Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 1/2018

24-05-2017

Additive Manufacturing of Metallic Materials: A Review

Authors: Yi Zhang, Linmin Wu, Xingye Guo, Stephen Kane, Yifan Deng, Yeon-Gil Jung, Je-Hyun Lee, Jing Zhang

Published in: Journal of Materials Engineering and Performance | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this review article, the latest developments of the four most common additive manufacturing methods for metallic materials are reviewed, including powder bed fusion, direct energy deposition, binder jetting, and sheet lamination. In addition to the process principles, the microstructures and mechanical properties of AM-fabricated parts are comprehensively compared and evaluated. Finally, several future research directions are suggested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference S. Ashley, Rapid Prototyping is Coming of Age, Mech. Eng., 1995, 117(7), p 62 S. Ashley, Rapid Prototyping is Coming of Age, Mech. Eng., 1995, 117(7), p 62
3.
go back to reference P. Marks, 3D Printing Takes Off with the World’s First Printed Plane, New Sci., 2011, 211(2823), p 17–18CrossRef P. Marks, 3D Printing Takes Off with the World’s First Printed Plane, New Sci., 2011, 211(2823), p 17–18CrossRef
4.
go back to reference T. Campbell, C. Williams, O. Ivanova, and B. Garrett, Could 3D Printing Change the World. Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC, 2011 T. Campbell, C. Williams, O. Ivanova, and B. Garrett, Could 3D Printing Change the World. Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC, 2011
5.
go back to reference D. Bak, Rapid Prototyping or Rapid Production? 3D Printing Processes Move Industry Towards the Latter, Assem. Autom., 2003, 23(4), p 340–345CrossRef D. Bak, Rapid Prototyping or Rapid Production? 3D Printing Processes Move Industry Towards the Latter, Assem. Autom., 2003, 23(4), p 340–345CrossRef
6.
go back to reference P.A. Bartolotta and D.L. Krause, Titanium Aluminide Applications in the High Speed Civil Transport, NASA/TM—1999-209071, 1999 P.A. Bartolotta and D.L. Krause, Titanium Aluminide Applications in the High Speed Civil Transport, NASA/TM—1999-209071, 1999
7.
go back to reference T. Wu, S.A. Jahan, P. Kumaar, A. Tovar, H. El-Mounayri, Y. Zhang, J. Zhang, D. Acheson, K. Brand, and R. Nalim, A Framework for Optimizing the Design of Injection Molds with Conformal Cooling for Additive Manufacturing, Proced. Manuf., 2015, 1, p 404–415CrossRef T. Wu, S.A. Jahan, P. Kumaar, A. Tovar, H. El-Mounayri, Y. Zhang, J. Zhang, D. Acheson, K. Brand, and R. Nalim, A Framework for Optimizing the Design of Injection Molds with Conformal Cooling for Additive Manufacturing, Proced. Manuf., 2015, 1, p 404–415CrossRef
8.
go back to reference F2792-12a, A.S.T.M., Standard Terminology for Additive Manufacturing Technologies, ASTM International. West Conshohocken, PA, 2015 F2792-12a, A.S.T.M., Standard Terminology for Additive Manufacturing Technologies, ASTM International. West Conshohocken, PA, 2015
9.
go back to reference International, A. Committee F42 on Additive Manufacturing Technologies. 2009 [cited 2017 03/08] International, A. Committee F42 on Additive Manufacturing Technologies. 2009 [cited 2017 03/08]
10.
go back to reference C. Ladd, J.H. So, J. Muth, and M.D. Dickey, 3D Printing of Free Standing Liquid Metal Microstructures, Adv. Mater., 2013, 25(36), p 5081–5085CrossRef C. Ladd, J.H. So, J. Muth, and M.D. Dickey, 3D Printing of Free Standing Liquid Metal Microstructures, Adv. Mater., 2013, 25(36), p 5081–5085CrossRef
11.
go back to reference M. Zenou, A. Sa’ar, and Z. Kotler, Laser Jetting of Femto-Liter Metal Droplets for High Resolution 3D Printed Structures, Sci. Rep., 2015, 5, p 7265CrossRef M. Zenou, A. Sa’ar, and Z. Kotler, Laser Jetting of Femto-Liter Metal Droplets for High Resolution 3D Printed Structures, Sci. Rep., 2015, 5, p 7265CrossRef
12.
go back to reference C.W. Visser, R. Pohl, C. Sun, G.W. Roemer, B. Huisin ‘t Veld, and D. Lohse, Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer, Adv. Mater., 2015, 27(27), p 4087–4092CrossRef C.W. Visser, R. Pohl, C. Sun, G.W. Roemer, B. Huisin ‘t Veld, and D. Lohse, Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer, Adv. Mater., 2015, 27(27), p 4087–4092CrossRef
13.
go back to reference P.K. Lu, W. Li, and J.J. Lannutti, Density Gradients and the Expansion-Shrinkage Transition During Sintering, Acta Mater., 2004, 52(7), p 2057–2066CrossRef P.K. Lu, W. Li, and J.J. Lannutti, Density Gradients and the Expansion-Shrinkage Transition During Sintering, Acta Mater., 2004, 52(7), p 2057–2066CrossRef
14.
go back to reference A.T. Procopio and A. Zavaliangos, Simulation of Multi-axial Compaction of Granular Media From Loose to High Relative Densities, J. Mech. Phys. Solids, 2005, 53(7), p 1523–1551CrossRef A.T. Procopio and A. Zavaliangos, Simulation of Multi-axial Compaction of Granular Media From Loose to High Relative Densities, J. Mech. Phys. Solids, 2005, 53(7), p 1523–1551CrossRef
15.
