Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 1/2018

01-08-2017

Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM)

Authors: Uwe Scheithauer, Eric Schwarzer, Tassilo Moritz, Alexander Michaelis

Published in: Journal of Materials Engineering and Performance | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Additive manufacturing (AM) techniques allow the preparation of tailor-made structures for specific applications with a high flexibility in regard to shape and design. The lithography-based ceramic manufacturing (LCM) technology allows the AM of high-performance alumina and zirconia components. There are still some restrictions in regard to possible geometries. The opportunities and limits of the LCM technology are discussed in the following paper using the example of ceramic heat exchangers. Structures are presented which combine a large surface for heat exchange with a small component volume and low pressure drop. This paper concludes summarizing the essential remarks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ASTM-Standard F2792 -12a: Standard Terminology for Additive Manufacturing Technologies. March 1, 2012, ASTM International Distributed under ASTM license by Beuth Publisher. ASTM-Standard F2792 -12a: Standard Terminology for Additive Manufacturing Technologies. March 1, 2012, ASTM International Distributed under ASTM license by Beuth Publisher.
2.
go back to reference U. Lakshminarayan, S. Ogrydiziak, and H.L. Marcus, Selective lasersintering of ceramic materials. Proceedings of Solid Free-Form Symposium, 1990, p. 16–26 U. Lakshminarayan, S. Ogrydiziak, and H.L. Marcus, Selective lasersintering of ceramic materials. Proceedings of Solid Free-Form Symposium, 1990, p. 16–26
3.
go back to reference A. Lauder, M.J. Cima, E. Sachs, and T. Fan, Three dimensional printing: surface finish and microstructure of rapid prototyped components, Mater. Res. Soc. Symp. Proc., 1992, 249, p 331–336CrossRef A. Lauder, M.J. Cima, E. Sachs, and T. Fan, Three dimensional printing: surface finish and microstructure of rapid prototyped components, Mater. Res. Soc. Symp. Proc., 1992, 249, p 331–336CrossRef
4.
go back to reference K. Pham-Gia, W. Rossner, B. Wessler, M. Schäfer, and M. Schwarz, Rapid Prototyping of high-density alumina ceramics using stereolithography, cfi/ Ber, DKG, 2006, 83, p 36–40 K. Pham-Gia, W. Rossner, B. Wessler, M. Schäfer, and M. Schwarz, Rapid Prototyping of high-density alumina ceramics using stereolithography, cfi/ Ber, DKG, 2006, 83, p 36–40
5.
go back to reference T. Chartier, C. Duterte, N. Delhote, D. Baillargeat, S. Verdeyme, C. Delage, and C.J. Chaput, Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes, J. Am. Ceram. Soc., 2008, 91, p 2469–2474 T. Chartier, C. Duterte, N. Delhote, D. Baillargeat, S. Verdeyme, C. Delage, and C.J. Chaput, Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes, J. Am. Ceram. Soc., 2008, 91, p 2469–2474
6.
go back to reference M.L. Griffith and J.W. Halloran, Freeform fabrication of ceramics via stereolithography, J. Am. Ceram. Soc., 1996, 79, p 2601–2608CrossRef M.L. Griffith and J.W. Halloran, Freeform fabrication of ceramics via stereolithography, J. Am. Ceram. Soc., 1996, 79, p 2601–2608CrossRef
7.
go back to reference A. Licciulli, C.E. Corcione, A. Greco, V. Amicarelli, and A. Maffezzoli, Laser stereolithography of ZrO2 toughened Al2O3, J. Europ. Ceram. Soc., 2005, 25, p 1581–1589CrossRef A. Licciulli, C.E. Corcione, A. Greco, V. Amicarelli, and A. Maffezzoli, Laser stereolithography of ZrO2 toughened Al2O3, J. Europ. Ceram. Soc., 2005, 25, p 1581–1589CrossRef
8.
go back to reference Y. de Hazan, M. Thänert, M. Trunec, and J. Misak, Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks, J. Europ. Ceram. Soc., 2012, 32, p 1187–1198CrossRef Y. de Hazan, M. Thänert, M. Trunec, and J. Misak, Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks, J. Europ. Ceram. Soc., 2012, 32, p 1187–1198CrossRef
9.
