Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 1/2018

07-12-2017

Effect of 0.1 wt.% Co on the Hot Deformation and Toughness of Fine-Grained Low-Carbon Steel at Sub-zero Temperatures

Authors: Xiqin Liu, Shuangshuang Zhou, Zili Liu, Zhiguo Hou, Qingchao Tian

Published in: Journal of Materials Engineering and Performance | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of 0.1 wt.% Co on the hot deformation behavior of fine-grained low-carbon microalloyed steel was investigated at temperatures of 850-1200 °C and a strain rate of 5 s−1. Furthermore, the toughness of the steel with and without Co at sub-zero temperatures was evaluated. The results suggest that the addition of 0.1 wt.% Co increases the flow stress and delays the occurrence of dynamic recrystallization (DRX) at the same deformation temperature and strain. The DRX fraction of steel specimens without and with 0.1 wt.% Co was about 67.4 and 43.9% at 850 °C, respectively. Then, it increased to 100% at 1100 °C. Compared with steel without Co, cementite particles in the tempered sorbite of steel with 0.1 wt.% Co decreased in size but increased in quantity, yield strength increased from 756 to 787 MPa, and Charpy V-notch energy at − 20 and − 50 °C improved from 69 and 41 to 102 and 65 J, respectively. The fracture morphology and crack propagation characteristics were consistent with the variation in impact energy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.S. Wang, Z. Li, B. Zhang, X.J. Zhang, J.M. Deng, and F.C. Zhang, High Tensile Ductility and High Strength in Ultrafine-Grained Low-Carbon Steel, Mater. Sci. Eng. A, 2010, 527(10), p 2798–2801CrossRef T.S. Wang, Z. Li, B. Zhang, X.J. Zhang, J.M. Deng, and F.C. Zhang, High Tensile Ductility and High Strength in Ultrafine-Grained Low-Carbon Steel, Mater. Sci. Eng. A, 2010, 527(10), p 2798–2801CrossRef
2.
go back to reference S.S. Zhou, X.Q. Liu, Z.L. Liu, Z.G. Hou, and Q.C. Tian, Dynamic Recrystallization Behavior of Vanadium Microalloyed Cryogenic Fine Grain Structural Steel Pipe at High Strain Rate, High Temp. Mater. Proc., 2017, 36(10), p 1001–1010CrossRef S.S. Zhou, X.Q. Liu, Z.L. Liu, Z.G. Hou, and Q.C. Tian, Dynamic Recrystallization Behavior of Vanadium Microalloyed Cryogenic Fine Grain Structural Steel Pipe at High Strain Rate, High Temp. Mater. Proc., 2017, 36(10), p 1001–1010CrossRef
3.
go back to reference M.A. Suarez, M.A. Alvarez-Pérez, O. Alvarez-Fregoso, and J.A. Juarez-Islas, Effect of Nanoprecipitates and Grain Size on the Mechanical Properties of Advanced Structural Steels, Mater. Sci. Eng. A, 2011, 528(15), p 4924–4926CrossRef M.A. Suarez, M.A. Alvarez-Pérez, O. Alvarez-Fregoso, and J.A. Juarez-Islas, Effect of Nanoprecipitates and Grain Size on the Mechanical Properties of Advanced Structural Steels, Mater. Sci. Eng. A, 2011, 528(15), p 4924–4926CrossRef
4.
go back to reference Y.W. Xu, D. Tang, Y. Song, and X.G. Pan, Dynamic Recrystallization Kinetics Model of X70 Pipeline Steel, Mater. Des., 2012, 39, p 168–174CrossRef Y.W. Xu, D. Tang, Y. Song, and X.G. Pan, Dynamic Recrystallization Kinetics Model of X70 Pipeline Steel, Mater. Des., 2012, 39, p 168–174CrossRef
5.
go back to reference J.P. Hirth, E.J. Dulis, and V.K. Chandhok, The Contribution of Cobalt to the Tempering Resistance and Hot Hardness of Tool Steels and Cobalt Replacement, Strength Met. Alloy, 1982, 1, p 185–191CrossRef J.P. Hirth, E.J. Dulis, and V.K. Chandhok, The Contribution of Cobalt to the Tempering Resistance and Hot Hardness of Tool Steels and Cobalt Replacement, Strength Met. Alloy, 1982, 1, p 185–191CrossRef
6.
go back to reference L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe, Effect of Cobalt on the Microstructure of Tempered Martensitic 9Cr Steel for Ultra-supercritical Power Plants, Mater. Sci. Eng. A, 2009, 510, p 88–94CrossRef L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe, Effect of Cobalt on the Microstructure of Tempered Martensitic 9Cr Steel for Ultra-supercritical Power Plants, Mater. Sci. Eng. A, 2009, 510, p 88–94CrossRef
