Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 11/2016

25-07-2016 | Symposium: New Steels for Applications under Extreme Conditions

Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys

Authors: Frank Bergner, Isabell Hilger, Jouko Virta, Juha Lagerbom, Gunter Gerbeth, Sarah Connolly, Zuliang Hong, Patrick S. Grant, Thomas Weissgärber

Published in: Metallurgical and Materials Transactions A | Issue 11/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The standard powder metallurgy (PM) route for the fabrication of oxide-dispersion-strengthened (ODS) steels involves gas atomization to produce a prealloyed powder, mechanical alloying (MA) with fine oxide powders, consolidation, and finally thermal/thermomechanical treatment (TMT). It is well established that ODS steels with superior property combinations, for example, creep and tensile strength, can be produced by this PM/MA route. However, the fabrication process is complex and expensive, and the fitness for scaling up to the industrial scale is limited. At the laboratory scale, production of small amounts of well-controlled model systems continues to be desirable for specific purposes, such as modeling-oriented experiments. Thus, from the laboratory to industrial application, there is growing interest in complementary or alternative fabrication routes for ODS steels and related model systems, which offer a different balance of cost, convenience, properties, and scalability. This article reviews the state of the art in ODS alloy fabrication and identifies promising new routes toward ODS steels. The PM/AM route for the fabrication of ODS steels is also described, as it is the current default process. Hybrid routes that comprise aspects of both the PM route and more radical liquid metal (LM) routes are suggested to be promising approaches for larger volumes and higher throughput of fabricated material. Although similar uniformity and refinement of the critical nanometer-sized oxide particles has not yet been demonstrated, ongoing innovations in the LM route are described, along with recent encouraging preliminary results for both extrinsic nano-oxide additions and intrinsic nano-oxide formation in variants of the LM route. Finally, physicochemical methods such as ion beam synthesis are shown to offer interesting perspectives for the fabrication of model systems. As well as literature sources, examples of progress in the authors’ groups are also highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference F.G. Wilson, B.R. Knott, and C.D. Desforges: Metall. Trans. A, 1978, vol. 9A, pp. 275–82.CrossRef F.G. Wilson, B.R. Knott, and C.D. Desforges: Metall. Trans. A, 1978, vol. 9A, pp. 275–82.CrossRef
4.
go back to reference J.J. Fischer: US Patent Number 4,075,010, The International Nickel Company, Inc., New York, NY, 1978. J.J. Fischer: US Patent Number 4,075,010, The International Nickel Company, Inc., New York, NY, 1978.
5.
go back to reference S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vol. 307–311, pp. 749–57.CrossRef S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vol. 307–311, pp. 749–57.CrossRef
6.
go back to reference M.J. Alinger, G.R. Odette, and D.T. Hoelzer: Acta Mater., 2009, vol. 57, pp. 392–406.CrossRef M.J. Alinger, G.R. Odette, and D.T. Hoelzer: Acta Mater., 2009, vol. 57, pp. 392–406.CrossRef
7.
go back to reference R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–14.CrossRef R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–14.CrossRef
8.
go back to reference S.J. Zinkle: Phys. Plasmas, 2005, vol. 12, Art.-ID 058101. S.J. Zinkle: Phys. Plasmas, 2005, vol. 12, Art.-ID 058101.
9.
go back to reference C.S. Wukusick and J.F. Collins: Mater. Res. Stand., 1964, vol. 4, pp. 637–46. C.S. Wukusick and J.F. Collins: Mater. Res. Stand., 1964, vol. 4, pp. 637–46.
10.
go back to reference J.S. Benjamin: Metall. Trans., 1970, vol. 1, pp. 2943–51. J.S. Benjamin: Metall. Trans., 1970, vol. 1, pp. 2943–51.
12.