go back to reference R. Felzmann, S. Gruber, G. Mitteramskogler, P. Tesavibul, A.R. Boccaccini, R. Liska, and J. Stampfl, Lithography-based additive manufacturing of cellular ceramic structures, Adv. Eng. Mater., 2012, 14, p 1052–1058CrossRef R. Felzmann, S. Gruber, G. Mitteramskogler, P. Tesavibul, A.R. Boccaccini, R. Liska, and J. Stampfl, Lithography-based additive manufacturing of cellular ceramic structures, Adv. Eng. Mater., 2012, 14, p 1052–1058CrossRef
10.
go back to reference R. Lenk, A. Nagy, H.-J. Richter, and A. Techel, Material development for laser sintering of silicon carbide, cfi/ Ber, DKG, 2006, 83, p 41–43 R. Lenk, A. Nagy, H.-J. Richter, and A. Techel, Material development for laser sintering of silicon carbide, cfi/ Ber, DKG, 2006, 83, p 41–43
11.
go back to reference P. Regenfuss, R. Ebert, and H. Exner, Laser Micro Sintering—a versatile instrument for the generation of microparts, Laser Tech. J., 2007, 4, p 26–31CrossRef P. Regenfuss, R. Ebert, and H. Exner, Laser Micro Sintering—a versatile instrument for the generation of microparts, Laser Tech. J., 2007, 4, p 26–31CrossRef
12.
go back to reference Y.-C. Hagedorn, J. Wilkes, W. Meiners, K. Wissenbach, and R. Poprawe, Net shaped high performance oxide ceramic parts by selective laser melting, Phys. Proced., 2010, 5, p 587–594CrossRef Y.-C. Hagedorn, J. Wilkes, W. Meiners, K. Wissenbach, and R. Poprawe, Net shaped high performance oxide ceramic parts by selective laser melting, Phys. Proced., 2010, 5, p 587–594CrossRef
13.
go back to reference Y. Wu, J. Du, K.-L. Choy, and L.L. Hench, Laser densification of alumina powder beds generated using aerosol spray deposition, J. Europ. Ceram. Soc., 2007, 27, p 4727–4735CrossRef Y. Wu, J. Du, K.-L. Choy, and L.L. Hench, Laser densification of alumina powder beds generated using aerosol spray deposition, J. Europ. Ceram. Soc., 2007, 27, p 4727–4735CrossRef
14.
go back to reference R.D. Goodridge, J.C. Lorrison, K.W. Dalgarno, and D.J. Wood, Comparison of direct and indirect selective laser sintering of porous apatite mullite glass ceramics, Glass Technol., 2004, 45, p 94–96 R.D. Goodridge, J.C. Lorrison, K.W. Dalgarno, and D.J. Wood, Comparison of direct and indirect selective laser sintering of porous apatite mullite glass ceramics, Glass Technol., 2004, 45, p 94–96
15.
go back to reference U. Gbureck, T. Hoelzel, I. Biermann, J. Barralet, L.M. Grover, Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping J. Mater. Sci.: Mater. Med. 19, 1559–1563 (2008) U. Gbureck, T. Hoelzel, I. Biermann, J. Barralet, L.M. Grover, Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping J. Mater. Sci.: Mater. Med. 19, 1559–1563 (2008)
16.
go back to reference H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Biomed. Mater. Res. Part B: Appl. Biomater. 74B, 782–788 (2005) H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Biomed. Mater. Res. Part B: Appl. Biomater. 74B, 782–788 (2005)
17.
go back to reference A. Khalyfa, W. Meyer, M. Schnabelrauch, S. Vogt, and H.-J. Richter, Manufacturing of biocompatible ceramic bone substitutes by 3D-printing, cfi/ Ber, DKG, 2006, 83, p 23–26 A. Khalyfa, W. Meyer, M. Schnabelrauch, S. Vogt, and H.-J. Richter, Manufacturing of biocompatible ceramic bone substitutes by 3D-printing, cfi/ Ber, DKG, 2006, 83, p 23–26
18.
go back to reference U. Deisinger, F. Irlinger, R. Pelzer, and G. Ziegler, 3D-printing of HA-scaffolds for the application as bone substitute material, cfi/Ber, DKG, 2006, 83, p 75–78 U. Deisinger, F. Irlinger, R. Pelzer, and G. Ziegler, 3D-printing of HA-scaffolds for the application as bone substitute material, cfi/Ber, DKG, 2006, 83, p 75–78
19.
go back to reference F. Dombrowski, P.W.G. Caso, M.W. Laschke, M. Klein, J. Guenster, and G. Berger, 3-D printed bioactive bone replacement scaffolds of alkaline substituted ortho-phosphates containing meta- and di-phosphates, Key Eng. Mater., 2013, 529–530, p 138–142 F. Dombrowski, P.W.G. Caso, M.W. Laschke, M. Klein, J. Guenster, and G. Berger, 3-D printed bioactive bone replacement scaffolds of alkaline substituted ortho-phosphates containing meta- and di-phosphates, Key Eng. Mater., 2013, 529–530, p 138–142