go back to reference S.J. Antony, R.O. Momoh, and M.R. Kuh, Micromechanical Modelling of Oval Particulates Subjected to Bi-Axial Compression, Comput. Mater. Sci., 2004, 29(4), p 494–498CrossRef S.J. Antony, R.O. Momoh, and M.R. Kuh, Micromechanical Modelling of Oval Particulates Subjected to Bi-Axial Compression, Comput. Mater. Sci., 2004, 29(4), p 494–498CrossRef
16.
go back to reference L. Liu, Simulation of Microstructural Evolution During Isostatic Compaction of Monosized Spheres, J. Phys. D (Appl. Phys.), 2003, 36(15), p 1881–1889CrossRef L. Liu, Simulation of Microstructural Evolution During Isostatic Compaction of Monosized Spheres, J. Phys. D (Appl. Phys.), 2003, 36(15), p 1881–1889CrossRef
17.
go back to reference R.Y. Yang, R.P. Zou, and A.B. Yu, Effect of Material Properties on the Packing of Fine Particles, J. Appl. Phys., 2003, 94(5), p 3025–3034CrossRef R.Y. Yang, R.P. Zou, and A.B. Yu, Effect of Material Properties on the Packing of Fine Particles, J. Appl. Phys., 2003, 94(5), p 3025–3034CrossRef
18.
go back to reference F. Parhami and R.M. McMeeking, A Network Model for Initial Stage Sintering, Mech. Mater., 1998, 27(2), p 111–124CrossRef F. Parhami and R.M. McMeeking, A Network Model for Initial Stage Sintering, Mech. Mater., 1998, 27(2), p 111–124CrossRef
19.
go back to reference S. Luding, R. Tykhoniak, and J. Tomas, Anisotropic Material Behavior in Dense, Cohesive-Frictional Powders, Chem. Eng. Technol., 2003, 26(12), p 1229–1232CrossRef S. Luding, R. Tykhoniak, and J. Tomas, Anisotropic Material Behavior in Dense, Cohesive-Frictional Powders, Chem. Eng. Technol., 2003, 26(12), p 1229–1232CrossRef
20.
go back to reference C. Argento and D. Bouvard, Modeling the Effective Thermal Conductivity of Random Packing of Spheres Through Densification, Int. J. Heat Mass Transf., 1996, 39(7), p 1343–1350CrossRef C. Argento and D. Bouvard, Modeling the Effective Thermal Conductivity of Random Packing of Spheres Through Densification, Int. J. Heat Mass Transf., 1996, 39(7), p 1343–1350CrossRef
21.
go back to reference C. Thornton, M.T. Ciomocos, and M.J. Adams, Numerical Simulations of Diametrical Compression Tests on Agglomerates, Powder Technol., 2004, 140(3), p 258–267CrossRef C. Thornton, M.T. Ciomocos, and M.J. Adams, Numerical Simulations of Diametrical Compression Tests on Agglomerates, Powder Technol., 2004, 140(3), p 258–267CrossRef
22.
go back to reference T. Groger, U. Tuzun, and D.M. Heyes, Modelling and Measuring of Cohesion in Wet Granular Materials, Powder Technol., 2003, 133(1–3), p 203–215CrossRef T. Groger, U. Tuzun, and D.M. Heyes, Modelling and Measuring of Cohesion in Wet Granular Materials, Powder Technol., 2003, 133(1–3), p 203–215CrossRef
23.
go back to reference Y.C. Zhou, B.H. Xu, A.B. Yu, and P. Zulli, An Experimental and Numerical Study of the Angle of Repose of Coarse Spheres, Powder Technol., 2002, 125(1), p 45–54CrossRef Y.C. Zhou, B.H. Xu, A.B. Yu, and P. Zulli, An Experimental and Numerical Study of the Angle of Repose of Coarse Spheres, Powder Technol., 2002, 125(1), p 45–54CrossRef
24.
go back to reference G. D’Anna, Mechanical Properties of Granular Media, Including Snow, Investigated by a Low-Frequency Forced Torsion Pendulum, Phys. Rev. E (Stat. Phys. Plasmas Fluids, Relat. Interdiscip. Top.), 2000, 62(1), p 982–992 G. D’Anna, Mechanical Properties of Granular Media, Including Snow, Investigated by a Low-Frequency Forced Torsion Pendulum, Phys. Rev. E (Stat. Phys. Plasmas Fluids, Relat. Interdiscip. Top.), 2000, 62(1), p 982–992
25.
go back to reference K.V. Wong and A. Hernandez, A Review of Additive Manufacturing, ISRN Mech. Eng., 2012, 2012, p 10CrossRef K.V. Wong and A. Hernandez, A Review of Additive Manufacturing, ISRN Mech. Eng., 2012, 2012, p 10CrossRef
26.
go back to reference L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol., 2012, 28(1), p 1–14CrossRef L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol., 2012, 28(1), p 1–14CrossRef
27.
go back to reference G. Tapia and A. Elwany, A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing, J. Manuf. Sci. Eng., 2014, 136(6), p 060801–0608010CrossRef G. Tapia and A. Elwany, A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing, J. Manuf. Sci. Eng., 2014, 136(6), p 060801–0608010CrossRef
28.
go back to reference W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928CrossRef W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928CrossRef
29.