7.
go back to reference D. Jakubéczyová and M. Fáberová, Mechanical Properties and Surface Treatment PM Cobalt High Speed Steels, Powder Metall. Prog. (Slovak Republic), 2002, 2(3), p 188–197 D. Jakubéczyová and M. Fáberová, Mechanical Properties and Surface Treatment PM Cobalt High Speed Steels, Powder Metall. Prog. (Slovak Republic), 2002, 2(3), p 188–197
8.
go back to reference K. Kimura, K. Seki, Y. Toda, and F. Abe, Development of High Strength 15Cr Ferritic Creep Resistant Steel with Addition of Tungsten and Cobalt, ISIJ Int., 2001, 41(Suppl), p S121–S125CrossRef K. Kimura, K. Seki, Y. Toda, and F. Abe, Development of High Strength 15Cr Ferritic Creep Resistant Steel with Addition of Tungsten and Cobalt, ISIJ Int., 2001, 41(Suppl), p S121–S125CrossRef
9.
go back to reference Y. Toda, K. Seki, K. Kimura, and F. Abe, Effects of W and Co on Long-Term Creep Strength of Precipitation Strengthened 15Cr Ferritic Heat Resistant Steels, ISIJ Int., 2003, 43(1), p 112–118CrossRef Y. Toda, K. Seki, K. Kimura, and F. Abe, Effects of W and Co on Long-Term Creep Strength of Precipitation Strengthened 15Cr Ferritic Heat Resistant Steels, ISIJ Int., 2003, 43(1), p 112–118CrossRef
10.
go back to reference P. Li, Y. Xiong, S. Liu, and D. Zeng, Electron Theory Study on Mechanism of Action of Cobalt in Fe-Co-Cr based High-Alloy Steel, Chin. Sci. Bull., 2003, 48(2), p 208–210CrossRef P. Li, Y. Xiong, S. Liu, and D. Zeng, Electron Theory Study on Mechanism of Action of Cobalt in Fe-Co-Cr based High-Alloy Steel, Chin. Sci. Bull., 2003, 48(2), p 208–210CrossRef
11.
go back to reference H. Kwon, J.H. Lee, K.B. Lee, H. Kwon, C.M. Kim, and H.R. Yang, Effects of Co and Ni on Secondary Hardening and Fracture Behavior of Martensitic Steels Bearing W and Cr, Metall. Mater. Trans. A, 1998, 29(1), p 397–401CrossRef H. Kwon, J.H. Lee, K.B. Lee, H. Kwon, C.M. Kim, and H.R. Yang, Effects of Co and Ni on Secondary Hardening and Fracture Behavior of Martensitic Steels Bearing W and Cr, Metall. Mater. Trans. A, 1998, 29(1), p 397–401CrossRef
12.
go back to reference G.R. Speich, D.S. Dabkowski, and L.F. Porter, Strength and Toughness of Fe-10Ni Alloys Containing C, Cr, Mo, and Co, Metall. Trans., 1973, 4(1), p 303–315CrossRef G.R. Speich, D.S. Dabkowski, and L.F. Porter, Strength and Toughness of Fe-10Ni Alloys Containing C, Cr, Mo, and Co, Metall. Trans., 1973, 4(1), p 303–315CrossRef
13.
go back to reference H.J. Rack and D. Kalish, The Strength and Fracture Toughness of 18 Ni (350) Maraging Steel, Metall. Mater. Trans. B, 1971, 2(11), p 3011–3020CrossRef H.J. Rack and D. Kalish, The Strength and Fracture Toughness of 18 Ni (350) Maraging Steel, Metall. Mater. Trans. B, 1971, 2(11), p 3011–3020CrossRef
14.
go back to reference M. Shibuya, Y. Toda, K. Sawada, H. Kushima, and K. Kimura, Effect of Nickel and Cobalt Addition on the Precipitation-Strength of 15Cr Ferritic Steels, Mater. Sci. Eng. A, 2011, 528(16), p 5387–5393CrossRef M. Shibuya, Y. Toda, K. Sawada, H. Kushima, and K. Kimura, Effect of Nickel and Cobalt Addition on the Precipitation-Strength of 15Cr Ferritic Steels, Mater. Sci. Eng. A, 2011, 528(16), p 5387–5393CrossRef
15.
go back to reference L.A. Dobrzański and W. Kasprzak, The Influence of 5% Cobalt Addition on Structure and Working Properties of the 9-2-2-5, 11-2-2-5 and 11-0-2-5 High-speed Steels, J. Mater. Process. Technol., 2001, 109(1), p 52–64CrossRef L.A. Dobrzański and W. Kasprzak, The Influence of 5% Cobalt Addition on Structure and Working Properties of the 9-2-2-5, 11-2-2-5 and 11-0-2-5 High-speed Steels, J. Mater. Process. Technol., 2001, 109(1), p 52–64CrossRef