13.
go back to reference R. Lindau, A. Möslang, M. Schirra, P. Schlossmacher, and M. Klimenkov: J. Nucl. Mater., 2002, vol. 307–311, pp. 769–72.CrossRef R. Lindau, A. Möslang, M. Schirra, P. Schlossmacher, and M. Klimenkov: J. Nucl. Mater., 2002, vol. 307–311, pp. 769–72.CrossRef
14.
go back to reference P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat: J. Nucl. Mater., 2012, vol. 428, pp. 6–12.CrossRef P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat: J. Nucl. Mater., 2012, vol. 428, pp. 6–12.CrossRef
15.
go back to reference J. Hoffmann, M. Rieth, R. Lindau, M. Klimenkov, A. Möslang, and H.R.Z. Sandim: J. Nucl. Mater., 2013, vol. 442, pp. 444–48.CrossRef J. Hoffmann, M. Rieth, R. Lindau, M. Klimenkov, A. Möslang, and H.R.Z. Sandim: J. Nucl. Mater., 2013, vol. 442, pp. 444–48.CrossRef
16.
go back to reference A. Allimant, M.P. Planche, Y. Bailly, L. Dembinski, and C. Coddet: Powder Technology, 2009, vol. 190, pp. 79–83.CrossRef A. Allimant, M.P. Planche, Y. Bailly, L. Dembinski, and C. Coddet: Powder Technology, 2009, vol. 190, pp. 79–83.CrossRef
17.
go back to reference C. Si, X. Zhang, J. Wang, and Y. Li: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 627–35.CrossRef C. Si, X. Zhang, J. Wang, and Y. Li: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 627–35.CrossRef
18.
go back to reference M. Stobik, Nanoval atomizing—capabilities, applications and related processes, in: Symposium Spray Forming 2002, Proceedings, Eds. V. Uhlenwinkel, J. Ziesenis, K Bauckhage, Vol. 6, pp. 65–79, University Bremen, 2003. M. Stobik, Nanoval atomizing—capabilities, applications and related processes, in: Symposium Spray Forming 2002, Proceedings, Eds. V. Uhlenwinkel, J. Ziesenis, K Bauckhage, Vol. 6, pp. 65–79, University Bremen, 2003.
19.
20.
go back to reference I. Hilger, M. Tegel, M.J. Gorley, P.S. Grant, T. Weißgärber, and B. Kieback: J. Nucl. Mater., 2014, vol. 447, pp. 242–47.CrossRef I. Hilger, M. Tegel, M.J. Gorley, P.S. Grant, T. Weißgärber, and B. Kieback: J. Nucl. Mater., 2014, vol. 447, pp. 242–47.CrossRef
21.
go back to reference T. Grosdidier, G. Ji, and S. Launois: Scri. Mater., 2007, vol. 57, pp. 525–28.CrossRef T. Grosdidier, G. Ji, and S. Launois: Scri. Mater., 2007, vol. 57, pp. 525–28.CrossRef
22.
go back to reference B. Srinivasarao, K. Oh-ishi, T. Ohkubo, and K. Hono: Acta Mater., 2009, vol. 57, pp. 3277–86.CrossRef B. Srinivasarao, K. Oh-ishi, T. Ohkubo, and K. Hono: Acta Mater., 2009, vol. 57, pp. 3277–86.CrossRef
23.
go back to reference P. Franke, C. Heintze, F. Bergner, and T. Weissgärber: Materials Testing, 2010, vol. 52, pp. 133–38.CrossRef P. Franke, C. Heintze, F. Bergner, and T. Weissgärber: Materials Testing, 2010, vol. 52, pp. 133–38.CrossRef
24.
go back to reference C. Heintze, M. Hernandez-Mayoral, A. Ulbricht, F. Bergner, A. Shariq, T. Weissgärber, and H. Frielinghaus: J. Nucl. Mater., 2012, vol. 428, pp. 139–46.CrossRef C. Heintze, M. Hernandez-Mayoral, A. Ulbricht, F. Bergner, A. Shariq, T. Weissgärber, and H. Frielinghaus: J. Nucl. Mater., 2012, vol. 428, pp. 139–46.CrossRef
25.