go back to reference W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315–360CrossRef W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315–360CrossRef
30.
go back to reference E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Prog. Mater. Sci., 2015, 74, p 401–477CrossRef E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Prog. Mater. Sci., 2015, 74, p 401–477CrossRef
31.
go back to reference S.L. Sing, J. An, W.Y. Yeong, and F.E. Wiria, Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs, J. Orthop. Res., 2016, 34(3), p 369–385CrossRef S.L. Sing, J. An, W.Y. Yeong, and F.E. Wiria, Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs, J. Orthop. Res., 2016, 34(3), p 369–385CrossRef
32.
go back to reference J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46, p 151–186CrossRef J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46, p 151–186CrossRef
33.
go back to reference M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing, JOM, 2016, 68(3), p 747–764CrossRef M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing, JOM, 2016, 68(3), p 747–764CrossRef
34.
go back to reference D.L. Bourell, Perspectives on Additive Manufacturing, Annu. Rev. Mater. Res., 2016, 46, p 1–18CrossRef D.L. Bourell, Perspectives on Additive Manufacturing, Annu. Rev. Mater. Res., 2016, 46, p 1–18CrossRef
35.
go back to reference K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, and J. Kruth. Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg, Solid Freeform Fabrication Symposium, 2011 K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, and J. Kruth. Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg, Solid Freeform Fabrication Symposium, 2011
36.
go back to reference M. Jamshidinia, F. Kong, and R. Kovacevic, Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti-6Al-4V, J. Manuf. Sci. Eng., 2013, 135(6), p 061010CrossRef M. Jamshidinia, F. Kong, and R. Kovacevic, Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti-6Al-4V, J. Manuf. Sci. Eng., 2013, 135(6), p 061010CrossRef
37.
go back to reference J. Zhang, Y. Zhang, X. Guo, W.H. Lee, B. Hu, Z. Lu, Y.-G. Jung, and H. Lee, Characterization of Microstructure and Mechanical Properties of Direct Metal Laser Sintered 15-5 Ph1 Stainless Steel Powders and Components, TMS 2016: 145th Annual Meeting and Exhibition: Supplemental Proceedings, Wiley, 2016, p. 13–19 J. Zhang, Y. Zhang, X. Guo, W.H. Lee, B. Hu, Z. Lu, Y.-G. Jung, and H. Lee, Characterization of Microstructure and Mechanical Properties of Direct Metal Laser Sintered 15-5 Ph1 Stainless Steel Powders and Components, TMS 2016: 145th Annual Meeting and Exhibition: Supplemental Proceedings, Wiley, 2016, p. 13–19
38.
go back to reference L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.-P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303–3312CrossRef L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.-P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303–3312CrossRef
39.
go back to reference Y. Zhai, H. Galarraga, and D.A. Lados, Microstructure, Static Properties, and Fatigue Crack Growth Mechanisms in Ti-6Al-4V Fabricated by Additive manufacturing: LENS and EBM, Eng. Fail. Anal., 2016, 69, p 3–14CrossRef Y. Zhai, H. Galarraga, and D.A. Lados, Microstructure, Static Properties, and Fatigue Crack Growth Mechanisms in Ti-6Al-4V Fabricated by Additive manufacturing: LENS and EBM, Eng. Fail. Anal., 2016, 69, p 3–14CrossRef
40.
go back to reference J.D. Hunt, Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng., 1984, 65(1), p 75–83CrossRef J.D. Hunt, Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng., 1984, 65(1), p 75–83CrossRef
41.
go back to reference L. Nastac, J. Valencia, M. Tims, and F. Dax, Advances in the Solidification of IN718 and RS5 Alloys. Proceedings of Superalloys 718, 625, 706 and Various Derivatives, 2001. L. Nastac, J. Valencia, M. Tims, and F. Dax, Advances in the Solidification of IN718 and RS5 Alloys. Proceedings of Superalloys 718, 625, 706 and Various Derivatives, 2001.
42.
go back to reference W.J. Sames, K.A. Unocic, R.R. Dehoff, T. Lolla, and S.S. Babu, Thermal Effects on Microstructural Heterogeneity of Inconel 718 Materials Fabricated by Electron Beam Melting, J. Mater. Res., 2014, 29(17), p 1920–1930CrossRef W.J. Sames, K.A. Unocic, R.R. Dehoff, T. Lolla, and S.S. Babu, Thermal Effects on Microstructural Heterogeneity of Inconel 718 Materials Fabricated by Electron Beam Melting, J. Mater. Res., 2014, 29(17), p 1920–1930CrossRef
43.
go back to reference R.R. Dehoff, M.M. Kirka, F.A. List, K.A. Unocic, and W.J. Sames, Crystallographic Texture Engineering Through Novel Melt Strategies Via Electron Beam Melting: Inconel 718, Mater. Sci. Technol., 2015, 31(8), p 939–944CrossRef R.R. Dehoff, M.M. Kirka, F.A. List, K.A. Unocic, and W.J. Sames, Crystallographic Texture Engineering Through Novel Melt Strategies Via Electron Beam Melting: Inconel 718, Mater. Sci. Technol., 2015, 31(8), p 939–944CrossRef
44.