16.
go back to reference A.S. Murthy, J.E. Medvedeva, D. Isheim, S.L. Lekakh, V.L. Richards, and D.C. Van Aken, Copper Precipitation in Cobalt-Alloyed Precipitation-Hardened Stainless Steel, Scr. Mater., 2012, 66(11), p 943–946CrossRef A.S. Murthy, J.E. Medvedeva, D. Isheim, S.L. Lekakh, V.L. Richards, and D.C. Van Aken, Copper Precipitation in Cobalt-Alloyed Precipitation-Hardened Stainless Steel, Scr. Mater., 2012, 66(11), p 943–946CrossRef
17.
go back to reference J. Zhang, H. Di, and X. Wang, Constitutive Analysis of the Hot Deformation Behavior of Fe-23Mn-2Al-0.2C Twinning Induced Plasticity Steel in Consideration of Strain, Mater. Des., 2013, 44, p 354–364CrossRef J. Zhang, H. Di, and X. Wang, Constitutive Analysis of the Hot Deformation Behavior of Fe-23Mn-2Al-0.2C Twinning Induced Plasticity Steel in Consideration of Strain, Mater. Des., 2013, 44, p 354–364CrossRef
18.
go back to reference R.H. Wu, J.T. Liu, and H.B. Chang, Prediction of the Flow Stress of 0.4C-1.9Cr-1.5Mn-1.0Ni-0.2Mo Steel during Hot Deformation, J. Mater. Process. Technol., 2001, 116(2), p 211–218CrossRef R.H. Wu, J.T. Liu, and H.B. Chang, Prediction of the Flow Stress of 0.4C-1.9Cr-1.5Mn-1.0Ni-0.2Mo Steel during Hot Deformation, J. Mater. Process. Technol., 2001, 116(2), p 211–218CrossRef
19.
go back to reference A. Marchattiwar, A. Sarkar, J.K. Chakravartty, and B.P. Kashyap, Dynamic Recrystallization during Hot Deformation of 304 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2013, 22(8), p 2168–2175 A. Marchattiwar, A. Sarkar, J.K. Chakravartty, and B.P. Kashyap, Dynamic Recrystallization during Hot Deformation of 304 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2013, 22(8), p 2168–2175
20.
go back to reference M.H. Wang, Y.F. Li, W.H. Wang, J. Zhou, and A. Chiba, Quantitative Analysis of Work Hardening and Dynamic Softening Behavior of Low Carbon Alloy Steel Based on the Flow Stress, Mater. Des., 2013, 45, p 384–392CrossRef M.H. Wang, Y.F. Li, W.H. Wang, J. Zhou, and A. Chiba, Quantitative Analysis of Work Hardening and Dynamic Softening Behavior of Low Carbon Alloy Steel Based on the Flow Stress, Mater. Des., 2013, 45, p 384–392CrossRef
21.
go back to reference A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46(11), p 1679–1684CrossRef A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46(11), p 1679–1684CrossRef
22.
go back to reference J.J. Jonas, X. Quelennec, and L. Jiang, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57(9), p 2748–2756CrossRef J.J. Jonas, X. Quelennec, and L. Jiang, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57(9), p 2748–2756CrossRef
23.
go back to reference B. Zhao, T. Zhao, G. Li, and Q. Lu, The Kinetics of Dynamic Recrystallization of a Low Carbon Vanadium-Nitride Microalloyed Steel, Mater. Sci. Eng. A, 2014, 604, p 117–121CrossRef B. Zhao, T. Zhao, G. Li, and Q. Lu, The Kinetics of Dynamic Recrystallization of a Low Carbon Vanadium-Nitride Microalloyed Steel, Mater. Sci. Eng. A, 2014, 604, p 117–121CrossRef
24.
go back to reference G.V. Kurdyumov and M.D. Perkas, Problems of Metal Science and Physics of Metals, Metallurgiya, Moscow, 1964 G.V. Kurdyumov and M.D. Perkas, Problems of Metal Science and Physics of Metals, Metallurgiya, Moscow, 1964
25.
go back to reference G. Le Roy, J.D. Embury, G. Edwards, and M.F. Ashby, A Model of Ductile Fracture based on the Nucleation and Growth of Voids, Acta Metall., 1981, 29(8), p 1509–1522 (in English)CrossRef G. Le Roy, J.D. Embury, G. Edwards, and M.F. Ashby, A Model of Ductile Fracture based on the Nucleation and Growth of Voids, Acta Metall., 1981, 29(8), p 1509–1522 (in English)CrossRef
26.
go back to reference A.P. Gulyaev and I.K. Kupalova, Effect of Cobalt on the Structure and Properties of High-Speed Steels, Met. Sci. Heat Treat., 1970, 12(8), p 666–671CrossRef A.P. Gulyaev and I.K. Kupalova, Effect of Cobalt on the Structure and Properties of High-Speed Steels, Met. Sci. Heat Treat., 1970, 12(8), p 666–671CrossRef