go back to reference K. Rajan, T. Shanmugasundaram, V.S. Sarma, and B.S. Murty: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4037–41.CrossRef K. Rajan, T. Shanmugasundaram, V.S. Sarma, and B.S. Murty: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4037–41.CrossRef
26.
go back to reference Q.X. Sun, T. Zhang, X.P. Wang, Q.F. Fang, T. Hao, and C.S. Liu: J. Nucl. Mater., 2012, vol. 424, pp. 279–84.CrossRef Q.X. Sun, T. Zhang, X.P. Wang, Q.F. Fang, T. Hao, and C.S. Liu: J. Nucl. Mater., 2012, vol. 424, pp. 279–84.CrossRef
27.
go back to reference M.A. Auger, V. de Castro, T. Leguey, A. Muñoz, and R. Pareja: J. Nucl. Mater., 2013, vol. 436, pp. 68–75.CrossRef M.A. Auger, V. de Castro, T. Leguey, A. Muñoz, and R. Pareja: J. Nucl. Mater., 2013, vol. 436, pp. 68–75.CrossRef
28.
go back to reference X. Boulnat, D. Fabregue, M. Perez, M.-H. Mathon, and Y. de Carlan: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2461–65.CrossRef X. Boulnat, D. Fabregue, M. Perez, M.-H. Mathon, and Y. de Carlan: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2461–65.CrossRef
29.
go back to reference M. Hernández-Mayoral et al.: Mater. Sci. Technol., 2014, vol. 30, pp. 1669–75.CrossRef M. Hernández-Mayoral et al.: Mater. Sci. Technol., 2014, vol. 30, pp. 1669–75.CrossRef
31.
go back to reference K.N. Allahar, J. Burns, B. Jaques, Y.Q. Wu, I. Charit, J. Cole, and D.P. Butt: J. Nucl. Mater., 2013, vol. 443, pp. 256–65.CrossRef K.N. Allahar, J. Burns, B. Jaques, Y.Q. Wu, I. Charit, J. Cole, and D.P. Butt: J. Nucl. Mater., 2013, vol. 443, pp. 256–65.CrossRef
32.
go back to reference X. Boulnat, D. Fabregue, M. Perez, S. Urvoy, D. Hamon, and Y. de Carlan: Powder Metall., 2014, vol. 57, pp. 204–11.CrossRef X. Boulnat, D. Fabregue, M. Perez, S. Urvoy, D. Hamon, and Y. de Carlan: Powder Metall., 2014, vol. 57, pp. 204–11.CrossRef
33.
go back to reference I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, and A. Ulbricht: J. Nucl. Mater., 2016, vol. 472, pp. 206–14.CrossRef I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, and A. Ulbricht: J. Nucl. Mater., 2016, vol. 472, pp. 206–14.CrossRef
34.
go back to reference X. Boulnat, M. Perez, D. Fabregue, T. Douillard, M.-H. Mathon, and Y. De Carlan: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1485–97.CrossRef X. Boulnat, M. Perez, D. Fabregue, T. Douillard, M.-H. Mathon, and Y. De Carlan: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1485–97.CrossRef
35.
go back to reference I. Hilger, F. Bergner, and T. Weißgärber: J. Am. Ceram. Soc., 2015, vol. 98, pp. 3576–81.CrossRef I. Hilger, F. Bergner, and T. Weißgärber: J. Am. Ceram. Soc., 2015, vol. 98, pp. 3576–81.CrossRef
36.
go back to reference N. Sallez, X. Boulnat, A. Borbely, J.L. Bechade, D. Fabregue, M. perez, Y. De Carlan, L. Hennet, C. Mocuta, D. Thiaudiere, and Y. Brechet: Acta Mater., 2015, vol. 87, pp. 377–89.CrossRef N. Sallez, X. Boulnat, A. Borbely, J.L. Bechade, D. Fabregue, M. perez, Y. De Carlan, L. Hennet, C. Mocuta, D. Thiaudiere, and Y. Brechet: Acta Mater., 2015, vol. 87, pp. 377–89.CrossRef
37.
go back to reference Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.CrossRef Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.CrossRef
38.