go back to reference H.E. Helmer, C. Körner, and R.F. Singer, Additive Manufacturing of nickel-Based Superalloy Inconel 718 by Selective Electron Beam Melting: Processing Window and Microstructure, J. Mater. Res., 2014, 29(17), p 1987–1996CrossRef H.E. Helmer, C. Körner, and R.F. Singer, Additive Manufacturing of nickel-Based Superalloy Inconel 718 by Selective Electron Beam Melting: Processing Window and Microstructure, J. Mater. Res., 2014, 29(17), p 1987–1996CrossRef
45.
go back to reference M. Mazur, M. Leary, M. McMillan, S. Sun, D. Shidid, and M. Brandt, 5—Mechanical Properties of Ti6Al4V and AlSi12Mg Lattice Structures Manufactured by Selective Laser Melting (SLM), Laser Additive Manufacturing, Woodhead Publishing, 2017, p. 119–161 M. Mazur, M. Leary, M. McMillan, S. Sun, D. Shidid, and M. Brandt, 5—Mechanical Properties of Ti6Al4V and AlSi12Mg Lattice Structures Manufactured by Selective Laser Melting (SLM), Laser Additive Manufacturing, Woodhead Publishing, 2017, p. 119–161
46.
go back to reference Q. Liu, Y. Wang, H. Zheng, K. Tang, L. Ding, H. Li, and S. Gong, Microstructure and Mechanical Properties of LMD–SLM Hybrid Forming Ti6Al4V Alloy, Mater. Sci. Eng. A, 2016, 660, p 24–33CrossRef Q. Liu, Y. Wang, H. Zheng, K. Tang, L. Ding, H. Li, and S. Gong, Microstructure and Mechanical Properties of LMD–SLM Hybrid Forming Ti6Al4V Alloy, Mater. Sci. Eng. A, 2016, 660, p 24–33CrossRef
47.
go back to reference K. Kunze, T. Etter, J. Grässlin, and V. Shklover, Texture, Anisotropy in Microstructure and Mechanical Properties of IN738LC Alloy Processed by Selective Laser Melting (SLM), Mater. Sci. Eng. A, 2015, 620, p 213–222CrossRef K. Kunze, T. Etter, J. Grässlin, and V. Shklover, Texture, Anisotropy in Microstructure and Mechanical Properties of IN738LC Alloy Processed by Selective Laser Melting (SLM), Mater. Sci. Eng. A, 2015, 620, p 213–222CrossRef
48.
go back to reference Y. Zhang and J. Zhang, Sintering Phenomena and Mechanical Strength of Nickel Based Materials in Direct Metal Laser Sintering Process—A Molecular Dynamics Study, J. Mater. Res., 2016, 31(15), p 2233–2243CrossRef Y. Zhang and J. Zhang, Sintering Phenomena and Mechanical Strength of Nickel Based Materials in Direct Metal Laser Sintering Process—A Molecular Dynamics Study, J. Mater. Res., 2016, 31(15), p 2233–2243CrossRef
49.
go back to reference Y. Zhang, L. Wu, H. El-Mounayri, K. Brand, and J. Zhang, Molecular Dynamics Study of the Strength of Laser Sintered Iron Nanoparticles, Proced. Manuf., 2015, 1, p 296–307CrossRef Y. Zhang, L. Wu, H. El-Mounayri, K. Brand, and J. Zhang, Molecular Dynamics Study of the Strength of Laser Sintered Iron Nanoparticles, Proced. Manuf., 2015, 1, p 296–307CrossRef
50.
go back to reference J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts, Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2005, 11(1), p 26–36CrossRef J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts, Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2005, 11(1), p 26–36CrossRef
51.
go back to reference X. Yang and C. Richard Liu, Machining Titanium and Its Alloys, Mach. Sci. Technol., 1999, 3(1), p 107–139CrossRef X. Yang and C. Richard Liu, Machining Titanium and Its Alloys, Mach. Sci. Technol., 1999, 3(1), p 107–139CrossRef
52.
go back to reference T.M. Mower and M.J. Long, Mechanical Behavior of Additive Manufactured, Powder-Bed Laser-Fused Materials, Mater. Sci. Eng. A, 2016, 651, p 198–213CrossRef T.M. Mower and M.J. Long, Mechanical Behavior of Additive Manufactured, Powder-Bed Laser-Fused Materials, Mater. Sci. Eng. A, 2016, 651, p 198–213CrossRef
53.
go back to reference C. Qiu, N.J.E. Adkins, and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-Melted and of HIPed Laser-Melted Ti-6Al-4V, Mater. Sci. Eng. A, 2013, 578, p 230–239CrossRef C. Qiu, N.J.E. Adkins, and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-Melted and of HIPed Laser-Melted Ti-6Al-4V, Mater. Sci. Eng. A, 2013, 578, p 230–239CrossRef
54.
go back to reference M. Simonelli, Y.Y. Tse, and C. Tuck, The Formation of α + β Microstructure in as-Fabricated Selective Laser Melting of Ti-6Al-4V, J. Mater. Res., 2014, 29(17), p 2028–2035CrossRef M. Simonelli, Y.Y. Tse, and C. Tuck, The Formation of α + β Microstructure in as-Fabricated Selective Laser Melting of Ti-6Al-4V, J. Mater. Res., 2014, 29(17), p 2028–2035CrossRef
55.
go back to reference T. Vilaro, C. Colin, and J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A, 2011, 42(10), p 3190–3199CrossRef T. Vilaro, C. Colin, and J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A, 2011, 42(10), p 3190–3199CrossRef
56.
