Skip to main content
Top
Published in: Journal of Scientific Computing 2/2016

12-05-2016

An Accelerated Method for Nonlinear Elliptic PDE

Authors: Hayden Schaeffer, Thomas Y. Hou

Published in: Journal of Scientific Computing | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose two numerical methods for accelerating the convergence of the standard fixed point method associated with a nonlinear and/or degenerate elliptic partial differential equation. The first method is linearly stable, while the second is provably convergent in the viscosity solution sense. In practice, the methods converge at a nearly linear complexity in terms of the number of iterations required for convergence. The methods are easy to implement and do not require the construction or approximation of the Jacobian. Numerical examples are shown for Bellman’s equation, Isaacs’ equation, Pucci’s equations, the Monge–Ampère equation, a variant of the infinity Laplacian, and a system of nonlinear equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Falcone, M., Finzi Vita, S., Giorgi, T., Smits, R.G.: A semi-Lagrangian scheme for the game p-Laplacian via p-averaging. Appl. Numer. Math. 73, 63–80 (2013)MathSciNetMATHCrossRef Falcone, M., Finzi Vita, S., Giorgi, T., Smits, R.G.: A semi-Lagrangian scheme for the game p-Laplacian via p-averaging. Appl. Numer. Math. 73, 63–80 (2013)MathSciNetMATHCrossRef
2.
go back to reference Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55, 205–267 (2013)MathSciNetMATHCrossRef Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55, 205–267 (2013)MathSciNetMATHCrossRef
3.
go back to reference Oberman, A.: A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comput. 74(251), 1217–1230 (2005)MathSciNetMATHCrossRef Oberman, A.: A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comput. 74(251), 1217–1230 (2005)MathSciNetMATHCrossRef
4.
go back to reference Oberman, A.: Finite difference methods for the infinity Laplace and p-Laplace equations. J. Comput. Appl. Math. 254, 65–80 (2013)MathSciNetMATHCrossRef Oberman, A.: Finite difference methods for the infinity Laplace and p-Laplace equations. J. Comput. Appl. Math. 254, 65–80 (2013)MathSciNetMATHCrossRef
5.
go back to reference Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge–Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47(2), 1226–1250 (2009)MathSciNetMATHCrossRef Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge–Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47(2), 1226–1250 (2009)MathSciNetMATHCrossRef
6.
go back to reference Feng, X., Neilan, M.: Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)MathSciNetMATHCrossRef Feng, X., Neilan, M.: Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)MathSciNetMATHCrossRef
7.
go back to reference Feng, X., Neilan, M.: A modified characteristic finite element method for a fully nonlinear formulation of the semigeostrophic flow equations. SIAM J. Numer. Anal. 47(4), 2952–2981 (2009)MathSciNetMATHCrossRef Feng, X., Neilan, M.: A modified characteristic finite element method for a fully nonlinear formulation of the semigeostrophic flow equations. SIAM J. Numer. Anal. 47(4), 2952–2981 (2009)MathSciNetMATHCrossRef
8.
go back to reference Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge–Ampère equation. J. Sci. Comput. 47(3), 303–327 (2011)MathSciNetMATHCrossRef Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge–Ampère equation. J. Sci. Comput. 47(3), 303–327 (2011)MathSciNetMATHCrossRef
10.
go back to reference Neilan, M.: A nonconforming Morley finite element method for the fully nonlinear Monge–Ampère equation. Numer. Math. 115(3), 371–394 (2010)MathSciNetMATHCrossRef Neilan, M.: A nonconforming Morley finite element method for the fully nonlinear Monge–Ampère equation. Numer. Math. 115(3), 371–394 (2010)MathSciNetMATHCrossRef
12.
go back to reference Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampère equation and functions of the eigenvalues of the Hessian. Discrete Continuous Dyn. Syst. Ser. B 10(1), 221–238 (2008)MathSciNetMATHCrossRef Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampère equation and functions of the eigenvalues of the Hessian. Discrete Continuous Dyn. Syst. Ser. B 10(1), 221–238 (2008)MathSciNetMATHCrossRef
13.
go back to reference Benamou, J.-D., Froese, B.D., Oberman, A.M.: Two numerical methods for the elliptic Monge–Ampère equation. ESAIM Math. Model. Numer. Anal. 44(4), 737–758 (2010)MathSciNetMATHCrossRef Benamou, J.-D., Froese, B.D., Oberman, A.M.: Two numerical methods for the elliptic Monge–Ampère equation. ESAIM Math. Model. Numer. Anal. 44(4), 737–758 (2010)MathSciNetMATHCrossRef
14.