go back to reference J. Gil Sevillano and J. Aldazabal: Scri. Mater., 2004, vol. 51, pp. 795–800.CrossRef J. Gil Sevillano and J. Aldazabal: Scri. Mater., 2004, vol. 51, pp. 795–800.CrossRef
39.
go back to reference Z. Dapeng, L. Yong, L. Feng, W. Yuren, Z. Liujie, and D. Yuhai: Mater. Lett., 2011, vol. 65, pp. 1672–74.CrossRef Z. Dapeng, L. Yong, L. Feng, W. Yuren, Z. Liujie, and D. Yuhai: Mater. Lett., 2011, vol. 65, pp. 1672–74.CrossRef
40.
go back to reference A. Garcia-Junceda, N. Garcia-Rodriguez, M. Campos, M. Carton-Cordero, and J.M. Torralba: J. Am. Ceram. Soc., 2015, vol. 98, pp. 3582–87.CrossRef A. Garcia-Junceda, N. Garcia-Rodriguez, M. Campos, M. Carton-Cordero, and J.M. Torralba: J. Am. Ceram. Soc., 2015, vol. 98, pp. 3582–87.CrossRef
41.
go back to reference Z. Yao, W. Xiong, B. Huang, Q. Yang, and J. Jianjun: J. Nucl. Mater., 2015, vol. 461, pp. 95–99.CrossRef Z. Yao, W. Xiong, B. Huang, Q. Yang, and J. Jianjun: J. Nucl. Mater., 2015, vol. 461, pp. 95–99.CrossRef
42.
go back to reference M.S. Yurlova, V.D. Demenyuk, L.Yu. Lebedeva, D.V. Dudina, E.G. Grigoryev, and E.A. Olevsky: J. Mater. Sci., 2014, vol. 49, pp. 952–85.CrossRef M.S. Yurlova, V.D. Demenyuk, L.Yu. Lebedeva, D.V. Dudina, E.G. Grigoryev, and E.A. Olevsky: J. Mater. Sci., 2014, vol. 49, pp. 952–85.CrossRef
43.
go back to reference I. Bogachev, A. Yudin, E. Grigoryev, I. Chernov, M. Staltsov, O. Khasanov, and E. Olevsky: Materials, 2015, vol. 8, pp. 7342–53.CrossRef I. Bogachev, A. Yudin, E. Grigoryev, I. Chernov, M. Staltsov, O. Khasanov, and E. Olevsky: Materials, 2015, vol. 8, pp. 7342–53.CrossRef
44.
go back to reference D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant: J. Nucl. Mater., 2013, vol. 442, pp. S112–S118.CrossRef D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant: J. Nucl. Mater., 2013, vol. 442, pp. S112–S118.CrossRef
45.
go back to reference D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4730–39.CrossRef D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4730–39.CrossRef
46.
go back to reference Z. Oksiuta, P. Hosemann, S.C. Vogel, and N. Baluc: J. Nucl. Mater., 2014, vol. 451, pp. 320–27.CrossRef Z. Oksiuta, P. Hosemann, S.C. Vogel, and N. Baluc: J. Nucl. Mater., 2014, vol. 451, pp. 320–27.CrossRef
47.
go back to reference Z. Oksiuta, M. Lewandowska, K. Kurzydlowski, and N. Baluc: Phys. Status Solidi A, 2010, vol. 207, pp. 1128–131.CrossRef Z. Oksiuta, M. Lewandowska, K. Kurzydlowski, and N. Baluc: Phys. Status Solidi A, 2010, vol. 207, pp. 1128–131.CrossRef
48.
go back to reference M. Song, C. Sun, J. Jang, C.H. Han, T.K. Kim, K.T. Hartwig, and X. Zhang: J. Alloys Compounds, 2013, vol. 577, pp. 247–56.CrossRef M. Song, C. Sun, J. Jang, C.H. Han, T.K. Kim, K.T. Hartwig, and X. Zhang: J. Alloys Compounds, 2013, vol. 577, pp. 247–56.CrossRef
49.