go back to reference H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of the Microstructure and Porosity on Properties of Ti-6Al-4V ELI, Alloy Fabricated by Electron Beam Melting (EBM), Addit. Manuf., 2016, 10, p 47–57CrossRef H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of the Microstructure and Porosity on Properties of Ti-6Al-4V ELI, Alloy Fabricated by Electron Beam Melting (EBM), Addit. Manuf., 2016, 10, p 47–57CrossRef
57.
go back to reference N. Hrabe and T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location, Mater. Sci. Eng. A, 2013, 573, p 271–277CrossRef N. Hrabe and T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location, Mater. Sci. Eng. A, 2013, 573, p 271–277CrossRef
58.
go back to reference H.K. Rafi, N. Karthik, T.L. Starr, and B.E. Stucker. Mechanical Property Evaluation of Ti-6Al-4V Parts Made Using Electron Beam Melting, Proceedings of the Solid Freeform Fabrication Symposium, 2012. H.K. Rafi, N. Karthik, T.L. Starr, and B.E. Stucker. Mechanical Property Evaluation of Ti-6Al-4V Parts Made Using Electron Beam Melting, Proceedings of the Solid Freeform Fabrication Symposium, 2012.
59.
go back to reference L. Facchini, E. Magalini, P. Robotti, and A. Molinari, Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of Pre-alloyed Powders, Rapid Prototyp. J., 2009, 15(3), p 171–178CrossRef L. Facchini, E. Magalini, P. Robotti, and A. Molinari, Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of Pre-alloyed Powders, Rapid Prototyp. J., 2009, 15(3), p 171–178CrossRef
60.
go back to reference M. Krishnan, Investigation of Material and Mechanical Properties of Al Alloy and Al Based MMC Parts Produced by DMLS for Industrial Application, Politecnico di Torino, Torino, 2014, p 124 M. Krishnan, Investigation of Material and Mechanical Properties of Al Alloy and Al Based MMC Parts Produced by DMLS for Industrial Application, Politecnico di Torino, Torino, 2014, p 124
61.
go back to reference H.K. Rafi, T.L. Starr, and B.E. Stucker, A Comparison of the Tensile, Fatigue, and Fracture Behavior of Ti-6Al-4V and 15-5 PH Stainless Steel Parts Made by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2013, 69(5), p 1299–1309CrossRef H.K. Rafi, T.L. Starr, and B.E. Stucker, A Comparison of the Tensile, Fatigue, and Fracture Behavior of Ti-6Al-4V and 15-5 PH Stainless Steel Parts Made by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2013, 69(5), p 1299–1309CrossRef
62.
go back to reference A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf, On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting, Eng. Fract. Mech., 2014, 120, p 15–25CrossRef A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf, On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting, Eng. Fract. Mech., 2014, 120, p 15–25CrossRef
63.
go back to reference R.P. Mudge and N.R. Wald, Laser Engineered Net Shaping Advances Additive Manufacturing and Repair, Weld. J. N. Y., 2007, 86(1), p 44 R.P. Mudge and N.R. Wald, Laser Engineered Net Shaping Advances Additive Manufacturing and Repair, Weld. J. N. Y., 2007, 86(1), p 44
64.
go back to reference M.S Domack, K.M. Taminger, and M. Begley. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminium Alloy 2219 Produced by Electron Beam Freeform Fabrication, Materials Science Forum, Trans Tech Publ., 2006 M.S Domack, K.M. Taminger, and M. Begley. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminium Alloy 2219 Produced by Electron Beam Freeform Fabrication, Materials Science Forum, Trans Tech Publ., 2006
65.
go back to reference M. Griffith, D. Keicher, and C. Atwood, Free form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS {trademark}), Sandia National Labs, Albuquerque, NM, 1996 M. Griffith, D. Keicher, and C. Atwood, Free form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS {trademark}), Sandia National Labs, Albuquerque, NM, 1996
66.
go back to reference M. Griffith, D. Keicher, J. Romero, J. Smugeresky, C. Atwood, L. Harwell, and D. Greene. Laser Engineered Net Shaping (LENS) for Fabrication of Metallic Components, ASME International Mechanical Engineering Congress and Exposition, 1996. M. Griffith, D. Keicher, J. Romero, J. Smugeresky, C. Atwood, L. Harwell, and D. Greene. Laser Engineered Net Shaping (LENS) for Fabrication of Metallic Components, ASME International Mechanical Engineering Congress and Exposition, 1996.
67.
go back to reference X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, and W. Voice, Microstructures of Laser-Deposited Ti-6Al-4V, Mater. Des., 2004, 25(2), p 137–144CrossRef X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, and W. Voice, Microstructures of Laser-Deposited Ti-6Al-4V, Mater. Des., 2004, 25(2), p 137–144CrossRef
68.
go back to reference F. Wang, J. Mei, and X. Wu, Microstructure Study of Direct Laser Fabricated Ti Alloys Using Powder and Wire, Appl. Surf. Sci., 2006, 253(3), p 1424–1430CrossRef F. Wang, J. Mei, and X. Wu, Microstructure Study of Direct Laser Fabricated Ti Alloys Using Powder and Wire, Appl. Surf. Sci., 2006, 253(3), p 1424–1430CrossRef
69.
go back to reference X. Wu, R. Sharman, J. Mei, and W. Voice, Microstructure and Properties of a Laser Fabricated Burn-Resistant Ti Alloy, Mater. Des., 2004, 25(2), p 103–109CrossRef X. Wu, R. Sharman, J. Mei, and W. Voice, Microstructure and Properties of a Laser Fabricated Burn-Resistant Ti Alloy, Mater. Des., 2004, 25(2), p 103–109CrossRef
70.