27.
go back to reference X. Wang and M. Yan, Effect of Cobalt and Nikel on the Structural Stability for Fe3C: First-Principles Caculations, Int. J. Mod. Phys. B, 2009, 23(06n07), p 1135–1140CrossRef X. Wang and M. Yan, Effect of Cobalt and Nikel on the Structural Stability for Fe3C: First-Principles Caculations, Int. J. Mod. Phys. B, 2009, 23(06n07), p 1135–1140CrossRef
28.
go back to reference E. Arzt, Size Effects in Materials due to Microstructural and Dimensional Constraints: A Comparative Review, Acta Mater., 1998, 46(16), p 5611–5626CrossRef E. Arzt, Size Effects in Materials due to Microstructural and Dimensional Constraints: A Comparative Review, Acta Mater., 1998, 46(16), p 5611–5626CrossRef
29.
go back to reference S. Lee, S. Kim, B. Hwang, B.S. Lee, and C.G. Lee, Effect of Carbide Distribution on the Fracture Toughness in the Transition Temperature Region of an SA 508 Steel, Acta Mater., 2002, 50(19), p 4755–4762CrossRef S. Lee, S. Kim, B. Hwang, B.S. Lee, and C.G. Lee, Effect of Carbide Distribution on the Fracture Toughness in the Transition Temperature Region of an SA 508 Steel, Acta Mater., 2002, 50(19), p 4755–4762CrossRef
30.
go back to reference T. Gladman, Physical Metallurgy of Microalloyed Steels, Maney Publishing, London, 2002, p 52 T. Gladman, Physical Metallurgy of Microalloyed Steels, Maney Publishing, London, 2002, p 52
31.
go back to reference P.D. Bilmes, M. Solari, and C.L. Llorente, Characteristics and Effects of Austenite Resulting from Tempering of 13Cr-NiMo Martensitic Steel Weld Metals, Mater. Charact., 2001, 46(4), p 285–296CrossRef P.D. Bilmes, M. Solari, and C.L. Llorente, Characteristics and Effects of Austenite Resulting from Tempering of 13Cr-NiMo Martensitic Steel Weld Metals, Mater. Charact., 2001, 46(4), p 285–296CrossRef
32.
go back to reference A. Scheid, L.M. Félix, D. Martinazzi, T. Renck, and C.E.F. Kwietniewski, The Microstructure Effect on the Fracture Toughness of Ferritic Ni-alloyed Steels, Mater. Sci. Eng. A, 2016, 661, p 96–104CrossRef A. Scheid, L.M. Félix, D. Martinazzi, T. Renck, and C.E.F. Kwietniewski, The Microstructure Effect on the Fracture Toughness of Ferritic Ni-alloyed Steels, Mater. Sci. Eng. A, 2016, 661, p 96–104CrossRef
33.
go back to reference P. Tao, H. Yu, Y. Fan, and Y. Fu, Effects of Cooling Method after Intercritical Heat Treatment on Microstructural Characteristics and Mechanical Properties of As-cast High-strength Low-Alloy Steel, Mater. Des., 2014, 54, p 914–923CrossRef P. Tao, H. Yu, Y. Fan, and Y. Fu, Effects of Cooling Method after Intercritical Heat Treatment on Microstructural Characteristics and Mechanical Properties of As-cast High-strength Low-Alloy Steel, Mater. Des., 2014, 54, p 914–923CrossRef
34.
go back to reference Z. Liu, X. Liu, Z. Hou, S. Zhou, and Q. Tian, Microstructure Evaluation and Mechanical Properties of Low Alloy Cryogenic Steel Processed by Normalizing Treatment, J. Mater. Eng. Perform., 2016, 25(9), p 3811–3821CrossRef Z. Liu, X. Liu, Z. Hou, S. Zhou, and Q. Tian, Microstructure Evaluation and Mechanical Properties of Low Alloy Cryogenic Steel Processed by Normalizing Treatment, J. Mater. Eng. Perform., 2016, 25(9), p 3811–3821CrossRef
Metadata
Title
Effect of 0.1 wt.% Co on the Hot Deformation and Toughness of Fine-Grained Low-Carbon Steel at Sub-zero Temperatures
Authors
Xiqin Liu
Shuangshuang Zhou
Zili Liu
Zhiguo Hou
Qingchao Tian
Publication date
07-12-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 1/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3011-1

Other articles of this Issue 1/2018

Journal of Materials Engineering and Performance 1/2018 Go to the issue

Premium Partners