go back to reference Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge–Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–1714 (2011)MathSciNetMATHCrossRef Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge–Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–1714 (2011)MathSciNetMATHCrossRef
15.
go back to reference Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011)MathSciNetMATHCrossRef Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011)MathSciNetMATHCrossRef
16.
go back to reference Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge–Ampère partial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)MathSciNetMATHCrossRef Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge–Ampère partial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)MathSciNetMATHCrossRef
17.
go back to reference Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. Comptes Rendus Math. 336(9), 779–784 (2003)MathSciNetMATHCrossRef Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. Comptes Rendus Math. 336(9), 779–784 (2003)MathSciNetMATHCrossRef
18.
go back to reference Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach. Comptes Rendus Math. 339(12), 887–892 (2004)MathSciNetMATHCrossRef Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach. Comptes Rendus Math. 339(12), 887–892 (2004)MathSciNetMATHCrossRef
19.
go back to reference Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge–Ampére equation in two dimensions. Electron. Trans. Numer. Anal. 22, 71–96 (2006)MathSciNetMATH Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge–Ampére equation in two dimensions. Electron. Trans. Numer. Anal. 22, 71–96 (2006)MathSciNetMATH
20.
go back to reference Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type. Comput. Methods Appl. Mech. Eng. 195(13), 1344–1386 (2006)MathSciNetMATHCrossRef Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type. Comput. Methods Appl. Mech. Eng. 195(13), 1344–1386 (2006)MathSciNetMATHCrossRef
21.
go back to reference Dean, E.J., Glowinski, R.: On the numerical solution of a two-dimensional Pucci’s equation with Dirichlet boundary conditions: a least-squares approach. Comptes Rendus Math. 341(6), 375–380 (2005)MathSciNetMATHCrossRef Dean, E.J., Glowinski, R.: On the numerical solution of a two-dimensional Pucci’s equation with Dirichlet boundary conditions: a least-squares approach. Comptes Rendus Math. 341(6), 375–380 (2005)MathSciNetMATHCrossRef
22.
go back to reference Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)MathSciNetMATHCrossRef Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)MathSciNetMATHCrossRef
23.
go back to reference Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asympotot. Anal. 4, 271–283 (1991)MathSciNetMATH Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asympotot. Anal. 4, 271–283 (1991)MathSciNetMATH
24.
go back to reference Oberman, A.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006)MathSciNetMATHCrossRef Oberman, A.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006)MathSciNetMATHCrossRef
25.
go back to reference Caffarelli, L.A., Souganidis, P.E.: A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math. 61, 1–17 (2008)MathSciNetMATHCrossRef Caffarelli, L.A., Souganidis, P.E.: A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math. 61, 1–17 (2008)MathSciNetMATHCrossRef
26.
go back to reference Loeper, G., Rapetti, F.: Numerical solution of the Monge–Ampè equation by a Newton’s algorithm. Comptes Rendus Math. 340(4), 319–324 (2005)MathSciNetMATHCrossRef Loeper, G., Rapetti, F.: Numerical solution of the Monge–Ampè equation by a Newton’s algorithm. Comptes Rendus Math. 340(4), 319–324 (2005)MathSciNetMATHCrossRef
28.
go back to reference Nesterov, Y.: A method of solving a convex programming problem with convergence rate O\((1/k^2)\). Sov. Math. Dokl. 27(2), 372–376 (1983) Nesterov, Y.: A method of solving a convex programming problem with convergence rate O\((1/k^2)\). Sov. Math. Dokl. 27(2), 372–376 (1983)
29.
go back to reference Beck, A., Taboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009) Beck, A., Taboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
30.
go back to reference Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41(2), 605–623 (2003)MathSciNetMATHCrossRef Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41(2), 605–623 (2003)MathSciNetMATHCrossRef
31.
go back to reference Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetMATHCrossRef Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetMATHCrossRef
32.
go back to reference Gottlieb, S.: On high order strong stability preserving Runge–Kutta and multi step time discretizations. J. Sci. Comput. 25(1), 105–128 (2005)MathSciNetMATHCrossRef Gottlieb, S.: On high order strong stability preserving Runge–Kutta and multi step time discretizations. J. Sci. Comput. 25(1), 105–128 (2005)MathSciNetMATHCrossRef