go back to reference T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, and H.M. Wang, Grain Morphology Evolution Behavior of Titanium Alloy Components During Laser Melting Deposition Additive Manufacturing, J. Alloys Compd., 2015, 632, p 505–513CrossRef T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, and H.M. Wang, Grain Morphology Evolution Behavior of Titanium Alloy Components During Laser Melting Deposition Additive Manufacturing, J. Alloys Compd., 2015, 632, p 505–513CrossRef
71.
go back to reference P. Kobryn and S. Semiatin. Mechanical Properties of Laser-Deposited Ti-6Al-4V, Solid Freeform Fabrication Proceedings, Austin, 2001 P. Kobryn and S. Semiatin. Mechanical Properties of Laser-Deposited Ti-6Al-4V, Solid Freeform Fabrication Proceedings, Austin, 2001
72.
go back to reference J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, K. Karg, T. McDonald, and O.S. Es-Said, Tensile Properties and Microstructures of Laser-Formed Ti-6Al-4V, J. Mater. Eng. Perform., 2011, 20(2), p 203–212CrossRef J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, K. Karg, T. McDonald, and O.S. Es-Said, Tensile Properties and Microstructures of Laser-Formed Ti-6Al-4V, J. Mater. Eng. Perform., 2011, 20(2), p 203–212CrossRef
73.
go back to reference A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti-6Al-4V, Mater. Sci. Eng. A, 2016, 655, p 100–112CrossRef A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti-6Al-4V, Mater. Sci. Eng. A, 2016, 655, p 100–112CrossRef
74.
go back to reference C. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, and M.M. Attallah, Fabrication of Large Ti-6Al-4V Structures by Direct Laser Deposition, J. Alloys Compd., 2015, 629, p 351–361CrossRef C. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, and M.M. Attallah, Fabrication of Large Ti-6Al-4V Structures by Direct Laser Deposition, J. Alloys Compd., 2015, 629, p 351–361CrossRef
75.
go back to reference P.E. Ruff, Effect of Manufacturing Processes on Structural Allowables Phase 2, DTIC Document, New York, 1986 P.E. Ruff, Effect of Manufacturing Processes on Structural Allowables Phase 2, DTIC Document, New York, 1986
76.
go back to reference W.A. Tayon, R.N. Shenoy, M.R. Redding, R. Keith Bird, and R.A. Hafley, Correlation Between Microstructure and Mechanical Properties in an Inconel 718 Deposit Produced Via Electron Beam Freeform Fabrication, J. Manuf. Sci. Eng., 2014, 136(6), p 061005–061007CrossRef W.A. Tayon, R.N. Shenoy, M.R. Redding, R. Keith Bird, and R.A. Hafley, Correlation Between Microstructure and Mechanical Properties in an Inconel 718 Deposit Produced Via Electron Beam Freeform Fabrication, J. Manuf. Sci. Eng., 2014, 136(6), p 061005–061007CrossRef
77.
go back to reference E.M. Sachs, J.S. Haggerty, M.J. Cima, and P.A. Williams, Three-Dimensional Printing Techniques. Google Patents, 1993 E.M. Sachs, J.S. Haggerty, M.J. Cima, and P.A. Williams, Three-Dimensional Printing Techniques. Google Patents, 1993
78.
go back to reference D.S. Sodhi, Nonsimultaneous Crushing During Edge Indentation of Freshwater Ice Sheets, Cold Reg. Sci. Technol., 1998, 27(3), p 179–195CrossRef D.S. Sodhi, Nonsimultaneous Crushing During Edge Indentation of Freshwater Ice Sheets, Cold Reg. Sci. Technol., 1998, 27(3), p 179–195CrossRef
79.
go back to reference M. Turker, D. Godlinski, and F. Petzoldt, Effect of Production Parameters on the Properties of IN 718 Superalloy by Three-Dimensional Printing, Mater. Charact., 2008, 59(12), p 1728–1735CrossRef M. Turker, D. Godlinski, and F. Petzoldt, Effect of Production Parameters on the Properties of IN 718 Superalloy by Three-Dimensional Printing, Mater. Charact., 2008, 59(12), p 1728–1735CrossRef
80.
go back to reference A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, and M. Chmielus, Effect of Solutionizing and Aging on the Microstructure and Mechanical Properties of Powder Bed Binder Jet Printed Nickel-Based Superalloy 625, Mater. Des., 2016, 111, p 482–491CrossRef A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, and M. Chmielus, Effect of Solutionizing and Aging on the Microstructure and Mechanical Properties of Powder Bed Binder Jet Printed Nickel-Based Superalloy 625, Mater. Des., 2016, 111, p 482–491CrossRef
81.
go back to reference A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, and M. Chmielus, Microstructural Evolution and Mechanical Properties of Differently Heat-Treated Binder Jet Printed Samples From Gas- and Water-Atomized Alloy 625 Powders, Acta Mater., 2017, 124, p 280–289CrossRef A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, and M. Chmielus, Microstructural Evolution and Mechanical Properties of Differently Heat-Treated Binder Jet Printed Samples From Gas- and Water-Atomized Alloy 625 Powders, Acta Mater., 2017, 124, p 280–289CrossRef
82.