go back to reference G.R. Odette, M.J. Alinger, and B.D.Wirth: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 471–503.CrossRef G.R. Odette, M.J. Alinger, and B.D.Wirth: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 471–503.CrossRef
50.
go back to reference K. Verhiest, A. Almazouzi, N. De Wispelaere, R. Petrov, and S. Claessens: J. Nucl. Mater., 2009, vol. 385, pp. 308–11.CrossRef K. Verhiest, A. Almazouzi, N. De Wispelaere, R. Petrov, and S. Claessens: J. Nucl. Mater., 2009, vol. 385, pp. 308–11.CrossRef
51.
go back to reference K. Verhiest, S. Mullens, N. De Wispelaere, S. Claessens, A. De Bremaecker, K. Verbeken, and Y. Houbaert: Ceram. Intl., 2012, vol. 38, pp. 2701–709.CrossRef K. Verhiest, S. Mullens, N. De Wispelaere, S. Claessens, A. De Bremaecker, K. Verbeken, and Y. Houbaert: Ceram. Intl., 2012, vol. 38, pp. 2701–709.CrossRef
52.
go back to reference K. Verhiest, S. Mullens, J. Paul, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken: Ceram. Intl., 2014, vol. 40, pp. 2187–200.CrossRef K. Verhiest, S. Mullens, J. Paul, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken: Ceram. Intl., 2014, vol. 40, pp. 2187–200.CrossRef
53.
go back to reference K. Verhiest, S. Mullens, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken: Ceram. Intl., 2014, vol. 40, pp. 14319–334.CrossRef K. Verhiest, S. Mullens, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken: Ceram. Intl., 2014, vol. 40, pp. 14319–334.CrossRef
55.
go back to reference I. Grants, D. Räbiger, T. Vogt, S. Eckert, and G. Gerbeth: Magnetohydrodynamics, 2015, vol. 51, pp. 419–24. I. Grants, D. Räbiger, T. Vogt, S. Eckert, and G. Gerbeth: Magnetohydrodynamics, 2015, vol. 51, pp. 419–24.
56.
go back to reference X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett., 2005, vol. 59, pp. 190–93.CrossRef X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett., 2005, vol. 59, pp. 190–93.CrossRef
57.
go back to reference X. Li, Y. Yang, and D. Weiss: Metall. Sci. Technol., 2008, vol. 26-2, pp. 12–20.CrossRef X. Li, Y. Yang, and D. Weiss: Metall. Sci. Technol., 2008, vol. 26-2, pp. 12–20.CrossRef
58.
go back to reference I. Grants, G. Gerbeth, and A. Bojarevics: J. Appl. Phys., 2015, vol. 117, Art. ID 204901. I. Grants, G. Gerbeth, and A. Bojarevics: J. Appl. Phys., 2015, vol. 117, Art. ID 204901.
59.
go back to reference Y. Liu, J. Fang, D. Liu, Z. Lu, F. Liu, S. Chen, and C.T. Liu: J. Nucl. Mater., 2010, vol. 396, pp. 86–93.CrossRef Y. Liu, J. Fang, D. Liu, Z. Lu, F. Liu, S. Chen, and C.T. Liu: J. Nucl. Mater., 2010, vol. 396, pp. 86–93.CrossRef
60.
go back to reference J.R. Rieken, I.E. Anderson, M.J. Kramer, G.R. Odette, E. Stergar, and E. Haney: J. Nucl. Mater., 2012, vol. 428, pp. 65–75.CrossRef J.R. Rieken, I.E. Anderson, M.J. Kramer, G.R. Odette, E. Stergar, and E. Haney: J. Nucl. Mater., 2012, vol. 428, pp. 65–75.CrossRef
61.
go back to reference T.L. Lee, J. Mi, S.L. Zhao, J.F. Fan, S.Y. Zhang, S. Kabrac, and P.S. Grant: Scri. Mater., 2015, vol. 100, pp. 82–85.CrossRef T.L. Lee, J. Mi, S.L. Zhao, J.F. Fan, S.Y. Zhang, S. Kabrac, and P.S. Grant: Scri. Mater., 2015, vol. 100, pp. 82–85.CrossRef
62.
