slip length, Hartmann number and the frequency of the electric potential on the flow are analyzed theoretically and graphically. The results show that velocity and electric potential are significantly disturbed by wall roughness and that there exists a phase lag between the velocity and the electric potential. The velocity profile is characterized by the ratio of momentum diffusion time scale to the period of the applied electric field. The phase lag increases with frequency, slip length and decreases with Hartmann number, the wavenumber and phase difference of the wall corrugations. However, for a sufficiently small frequency, the phase lag is almost nonexistent. The effect of the phase difference of the wall corrugations on the phase lag becomes unimportant when the wavenumber is larger than 2. The velocity amplitude increases with slip length and decreases with frequency, wavenumber and phase difference. However, the phase difference becomes unimportant for sufficiently large wavenumber. When the frequency is large enough, the velocity amplitude is not influenced by slip length.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abdullah M, Duwairi HM (2008) Thermal and flow analysis of two-dimensional fully developed flow in an AC magneto-hydrodynamic micropump. Microsyst Technol 14(8):1117–1123CrossRef Abdullah M, Duwairi HM (2008) Thermal and flow analysis of two-dimensional fully developed flow in an AC magneto-hydrodynamic micropump. Microsyst Technol 14(8):1117–1123CrossRef
go back to reference Akyildiz FT, Siginer DA (2011) Fully developed laminar slip and no-slip flow in rough microtubes. Z Angew Math Phys (ZAMP) 62(4):741–748MathSciNetCrossRefMATH Akyildiz FT, Siginer DA (2011) Fully developed laminar slip and no-slip flow in rough microtubes. Z Angew Math Phys (ZAMP) 62(4):741–748MathSciNetCrossRefMATH
go back to reference Andrade JS, Henriquea EAA, Almeidaa MP, Costa MHAS (2004) Heat transport through rough channels. Phys A 339:296–310CrossRef Andrade JS, Henriquea EAA, Almeidaa MP, Costa MHAS (2004) Heat transport through rough channels. Phys A 339:296–310CrossRef
go back to reference Buren M, Jian Y (2015) Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates. Electrophoresis 36(14):1539–1548CrossRef Buren M, Jian Y (2015) Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates. Electrophoresis 36(14):1539–1548CrossRef
go back to reference Buren M, Jian Y, Chang L (2014) Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls. J Phys D Appl Phys 47(42):425501CrossRef Buren M, Jian Y, Chang L (2014) Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls. J Phys D Appl Phys 47(42):425501CrossRef
go back to reference Chen CK, Cho CC (2007) Electrokinetically-driven flow mixing in microchannels with wavy surface. J Colloid Interf Sci 312(2):470–480CrossRef Chen CK, Cho CC (2007) Electrokinetically-driven flow mixing in microchannels with wavy surface. J Colloid Interf Sci 312(2):470–480CrossRef
go back to reference Chu WKH (1996) Stokes slip flow between corrugated walls. Z Angew Math Phys (ZAMP) 47(4):591–599CrossRefMATH Chu WKH (1996) Stokes slip flow between corrugated walls. Z Angew Math Phys (ZAMP) 47(4):591–599CrossRefMATH
go back to reference Chun MS, Lee S (2005) Flow imaging of dilute colloidal suspension in PDMS-based microfluidic chip using fluorescence microscopy. Colloids Surfaces A Physicochem Eng Aspects 267(1):86–94CrossRef Chun MS, Lee S (2005) Flow imaging of dilute colloidal suspension in PDMS-based microfluidic chip using fluorescence microscopy. Colloids Surfaces A Physicochem Eng Aspects 267(1):86–94CrossRef
go back to reference Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge, UKCrossRefMATH Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge, UKCrossRefMATH
go back to reference Duwairi H, Abdullah M (2007) Thermal and flow analysis of a magneto-hydrodynamic micropump. Microsyst Technol 13(1):33–39CrossRef Duwairi H, Abdullah M (2007) Thermal and flow analysis of a magneto-hydrodynamic micropump. Microsyst Technol 13(1):33–39CrossRef
go back to reference Eijkel JCT, Dalton C, Hayden CJ, Burt JPH, Manz A (2003) A circular ac magnetohydrodynamic micropump for chromatographic applications. Sensor Actuat B: Chem 92(1):215–221CrossRef Eijkel JCT, Dalton C, Hayden CJ, Burt JPH, Manz A (2003) A circular ac magnetohydrodynamic micropump for chromatographic applications. Sensor Actuat B: Chem 92(1):215–221CrossRef
go back to reference Erickson D, Li D (2003) Analysis of alternating current electroosmotic flows in a rectangular microchannel. Langmuir 19(13):5421–5430CrossRef Erickson D, Li D (2003) Analysis of alternating current electroosmotic flows in a rectangular microchannel. Langmuir 19(13):5421–5430CrossRef