go back to reference J.J.S. Dilip, H. Miyanaji, A. Lassell, T.L. Starr, and B. Stucker, A Novel Method to Fabricate TiAl Intermetallic Alloy 3D Parts Using Additive Manufacturing. Def. Technol., 2017, 13(2), p 72–76CrossRef J.J.S. Dilip, H. Miyanaji, A. Lassell, T.L. Starr, and B. Stucker, A Novel Method to Fabricate TiAl Intermetallic Alloy 3D Parts Using Additive Manufacturing. Def. Technol., 2017, 13(2), p 72–76CrossRef
83.
go back to reference A. Mostafaei, E.L. Stevens, E.T. Hughes, S.D. Biery, C. Hilla, and M. Chmielus, Powder Bed Binder Jet Printed Alloy 625: Densification, Microstructure and Mechanical Properties, Mater. Des., 2016, 108, p 126–135CrossRef A. Mostafaei, E.L. Stevens, E.T. Hughes, S.D. Biery, C. Hilla, and M. Chmielus, Powder Bed Binder Jet Printed Alloy 625: Densification, Microstructure and Mechanical Properties, Mater. Des., 2016, 108, p 126–135CrossRef
84.
go back to reference D. Hong, D.T. Chou, O.I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H.A. Kuhn, and P.N. Kumta, Binder-Jetting 3D Printing and Alloy Development of New Biodegradable Fe-Mn-Ca/Mg Alloys, Acta Biomater., 2016, 45, p 375–386CrossRef D. Hong, D.T. Chou, O.I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H.A. Kuhn, and P.N. Kumta, Binder-Jetting 3D Printing and Alloy Development of New Biodegradable Fe-Mn-Ca/Mg Alloys, Acta Biomater., 2016, 45, p 375–386CrossRef
85.
go back to reference Y. Bai and C.B. Williams, An Exploration of Binder Jetting of Copper, Rapid Prototyp. J., 2015, 21(2), p 177–185CrossRef Y. Bai and C.B. Williams, An Exploration of Binder Jetting of Copper, Rapid Prototyp. J., 2015, 21(2), p 177–185CrossRef
86.
go back to reference R. Meaney, I.J. Jordaan, and J. Xiao, Analysis of Medium Scale Ice-Indentation Tests, Cold Reg. Sci. Technol., 1996, 24(3), p 279–287CrossRef R. Meaney, I.J. Jordaan, and J. Xiao, Analysis of Medium Scale Ice-Indentation Tests, Cold Reg. Sci. Technol., 1996, 24(3), p 279–287CrossRef
87.
go back to reference Y. Zhang, L. Wu, X. Guo, Y.-G. Jung, and J. Zhang, Molecular Dynamics Simulation of Electrical Resistivity in Sintering Process of Nanoparticle Silver Inks, Comput. Mater. Sci., 2016, 125, p 105–109CrossRef Y. Zhang, L. Wu, X. Guo, Y.-G. Jung, and J. Zhang, Molecular Dynamics Simulation of Electrical Resistivity in Sintering Process of Nanoparticle Silver Inks, Comput. Mater. Sci., 2016, 125, p 105–109CrossRef
88.
go back to reference T. Obikawa, M. Yoshino, and J. Shinozuka, Sheet Steel Lamination for Rapid Manufacturing, J. Mater. Process. Technol., 1999, 89–90, p 171–176CrossRef T. Obikawa, M. Yoshino, and J. Shinozuka, Sheet Steel Lamination for Rapid Manufacturing, J. Mater. Process. Technol., 1999, 89–90, p 171–176CrossRef
89.
go back to reference D. White, Ultrasonic Object Consolidation, Google Patents, 2003 D. White, Ultrasonic Object Consolidation, Google Patents, 2003
90.
go back to reference D.R. White, Ultrasonic Consolidation of Aluminum Tooling, Adv. Mater. Process., 2003, 161(1), p 64–65 D.R. White, Ultrasonic Consolidation of Aluminum Tooling, Adv. Mater. Process., 2003, 161(1), p 64–65
91.
go back to reference R.R. Dehoff and S.S. Babu, Characterization of Interfacial Microstructures in 3003 Aluminum Alloy Blocks Fabricated by Ultrasonic Additive Manufacturing, Acta Mater., 2010, 58(13), p 4305–4315CrossRef R.R. Dehoff and S.S. Babu, Characterization of Interfacial Microstructures in 3003 Aluminum Alloy Blocks Fabricated by Ultrasonic Additive Manufacturing, Acta Mater., 2010, 58(13), p 4305–4315CrossRef
92.
go back to reference H.T. Fujii, M.R. Sriraman, and S.S. Babu, Quantitative Evaluation of Bulk and Interface Microstructures in Al-3003 Alloy Builds Made by Very High Power Ultrasonic Additive Manufacturing, Metall. Mater. Trans. A, 2011, 42(13), p 4045–4055CrossRef H.T. Fujii, M.R. Sriraman, and S.S. Babu, Quantitative Evaluation of Bulk and Interface Microstructures in Al-3003 Alloy Builds Made by Very High Power Ultrasonic Additive Manufacturing, Metall. Mater. Trans. A, 2011, 42(13), p 4045–4055CrossRef
93.
go back to reference M.R. Sriraman, M. Gonser, H.T. Fujii, S.S. Babu, and M. Bloss, Thermal Transients During Processing of Materials by Very High Power Ultrasonic Additive Manufacturing, J. Mater. Process. Technol., 2011, 211(10), p 1650–1657CrossRef M.R. Sriraman, M. Gonser, H.T. Fujii, S.S. Babu, and M. Bloss, Thermal Transients During Processing of Materials by Very High Power Ultrasonic Additive Manufacturing, J. Mater. Process. Technol., 2011, 211(10), p 1650–1657CrossRef
94.