20.
go back to reference A. Zocca, C.M. Gomes, E. Bernardo, R. Müller, J. Günster, and P. Colombo, LAS glass–ceramic scaffolds by three-dimensional printing, J. Europ. Ceram. Soc., 2013, 33, p 1525–1533CrossRef A. Zocca, C.M. Gomes, E. Bernardo, R. Müller, J. Günster, and P. Colombo, LAS glass–ceramic scaffolds by three-dimensional printing, J. Europ. Ceram. Soc., 2013, 33, p 1525–1533CrossRef
21.
go back to reference Z. Sadeghian, J.G. Heinrich, and F. Moztarzadeh, Direct laser sintering of hydroxyapatite implants by Layerwise slurry deposition (LSD), cfi/Ber, DKG, 2004, 81(12), p E39–E43 Z. Sadeghian, J.G. Heinrich, and F. Moztarzadeh, Direct laser sintering of hydroxyapatite implants by Layerwise slurry deposition (LSD), cfi/Ber, DKG, 2004, 81(12), p E39–E43
22.
go back to reference B. Cappi, E. Oezkol, J. Ebert, and R. Telle, Direct inkjet printing of Si3N4: characterization of ink, green bodies, and microstructure, J. Europ. Ceram. Soc., 2008, 28, p 2625–2628CrossRef B. Cappi, E. Oezkol, J. Ebert, and R. Telle, Direct inkjet printing of Si3N4: characterization of ink, green bodies, and microstructure, J. Europ. Ceram. Soc., 2008, 28, p 2625–2628CrossRef
23.
go back to reference J. Ebert, E. Özkol, A. Zeichner, K. Uibel, Ö. Weiss, U. Koops, R. Telle, and H. Fischer, Direct Iinkjet printing of dental prostheses made of zirconia, J. Dent. Res., 2009, 88, p 673–676CrossRef J. Ebert, E. Özkol, A. Zeichner, K. Uibel, Ö. Weiss, U. Koops, R. Telle, and H. Fischer, Direct Iinkjet printing of dental prostheses made of zirconia, J. Dent. Res., 2009, 88, p 673–676CrossRef
24.
go back to reference M. Allahverdi, S.C. Danforth, M. Jafari, and A. Safari, Processing of advanced electroceramic components by fused deposition technique, J. Europ. Ceram. Soc., 2001, 21, p 1485–1490CrossRef M. Allahverdi, S.C. Danforth, M. Jafari, and A. Safari, Processing of advanced electroceramic components by fused deposition technique, J. Europ. Ceram. Soc., 2001, 21, p 1485–1490CrossRef
25.
go back to reference S. Bose, J. Darsell, H. Hosick, L. Yang, D.K. Sarkar, A. Bandyopadhyay, Processing and characterization of porous alumina scaffolds. J. Mater. Sci.: Mater. Med. 13, 23–28 (2002) S. Bose, J. Darsell, H. Hosick, L. Yang, D.K. Sarkar, A. Bandyopadhyay, Processing and characterization of porous alumina scaffolds. J. Mater. Sci.: Mater. Med. 13, 23–28 (2002)
26.
go back to reference T. Schlordt, S. Schwanke, F. Keppner, T. Fey, N. Travitzky, and P. Greil, Robocasting of alumina hollow filament lattice structures, J. Europ. Ceram. Soc., 2013, 33, p 3243–3248CrossRef T. Schlordt, S. Schwanke, F. Keppner, T. Fey, N. Travitzky, and P. Greil, Robocasting of alumina hollow filament lattice structures, J. Europ. Ceram. Soc., 2013, 33, p 3243–3248CrossRef
27.
go back to reference K. Cai, B. Roman-Manso, J.E. Smay, J. Zhou, M.I. Osendi, M. Belmonte, and P. Miranzo, Geometrically complex silicon carbide structures fabricated by robocasting, J. Am. Ceram. Soc., 2012, 95, p 2660–2666CrossRef K. Cai, B. Roman-Manso, J.E. Smay, J. Zhou, M.I. Osendi, M. Belmonte, and P. Miranzo, Geometrically complex silicon carbide structures fabricated by robocasting, J. Am. Ceram. Soc., 2012, 95, p 2660–2666CrossRef
28.
go back to reference D. Polsakiewicz and W. Kollenberg, Process and materials development for functionalized printing in three dimensions (FP-3D), refractories. WORLDFORUM, 4, 1–8 (2012) D. Polsakiewicz and W. Kollenberg, Process and materials development for functionalized printing in three dimensions (FP-3D), refractories. WORLDFORUM, 4, 1–8 (2012)
29.
go back to reference T. Chartier, A. Badev, Rapid Prototyping of Ceramics. in Handbook of Advanced Ceramics (Elsevier, Oxford, 2013) T. Chartier, A. Badev, Rapid Prototyping of Ceramics. in Handbook of Advanced Ceramics (Elsevier, Oxford, 2013)
30.
go back to reference N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, Additive manufacturing of ceramic-based materials, Adv. Eng. Mater., 2014, 16, p 729–754CrossRef N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, Additive manufacturing of ceramic-based materials, Adv. Eng. Mater., 2014, 16, p 729–754CrossRef