go back to reference M.S. Nagorka, C.G. Levi, and G.E. Lucas: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 859–71.CrossRef M.S. Nagorka, C.G. Levi, and G.E. Lucas: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 859–71.CrossRef
63.
go back to reference M.S. Nagorka, C.G. Levi, and G.E. Lucas: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 873–81.CrossRef M.S. Nagorka, C.G. Levi, and G.E. Lucas: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 873–81.CrossRef
64.
go back to reference A.N. Velikodnyi et al.: Probl. Atom. Sci. Technol., 2014, vol. 92, pp. 94–102. A.N. Velikodnyi et al.: Probl. Atom. Sci. Technol., 2014, vol. 92, pp. 94–102.
65.
go back to reference C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, Art. ID 041101. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, Art. ID 041101.
66.
go back to reference J.C. Walker, K.M. Berggreen, A.R. Jones, and C.J. Sutcliffe: Adv. Eng. Mater., 2009, vol. 11, pp. 541–46.CrossRef J.C. Walker, K.M. Berggreen, A.R. Jones, and C.J. Sutcliffe: Adv. Eng. Mater., 2009, vol. 11, pp. 541–46.CrossRef
67.
go back to reference T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, and G.J. Tatlock, Acta Mater., 2015, vol. 87, pp. 201–215.CrossRef T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, and G.J. Tatlock, Acta Mater., 2015, vol. 87, pp. 201–215.CrossRef
68.
go back to reference H.J. Chang, H.Y. Cho, and J.H. Kim: J. Alloys Comp., 2015, vol. 653, pp. 528–33.CrossRef H.J. Chang, H.Y. Cho, and J.H. Kim: J. Alloys Comp., 2015, vol. 653, pp. 528–33.CrossRef
69.
go back to reference R.M. Hunt, K.J. Kramer, and B. El-Dasher: J. Nucl. Mater., 2015, vol. 464, pp. 80–85.CrossRef R.M. Hunt, K.J. Kramer, and B. El-Dasher: J. Nucl. Mater., 2015, vol. 464, pp. 80–85.CrossRef
71.
go back to reference K. Verhiest, S. Mullens, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken: J. Nucl. Mater., 2012, vol. 428(2012), pp. 54–64.CrossRef K. Verhiest, S. Mullens, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken: J. Nucl. Mater., 2012, vol. 428(2012), pp. 54–64.CrossRef
72.
go back to reference D. Sakuma, S. Yamashita, K. Oka, S. Ohnuki, L.E. Rehn and E. Wakai: J. Nucl. Mater., 2004, vol. 329–333, pp. 392–96.CrossRef D. Sakuma, S. Yamashita, K. Oka, S. Ohnuki, L.E. Rehn and E. Wakai: J. Nucl. Mater., 2004, vol. 329–333, pp. 392–96.CrossRef
73.
go back to reference C. Zheng, A. Gentils, J. Ribis, O. Kaïtasova, and V.A. Borodin: Phil. Mag., 2014, vol. 94, pp. 2937–55.CrossRef C. Zheng, A. Gentils, J. Ribis, O. Kaïtasova, and V.A. Borodin: Phil. Mag., 2014, vol. 94, pp. 2937–55.CrossRef
74.
go back to reference C.W. He, M.F. Barthe, P. Desgardin, S. Akhmadaliev, M. Behar, and F. Jomard: J. Nucl. Mater., 2014, vol. 455, pp. 398–401.CrossRef C.W. He, M.F. Barthe, P. Desgardin, S. Akhmadaliev, M. Behar, and F. Jomard: J. Nucl. Mater., 2014, vol. 455, pp. 398–401.CrossRef
75.
go back to reference T. Stan, Y. Wu, G.R. Odette, K.E. Sickafus, H.A. Dabkowska, and B.D. Gaulin: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4505–512.CrossRef T. Stan, Y. Wu, G.R. Odette, K.E. Sickafus, H.A. Dabkowska, and B.D. Gaulin: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4505–512.CrossRef
76.