go back to reference J.J. Lewandowski and W.H. Hunt, Intrinsic and Extrinsic Fracture Mechanisms in Inorganic Composite Systems, The Minerals, Metals & Materials Society, Pittsburgh, 1995 J.J. Lewandowski and W.H. Hunt, Intrinsic and Extrinsic Fracture Mechanisms in Inorganic Composite Systems, The Minerals, Metals & Materials Society, Pittsburgh, 1995
95.
go back to reference S. Shimizu, H.T. Fujii, Y.S. Sato, H. Kokawa, M.R. Sriraman, and S.S. Babu, Mechanism of Weld Formation During Very-High-Power Ultrasonic Additive Manufacturing of Al Alloy 6061, Acta Mater., 2014, 74, p 234–243CrossRef S. Shimizu, H.T. Fujii, Y.S. Sato, H. Kokawa, M.R. Sriraman, and S.S. Babu, Mechanism of Weld Formation During Very-High-Power Ultrasonic Additive Manufacturing of Al Alloy 6061, Acta Mater., 2014, 74, p 234–243CrossRef
96.
go back to reference N. Sridharan, M. Gussev, R. Seibert, C. Parish, M. Norfolk, K. Terrani, and S.S. Babu, Rationalization of Anisotropic Mechanical Properties of Al-6061 Fabricated Using Ultrasonic Additive Manufacturing, Acta Mater., 2016, 117, p 228–237CrossRef N. Sridharan, M. Gussev, R. Seibert, C. Parish, M. Norfolk, K. Terrani, and S.S. Babu, Rationalization of Anisotropic Mechanical Properties of Al-6061 Fabricated Using Ultrasonic Additive Manufacturing, Acta Mater., 2016, 117, p 228–237CrossRef
97.
go back to reference M.N. Gussev, N. Sridharan, M. Norfolk, K.A. Terrani, and S.S. Babu, Effect of Post Weld Heat Treatment on the 6061 Aluminum Alloy Produced by Ultrasonic Additive Manufacturing, Mater. Sci. Eng. A, 2017, 684, p 606–616CrossRef M.N. Gussev, N. Sridharan, M. Norfolk, K.A. Terrani, and S.S. Babu, Effect of Post Weld Heat Treatment on the 6061 Aluminum Alloy Produced by Ultrasonic Additive Manufacturing, Mater. Sci. Eng. A, 2017, 684, p 606–616CrossRef
98.
go back to reference P.J. Wolcott, A. Hehr, C. Pawlowski, and M.J. Dapino, Process Improvements and Characterization of Ultrasonic Additive Manufactured Structures, J. Mater. Process. Technol., 2016, 233, p 44–52CrossRef P.J. Wolcott, A. Hehr, C. Pawlowski, and M.J. Dapino, Process Improvements and Characterization of Ultrasonic Additive Manufactured Structures, J. Mater. Process. Technol., 2016, 233, p 44–52CrossRef
99.
go back to reference F. Kümmel, T. Hausöl, H.W. Höppel, and M. Göken, Enhanced Fatigue Lives in AA1050A/AA5005 laminated Metal Composites Produced by Accumulative Roll Bonding, Acta Mater., 2016, 120, p 150–158CrossRef F. Kümmel, T. Hausöl, H.W. Höppel, and M. Göken, Enhanced Fatigue Lives in AA1050A/AA5005 laminated Metal Composites Produced by Accumulative Roll Bonding, Acta Mater., 2016, 120, p 150–158CrossRef
100.
go back to reference D.W. Kum, T. Oyama, J. Wadsworth, and O.D. Sherby, The Impact Properties of Laminated Composites Containing Ultrahigh Carbon (UHC) Steels, J. Mech. Phys. Solids, 1983, 31(2), p 173–186CrossRef D.W. Kum, T. Oyama, J. Wadsworth, and O.D. Sherby, The Impact Properties of Laminated Composites Containing Ultrahigh Carbon (UHC) Steels, J. Mech. Phys. Solids, 1983, 31(2), p 173–186CrossRef
101.
go back to reference S. Lee, J. Wadsworth, and O.D. Sherby, Tensile Properties of Laminated Composites Based on Ultrahigh Carbon Steel, J. Compos. Mater., 1991, 25(7), p 842–853CrossRef S. Lee, J. Wadsworth, and O.D. Sherby, Tensile Properties of Laminated Composites Based on Ultrahigh Carbon Steel, J. Compos. Mater., 1991, 25(7), p 842–853CrossRef
102.
go back to reference B. Mueller and D. Kochan, Laminated Object Manufacturing for Rapid Tooling and Patternmaking in Foundry Industry, Comput. Ind., 1999, 39(1), p 47–53CrossRef B. Mueller and D. Kochan, Laminated Object Manufacturing for Rapid Tooling and Patternmaking in Foundry Industry, Comput. Ind., 1999, 39(1), p 47–53CrossRef
Metadata
Title
Additive Manufacturing of Metallic Materials: A Review
Authors
Yi Zhang
Linmin Wu
Xingye Guo
Stephen Kane
Yifan Deng
Yeon-Gil Jung
Je-Hyun Lee
Jing Zhang
Publication date
24-05-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 1/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2747-y

Other articles of this Issue 1/2018

Journal of Materials Engineering and Performance 1/2018 Go to the issue

Premium Partners