Skip to main content
Top
Published in: Microsystem Technologies 8/2017

30-11-2016 | Technical Paper

A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: theory and experiment

Authors: Guangyi Zhang, Shiqiao Gao, Haipeng Liu, Shaohua Niu

Published in: Microsystem Technologies | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the development of low power MEMS device and outdoor wireless sensor network, new energy supply has been a key to replace the traditional energy which has some disadvantages. We have found that obtaining energy from the daily low frequency vibration environment is a very efficient solution to ease the pressure of energy sources. In this paper, a utility low frequency piezoelectric energy harvester with trapezoidal cantilever beam is presented. Then, a relevant theoretical model, optimization method and comparison experiment are made. The results show that the theoretical analysis results are in agreement with the experimental results; under the condition of constant beam length, open-circuit voltage and output power of the trapezoidal beam piezoelectric energy harvester are 81.6 and 167% more than those of the rectangular beam piezoelectric energy harvester. In addition, In order to further broaden the frequency band and improve output characteristics, we use the nonlinear method to redesign the experiment based on the above experiments. The results show that distance and magnet polarity change have an important effect on output characteristics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1CrossRef
go back to reference Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef
go back to reference Bhattacharyya P, Basu PK, Mondal B et al (2008) A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron Reliab 48(11):1772–1779CrossRef Bhattacharyya P, Basu PK, Mondal B et al (2008) A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectron Reliab 48(11):1772–1779CrossRef
go back to reference Cao J, Wang W, Zhou S et al (2015) Nonlinear time-varying potential bistable energy harvesting from human motion. Appl Phys Lett 107(14):143904CrossRef Cao J, Wang W, Zhou S et al (2015) Nonlinear time-varying potential bistable energy harvesting from human motion. Appl Phys Lett 107(14):143904CrossRef
go back to reference Chen ZS, Yang YM, Deng GQ (2009) Analytical and experimental study on vibration energy harvesting behaviors of piezoelectric cantilevers with different geometries. Int Conf Sustain Power Gen Supply IEEE 2009:1–6 Chen ZS, Yang YM, Deng GQ (2009) Analytical and experimental study on vibration energy harvesting behaviors of piezoelectric cantilevers with different geometries. Int Conf Sustain Power Gen Supply IEEE 2009:1–6
go back to reference Daqaq MF, Masana R, Erturk A et al (2014) On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl Mech Rev 66(4):040801CrossRef Daqaq MF, Masana R, Erturk A et al (2014) On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl Mech Rev 66(4):040801CrossRef
go back to reference Erturk A, Inman DJ (2008a) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325CrossRef Erturk A, Inman DJ (2008a) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325CrossRef
go back to reference Erturk A, Inman DJ (2008b) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J Vib Acoust 130(4):1–15CrossRef Erturk A, Inman DJ (2008b) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J Vib Acoust 130(4):1–15CrossRef
go back to reference Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, AmsterdamCrossRef Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, AmsterdamCrossRef
go back to reference Frýba L (2013) Vibration of solids and structures under moving loads. Springer, BerlinMATH Frýba L (2013) Vibration of solids and structures under moving loads. Springer, BerlinMATH
go back to reference Griffin MJ (2007) Discomfort from feeling vehicle vibration. Vehicle Syst Dyn 45(7–8):679–698CrossRef Griffin MJ (2007) Discomfort from feeling vehicle vibration. Vehicle Syst Dyn 45(7–8):679–698CrossRef
go back to reference Gu L (2011) Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron J 42(2):277–282CrossRef Gu L (2011) Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron J 42(2):277–282CrossRef
go back to reference Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22(2):023001CrossRef Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22(2):023001CrossRef
go back to reference Kashyap R, Lenka TR, Baishya S (2016) Distributed parameter modeling of cantilevered-mode piezoelectric energy harvesters. IEEE Trans Electron Dev 63(3):1281–1287CrossRef Kashyap R, Lenka TR, Baishya S (2016) Distributed parameter modeling of cantilevered-mode piezoelectric energy harvesters. IEEE Trans Electron Dev 63(3):1281–1287CrossRef
go back to reference Li P, Gao S, Cai H (2015a) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21(2):401–414CrossRef Li P, Gao S, Cai H (2015a) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21(2):401–414CrossRef