go back to reference T.C. Kaspar, M.E. Bowden, C.M. Wanf, V. Shutthanadan, N.R. van Ginhoven, B.D. Wirth, and R.J. Kurtz: J. Nucl. Mater., 2015, vol. 457, pp. 352–61.CrossRef T.C. Kaspar, M.E. Bowden, C.M. Wanf, V. Shutthanadan, N.R. van Ginhoven, B.D. Wirth, and R.J. Kurtz: J. Nucl. Mater., 2015, vol. 457, pp. 352–61.CrossRef
78.
79.
go back to reference J.R. Rieken: Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel, Graduate Theses and Dissertations, Paper 10459, Iowa State University, 2011. J.R. Rieken: Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel, Graduate Theses and Dissertations, Paper 10459, Iowa State University, 2011.
80.
go back to reference D.T. Hoelzer: Regular and ODS Ferritic Steel as Structural Materials for Power Plant HHFC’s, Presentation in International HHFC Workshop on Readiness to Proceed from Near Term Fusion Systems to Power Plants, UCSD, La Jolla, CA, December 10–12, 2008. D.T. Hoelzer: Regular and ODS Ferritic Steel as Structural Materials for Power Plant HHFC’s, Presentation in International HHFC Workshop on Readiness to Proceed from Near Term Fusion Systems to Power Plants, UCSD, La Jolla, CA, December 10–12, 2008.
81.
go back to reference J.R. Rieken, I.E. Anderson, and M.J. Kramer: Simplified Powder Processing and Microstructural Control of Fe-based ODS Alloys (Presentation in “Fe-Based ODS Alloys: Role and Future Applications” Fabrication, Microstructure Preservation & Mechanical Properties, University of California-San Diego, San Diego, CA, November 18th, 2010. J.R. Rieken, I.E. Anderson, and M.J. Kramer: Simplified Powder Processing and Microstructural Control of Fe-based ODS Alloys (Presentation in “Fe-Based ODS Alloys: Role and Future Applications” Fabrication, Microstructure Preservation & Mechanical Properties, University of California-San Diego, San Diego, CA, November 18th, 2010.
82.
go back to reference M. Serrano, M. Hernandez-Mayoral, and A. Garcia-Junceda: J. Nucl. Mater., 2012, vol. 428, pp. 103–109.CrossRef M. Serrano, M. Hernandez-Mayoral, and A. Garcia-Junceda: J. Nucl. Mater., 2012, vol. 428, pp. 103–109.CrossRef
83.
go back to reference F.N. Rhines, W.A. Johnson, and W.A. Anderson: Trans. AIME, 1942, vol. 147, pp. 205–21. F.N. Rhines, W.A. Johnson, and W.A. Anderson: Trans. AIME, 1942, vol. 147, pp. 205–21.
85.
go back to reference I. Grants, G. Gerbeth, I. Kaldre, A. Bojarevičs, and M. Sarma: Magnetically induced acoustic cavitation for production of metal matrix nano-composites, Paper presented at the 8th International Conference on Electromagnetic Processing of Materials (EPM 2015), Cannes, October 13–15, 2015. I. Grants, G. Gerbeth, I. Kaldre, A. Bojarevičs, and M. Sarma: Magnetically induced acoustic cavitation for production of metal matrix nano-composites, Paper presented at the 8th International Conference on Electromagnetic Processing of Materials (EPM 2015), Cannes, October 13–15, 2015.
Metadata
Title
Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys
Authors
Frank Bergner
Isabell Hilger
Jouko Virta
Juha Lagerbom
Gunter Gerbeth
Sarah Connolly
Zuliang Hong
Patrick S. Grant
Thomas Weissgärber
Publication date
25-07-2016
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 11/2016
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-016-3616-2

Other articles of this Issue 11/2016

Metallurgical and Materials Transactions A 11/2016 Go to the issue

Premium Partners