go back to reference Ibáñez G, Cuevas S, de Haro ML (2002) Optimization analysis of an alternate magnetohydrodynamic generator. Energ Convers Manage 43(14):1757–1771CrossRef Ibáñez G, Cuevas S, de Haro ML (2002) Optimization analysis of an alternate magnetohydrodynamic generator. Energ Convers Manage 43(14):1757–1771CrossRef
go back to reference Jang J, Lee SS (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensor Actuat A Phys 80(1):84–89CrossRef Jang J, Lee SS (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensor Actuat A Phys 80(1):84–89CrossRef
go back to reference Kiyasatfar M, Pourmahmoud N (2016) Laminar MHD flow and heat transfer of power-law fluids in square microchannels. Int J Therm Sci 99:26–35CrossRef Kiyasatfar M, Pourmahmoud N (2016) Laminar MHD flow and heat transfer of power-law fluids in square microchannels. Int J Therm Sci 99:26–35CrossRef
go back to reference Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64CrossRef Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64CrossRef
go back to reference Leal LG (2007) Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press, UKCrossRefMATH Leal LG (2007) Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press, UKCrossRefMATH
go back to reference Lemoff AV, Lee AP (2000) An AC magnetohydrodynamic micropump. Sensor Actuat B: Chem. 63(3):178–185CrossRef Lemoff AV, Lee AP (2000) An AC magnetohydrodynamic micropump. Sensor Actuat B: Chem. 63(3):178–185CrossRef
go back to reference Lemoff AV, Lee AP (2003) An AC magnetohydrodynamic microfluidic switch for micro total analysis systems. Biomed Microdevices 5(1):55–60CrossRef Lemoff AV, Lee AP (2003) An AC magnetohydrodynamic microfluidic switch for micro total analysis systems. Biomed Microdevices 5(1):55–60CrossRef
go back to reference Li L, Mo J, Li Z (2014) Flow and slip transition in nanochannels. Phys Rev E 90(3):033003CrossRef Li L, Mo J, Li Z (2014) Flow and slip transition in nanochannels. Phys Rev E 90(3):033003CrossRef
go back to reference Moghaddam S (2012) Analytical solution of MHD micropump with circular channel. Int J Appl Electrom Mech 40(4):309–322MathSciNet Moghaddam S (2012) Analytical solution of MHD micropump with circular channel. Int J Appl Electrom Mech 40(4):309–322MathSciNet
go back to reference Müller U, Bühler L (2001) Magnetofluiddynamics in channels and containers. Springer-Verlag Berlin Heidelberg, New YorkCrossRef Müller U, Bühler L (2001) Magnetofluiddynamics in channels and containers. Springer-Verlag Berlin Heidelberg, New YorkCrossRef
go back to reference Ngoma GD, Erchiqui F (2007) Heat flux and slip effects on liquid flow in a microchannel. Int J Therm Sci 46(11):1076–1083CrossRef Ngoma GD, Erchiqui F (2007) Heat flux and slip effects on liquid flow in a microchannel. Int J Therm Sci 46(11):1076–1083CrossRef
go back to reference Nishimura T, Matsune S (1996) Mass transfer enhancement in a sinusoidal wavy channel for pulsatile flow. Heat Mass Transfer 32(1–2):65–72CrossRef Nishimura T, Matsune S (1996) Mass transfer enhancement in a sinusoidal wavy channel for pulsatile flow. Heat Mass Transfer 32(1–2):65–72CrossRef
go back to reference Parsa MK, Hormozi F (2014) Experimental and CFD modeling of fluid mixing in sinusoidal microchannels with different phase shift between side walls. J Micromech Microeng 24(6):065018CrossRef Parsa MK, Hormozi F (2014) Experimental and CFD modeling of fluid mixing in sinusoidal microchannels with different phase shift between side walls. J Micromech Microeng 24(6):065018CrossRef
go back to reference Qian S, Bau HH (2009) Magneto-hydrodynamics based microfluidics. Mech Res Commun 36(1):10–21CrossRefMATH Qian S, Bau HH (2009) Magneto-hydrodynamics based microfluidics. Mech Res Commun 36(1):10–21CrossRefMATH
go back to reference Qin M, Bau HH (2011) When MHD-based microfluidics is equivalent to pressure-driven flow. Microfluids Nanofluids 10(2):287–300CrossRef Qin M, Bau HH (2011) When MHD-based microfluidics is equivalent to pressure-driven flow. Microfluids Nanofluids 10(2):287–300CrossRef
go back to reference Reddy PDS, Bandyopadhyay D, Joo SW, Sharma A, Qian S (2011) Parametric study on instabilities in a two-layer electromagnetohydrodynamic channel flow confined between two parallel electrodes. Phys Rev E 83(3):036313CrossRef Reddy PDS, Bandyopadhyay D, Joo SW, Sharma A, Qian S (2011) Parametric study on instabilities in a two-layer electromagnetohydrodynamic channel flow confined between two parallel electrodes. Phys Rev E 83(3):036313CrossRef
go back to reference Ritchie W (1832) Experimental researches in voltaic electricity and electro-magnetism. Phil Trans R Soc Lond 122:279–298CrossRef Ritchie W (1832) Experimental researches in voltaic electricity and electro-magnetism. Phil Trans R Soc Lond 122:279–298CrossRef
go back to reference Rivero M, Cuevas S (2012) Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps. Sensor Actuat B: Chem 166–167:884–892CrossRef Rivero M, Cuevas S (2012) Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps. Sensor Actuat B: Chem 166–167:884–892CrossRef