go back to reference Li P, Gao S, Cai H et al (2015b) Design, fabrication and performances of MEMS piezoelectric energy harvester. Int J Appl Electromagn Mech 47(1):125–139 Li P, Gao S, Cai H et al (2015b) Design, fabrication and performances of MEMS piezoelectric energy harvester. Int J Appl Electromagn Mech 47(1):125–139
go back to reference Li P, Gao S, Cai H et al (2015c) Design, fabrication and performances of MEMS piezoelectric energy harvester. Int J Appl Electromagn Mech 47(1):125–139 Li P, Gao S, Cai H et al (2015c) Design, fabrication and performances of MEMS piezoelectric energy harvester. Int J Appl Electromagn Mech 47(1):125–139
go back to reference Liu H, Lee C, Kobayashi T et al (2012) Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater Struct 21(3):035005CrossRef Liu H, Lee C, Kobayashi T et al (2012) Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater Struct 21(3):035005CrossRef
go back to reference Liu H, Koh KH, Lee C (2014) Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester. Appl Phys Lett 104(5):053901CrossRef Liu H, Koh KH, Lee C (2014) Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester. Appl Phys Lett 104(5):053901CrossRef
go back to reference Muskhelishvili NI (2013) Some basic problems of the mathematical theory of elasticity. Springer, Berlin Muskhelishvili NI (2013) Some basic problems of the mathematical theory of elasticity. Springer, Berlin
go back to reference Muthalif AGA, Nordin NHD (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Signal Process 54:417–426CrossRef Muthalif AGA, Nordin NHD (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Signal Process 54:417–426CrossRef
go back to reference Otis BP, Chee YH, Lu R et al (2004) An ultra-low power MEMS-based two-channel transceiver for wireless sensor networks. In: VLSI Circuits, 2004, digest of technical papers, symposium on IEEE, pp 20–23 Otis BP, Chee YH, Lu R et al (2004) An ultra-low power MEMS-based two-channel transceiver for wireless sensor networks. In: VLSI Circuits, 2004, digest of technical papers, symposium on IEEE, pp 20–23
go back to reference Pellegrini SP, Tolou N, Schenk M et al (2012) Bistable vibration energy harvesters: a review. Journal of Intelligent Material Systems and Structures 2012: 1045389X12444940 Pellegrini SP, Tolou N, Schenk M et al (2012) Bistable vibration energy harvesters: a review. Journal of Intelligent Material Systems and Structures 2012: 1045389X12444940
go back to reference Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manag 52(1):500–504CrossRef Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manag 52(1):500–504CrossRef
go back to reference Sheng X, Jones CJC, Thompson DJ (2003) A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements. J Sound Vib 267(3):621–635CrossRef Sheng X, Jones CJC, Thompson DJ (2003) A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements. J Sound Vib 267(3):621–635CrossRef
go back to reference Shu YC, Lien IC (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15(6):1499CrossRef Shu YC, Lien IC (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15(6):1499CrossRef
go back to reference Sodano HA, Park G, Inman DJ (2004) Estimation of electric charge output for piezoelectric energy harvesting. Strain J Br Soc Strain Meas 40(2):49–58 Sodano HA, Park G, Inman DJ (2004) Estimation of electric charge output for piezoelectric energy harvesting. Strain J Br Soc Strain Meas 40(2):49–58
go back to reference Sodano HA, Inman DJ, Park G (2005) Generation and storage of electricity from power harvesting devices. J Intell Mater Syst Struct 16(1):67–75CrossRef Sodano HA, Inman DJ, Park G (2005) Generation and storage of electricity from power harvesting devices. J Intell Mater Syst Struct 16(1):67–75CrossRef
go back to reference Stanton SC, McGehee CC, Mann BP (2009) Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl Phys Lett 95(17):17410CrossRef Stanton SC, McGehee CC, Mann BP (2009) Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl Phys Lett 95(17):17410CrossRef
go back to reference Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys D 239(10):640–653CrossRefMATH Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys D 239(10):640–653CrossRefMATH
go back to reference Tang L, Yang Y (2012) A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl Phys Lett 101(9):094102CrossRef Tang L, Yang Y (2012) A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl Phys Lett 101(9):094102CrossRef
go back to reference Wen Z, Deng L, Zhao X et al (2015) Improving voltage output with PZT beam array for MEMS-based vibration energy harvester: theory and experiment. Microsyst Technol 21(2):331–339CrossRef Wen Z, Deng L, Zhao X et al (2015) Improving voltage output with PZT beam array for MEMS-based vibration energy harvester: theory and experiment. Microsyst Technol 21(2):331–339CrossRef
Metadata
Title
A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: theory and experiment
Authors
Guangyi Zhang
Shiqiao Gao
Haipeng Liu
Shaohua Niu
Publication date
30-11-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 8/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3224-5

Other articles of this Issue 8/2017

Microsystem Technologies 8/2017 Go to the issue