33.
go back to reference Ruuth, S.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–207 (2006)MathSciNetMATHCrossRef Ruuth, S.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–207 (2006)MathSciNetMATHCrossRef
34.
go back to reference Bresten, C., Gottlieb, S., Grant, Z., Higgs, D., Ketcheson, D. I., Németh, A.: Strong stability preserving multistep Runge–Kutta methods. arXiv:1307.8058 (2013) Bresten, C., Gottlieb, S., Grant, Z., Higgs, D., Ketcheson, D. I., Németh, A.: Strong stability preserving multistep Runge–Kutta methods. arXiv:​1307.​8058 (2013)
36.
37.
go back to reference Cabré, X., Caffarelli, L.A.: Interior \(C^{2,\alpha }\) regularity theory for a class of non convex fully nonlinear elliptic equation. J. Math. Pures Appl. 82(5), 573–612 (2003)MathSciNetMATHCrossRef Cabré, X., Caffarelli, L.A.: Interior \(C^{2,\alpha }\) regularity theory for a class of non convex fully nonlinear elliptic equation. J. Math. Pures Appl. 82(5), 573–612 (2003)MathSciNetMATHCrossRef
38.
go back to reference Krylov, N.V.: On the rate of convergence of finite-difference approximations for elliptic Isaacs’ equation in smooth domains. arXiv:1402.0252 (2014) Krylov, N.V.: On the rate of convergence of finite-difference approximations for elliptic Isaacs’ equation in smooth domains. arXiv:​1402.​0252 (2014)
39.
go back to reference Barron, E., Evans, L.C., Jensen, R.: The infinity Laplacian. Aronsson’s equation and their generalizations. Trans. Am. Math. Soc. 360(1), 77–101 (2008)MathSciNetMATHCrossRef Barron, E., Evans, L.C., Jensen, R.: The infinity Laplacian. Aronsson’s equation and their generalizations. Trans. Am. Math. Soc. 360(1), 77–101 (2008)MathSciNetMATHCrossRef
40.
go back to reference Evans, L.C., Yu, Y.: Various properties of solutions of the infinity-Laplacian equation. Commun. Partial Differ. Equ. 30(9), 1401–1428 (2005)MathSciNetMATHCrossRef Evans, L.C., Yu, Y.: Various properties of solutions of the infinity-Laplacian equation. Commun. Partial Differ. Equ. 30(9), 1401–1428 (2005)MathSciNetMATHCrossRef
41.
go back to reference Crandall, M.G., Evans, L.C., Gariepy, R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)MathSciNetMATH Crandall, M.G., Evans, L.C., Gariepy, R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)MathSciNetMATH
42.
go back to reference Evans, L.C., Smart, C.K.: Everywhere differentiability of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 42(1–2), 289–299 (2011)MathSciNetMATHCrossRef Evans, L.C., Smart, C.K.: Everywhere differentiability of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 42(1–2), 289–299 (2011)MathSciNetMATHCrossRef
43.
go back to reference Aronsson, G.: On the partial differential equation \(u_x^2 u_{xx}+ 2 u_{x} u_{y} u_{xy}+ u_y^2 u_{yy}= 0\). Ark. Mat. 7(5), 395–425 (1968)MathSciNetCrossRef Aronsson, G.: On the partial differential equation \(u_x^2 u_{xx}+ 2 u_{x} u_{y} u_{xy}+ u_y^2 u_{yy}= 0\). Ark. Mat. 7(5), 395–425 (1968)MathSciNetCrossRef
44.
go back to reference Aronsson, G.: On certain singular solutions of the partial differential equation \(u_x^2 u_{xx}+ 2 u_{x} u_{y} u_{xy}+ u_y^2 u_{yy}= 0\). Manuscr. Math. 47, 133–151 (1984)MathSciNetCrossRef Aronsson, G.: On certain singular solutions of the partial differential equation \(u_x^2 u_{xx}+ 2 u_{x} u_{y} u_{xy}+ u_y^2 u_{yy}= 0\). Manuscr. Math. 47, 133–151 (1984)MathSciNetCrossRef
45.
go back to reference Caffarelli, L.A., Glowinski, R.: Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization. J. Numer. Math. 16(3), 185–216 (2008)MathSciNetMATHCrossRef Caffarelli, L.A., Glowinski, R.: Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization. J. Numer. Math. 16(3), 185–216 (2008)MathSciNetMATHCrossRef
46.
go back to reference Caboussat, A., Glowinski, R., Sorensen, D.C.: A least-squares method for the numerical solution of the Dirichlet problem for the elliptic Monge–Ampère equation in dimension two. ESAIM Control Optim. Calc. Var. 19(03), 780–810 (2013)MathSciNetMATHCrossRef Caboussat, A., Glowinski, R., Sorensen, D.C.: A least-squares method for the numerical solution of the Dirichlet problem for the elliptic Monge–Ampère equation in dimension two. ESAIM Control Optim. Calc. Var. 19(03), 780–810 (2013)MathSciNetMATHCrossRef
Metadata
Title
An Accelerated Method for Nonlinear Elliptic PDE
Authors
Hayden Schaeffer
Thomas Y. Hou
Publication date
12-05-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0215-8

Other articles of this Issue 2/2016

Journal of Scientific Computing 2/2016 Go to the issue

Premium Partner