go back to reference Sahore V, Fritsch I (2015) Microfluidic rotational flow generated by redox-magnetohydrodynamics (MHD) under laminar conditions using concentric disk and ring microelectrodes. Microfluid Nanofluid 18(2):159–166CrossRef Sahore V, Fritsch I (2015) Microfluidic rotational flow generated by redox-magnetohydrodynamics (MHD) under laminar conditions using concentric disk and ring microelectrodes. Microfluid Nanofluid 18(2):159–166CrossRef
go back to reference Sarkar S, Ganguly S (2015) Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field. Microfluid Nanofluid 18(4):623–636CrossRef Sarkar S, Ganguly S (2015) Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field. Microfluid Nanofluid 18(4):623–636CrossRef
go back to reference Sheikholeslami M, Gorji-Bandpy M, Vajravelu K (2015) Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of Al2O3-water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder. Int J Heat Mass Transfer 80:16–25CrossRef Sheikholeslami M, Gorji-Bandpy M, Vajravelu K (2015) Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of Al2O3-water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder. Int J Heat Mass Transfer 80:16–25CrossRef
go back to reference Shit GC, Mondal A, Sinha A, Kundu PK (2016) Electro-osmotically driven MHD flow and heat transfer in microchannel. Phys A 449:437–454MathSciNetCrossRef Shit GC, Mondal A, Sinha A, Kundu PK (2016) Electro-osmotically driven MHD flow and heat transfer in microchannel. Phys A 449:437–454MathSciNetCrossRef
go back to reference Shojaeian M, Shojaee SMN (2013) Viscous dissipation effect on heat transfer characteristics of mixed electromagnetic/pressure driven liquid flows inside micropumps. Korean J Chem Eng 30(4):823–830CrossRef Shojaeian M, Shojaee SMN (2013) Viscous dissipation effect on heat transfer characteristics of mixed electromagnetic/pressure driven liquid flows inside micropumps. Korean J Chem Eng 30(4):823–830CrossRef
go back to reference Shojaeian M, Shojaeian M (2012) Analytical solution of mixed electromagnetic/pressure driven gaseous flows in microchannels. Microfluid Nanofluid 12(1–4):553–564CrossRef Shojaeian M, Shojaeian M (2012) Analytical solution of mixed electromagnetic/pressure driven gaseous flows in microchannels. Microfluid Nanofluid 12(1–4):553–564CrossRef
go back to reference Si D, Jian Y (2015) Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls. J Phys D Appl Phys 48(8):085501CrossRef Si D, Jian Y (2015) Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls. J Phys D Appl Phys 48(8):085501CrossRef
go back to reference Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14(3):L9–L12CrossRef Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14(3):L9–L12CrossRef
go back to reference Wang PJ, Chang CY, Chang ML (2004) Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump. Biosens Bioelectron 20(1):115–121MathSciNetCrossRef Wang PJ, Chang CY, Chang ML (2004) Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump. Biosens Bioelectron 20(1):115–121MathSciNetCrossRef
go back to reference Wen CY, Yeh CP, Tsai CH, Fu LM (2009) Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis 30(24):4179–4186CrossRef Wen CY, Yeh CP, Tsai CH, Fu LM (2009) Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis 30(24):4179–4186CrossRef
go back to reference Xia Z, Mei R, Sheplak M, Fan ZH (2009) Electroosmotically driven creeping flows in a wavy microchannel. Microfluids Nanofluids 6(1):37–52CrossRef Xia Z, Mei R, Sheplak M, Fan ZH (2009) Electroosmotically driven creeping flows in a wavy microchannel. Microfluids Nanofluids 6(1):37–52CrossRef
go back to reference Yang J, Kwok DY (2003) Microfluid flow in circular microchannel with electrokinetic effect and Navier’s slip condition. Langmuir 19(4):1047–1053CrossRef Yang J, Kwok DY (2003) Microfluid flow in circular microchannel with electrokinetic effect and Navier’s slip condition. Langmuir 19(4):1047–1053CrossRef
go back to reference Zhao G, Jian Y, Chang L, Buren M (2015) Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field. J Magn Magn Mater 387:111–117CrossRef Zhao G, Jian Y, Chang L, Buren M (2015) Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field. J Magn Magn Mater 387:111–117CrossRef
go back to reference Zhong J, Yi M, Bau HH (2002) Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sensor Actuat A Phys 96(1):59–66CrossRef Zhong J, Yi M, Bau HH (2002) Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sensor Actuat A Phys 96(1):59–66CrossRef
Metadata
Title
AC magnetohydrodynamic slip flow in microchannel with sinusoidal roughness
Authors
Mandula Buren
Yongjun Jian
Long Chang
Quansheng Liu
Guangpu Zhao
Publication date
17-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 8/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3125-7

Other articles of this Issue 8/2017

Microsystem Technologies 8/2017 Go to the issue