31.
go back to reference A. Zocca, P. Colombo, C.M. Gomes, and J. Günster, Additive manufacturing of ceramics: issues, potentialities, and opportunities, J. Am. Ceram. Soc., 2015, 98(7), p 1983–2001CrossRef A. Zocca, P. Colombo, C.M. Gomes, and J. Günster, Additive manufacturing of ceramics: issues, potentialities, and opportunities, J. Am. Ceram. Soc., 2015, 98(7), p 1983–2001CrossRef
32.
go back to reference U. Scheithauer, A. Bergner, E. Schwarzer, H.-J. Richter, T. Moritz, Studies on thermoplastic 3D Printing of steel-zirconia composites. J. Mat. Res. 29(17), 1931–1940 (2014) U. Scheithauer, A. Bergner, E. Schwarzer, H.-J. Richter, T. Moritz, Studies on thermoplastic 3D Printing of steel-zirconia composites. J. Mat. Res. 29(17), 1931–1940 (2014)
33.
go back to reference U. Scheithauer, T. Slawik, E. Schwarzer, H.-J. Richter, T. Moritz, A. Michaelis, Additive manufacturing of metal-ceramic-composites by thermoplastic 3D-printing. J. Ceram. Sci. Tech. 06(02), 125–132 (2015) U. Scheithauer, T. Slawik, E. Schwarzer, H.-J. Richter, T. Moritz, A. Michaelis, Additive manufacturing of metal-ceramic-composites by thermoplastic 3D-printing. J. Ceram. Sci. Tech. 06(02), 125–132 (2015)
34.
go back to reference U. Scheithauer, E. Schwarzer, G. Ganzer, A. Körnig, W. Beckert, E. Reichelt, M. Jahn, A. Härtel, H.-J. Richter, T. Moritz, and A. Michaelis, Micro-reactors made by Lithography-based Ceramic Manufacturing (LCM). in Proceedings of 11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications 2015, Vancouver, Ceramic Transactions, 2016, 258, The American Ceramic Society U. Scheithauer, E. Schwarzer, G. Ganzer, A. Körnig, W. Beckert, E. Reichelt, M. Jahn, A. Härtel, H.-J. Richter, T. Moritz, and A. Michaelis, Micro-reactors made by Lithography-based Ceramic Manufacturing (LCM). in Proceedings of 11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications 2015, Vancouver, Ceramic Transactions, 2016, 258, The American Ceramic Society
35.
go back to reference U.K. Fischer, N. Moszner, V. Rheinberger, W. Wachter, J. Homa, and W. Längle, Lichthärtende Keramikschlicker für die stereolithographische Herstellung von hochfesten Keramiken (light curing ceramic suspensions for stereolithography of high-strength ceramics), european patent EP 2404590A1, published 11.01.2012 U.K. Fischer, N. Moszner, V. Rheinberger, W. Wachter, J. Homa, and W. Längle, Lichthärtende Keramikschlicker für die stereolithographische Herstellung von hochfesten Keramiken (light curing ceramic suspensions for stereolithography of high-strength ceramics), european patent EP 2404590A1, published 11.01.2012
36.
go back to reference J. Homa, Rapid Prototyping of High-Performance Ceramics Opens New Opportunities for the CIM Industry. Powder Injection Mould. Int. 6(3) (2012) J. Homa, Rapid Prototyping of High-Performance Ceramics Opens New Opportunities for the CIM Industry. Powder Injection Mould. Int. 6(3) (2012)
37.
go back to reference E. Schwarzer, M. Götz, D. Markova, D. Stafford, U. Scheithauer, T. Moritz, Lithography-based Ceramic Manufacturing (LCM)—Development of a possible process chain for the additive manufacturing of personalized medical products. J. Eur. Cer. Soc. (submitted for publication in 2017) E. Schwarzer, M. Götz, D. Markova, D. Stafford, U. Scheithauer, T. Moritz, Lithography-based Ceramic Manufacturing (LCM)—Development of a possible process chain for the additive manufacturing of personalized medical products. J. Eur. Cer. Soc. (submitted for publication in 2017)
Metadata
Title
Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM)
Authors
Uwe Scheithauer
Eric Schwarzer
Tassilo Moritz
Alexander Michaelis
Publication date
01-08-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 1/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2843-z

Other articles of this Issue 1/2018

Journal of Materials Engineering and Performance 1/2018 Go to the issue

Premium Partners