Skip to main content
Top
Published in: Journal of Dynamical and Control Systems 2/2022

23-05-2021

An Alternative Definition of Topological Entropy for Amenable Group Actions

Authors: Haiyan Wu, Zhiming Li

Published in: Journal of Dynamical and Control Systems | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We extend the definition of topological entropy for any (not necessarily continuous) amenable groups acting on a compact space by defining entropy of arbitrary subsets of a product space. We investigate how this new notion of topological entropy for amenable group actions behaves and some of its basic properties; among them are the behavior of the entropy with respect to disjoint union, Cartesian product, and some continuity properties with respect to Vietoris topology. As a special case for \(1\leq p\leq \infty \), the Bowen p-entropy of sets is introduced. It is shown that the notions of generalized topological entropy and Bowen \(\infty \)-entropy for compact metric spaces coincide.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
5.
6.
go back to reference Choda M. Entropy of automorphisms arising from dynamical systems through discrete groups with amenable actions. J Funct Anal 2004;217:181–91.MathSciNetCrossRef Choda M. Entropy of automorphisms arising from dynamical systems through discrete groups with amenable actions. J Funct Anal 2004;217:181–91.MathSciNetCrossRef
7.
go back to reference Dooley AH, Golodets VYa. The spectrum of completely positive entropy actions of countable amenable groups. J Funct Anal 2002;196:1–18.MathSciNetCrossRef Dooley AH, Golodets VYa. The spectrum of completely positive entropy actions of countable amenable groups. J Funct Anal 2002;196:1–18.MathSciNetCrossRef
8.
go back to reference Deninger C. Fuglede-Kadison determinants and entropy for actions of discrete amenable groups. J Am Math Soc 2006;19:737–58.MathSciNetCrossRef Deninger C. Fuglede-Kadison determinants and entropy for actions of discrete amenable groups. J Am Math Soc 2006;19:737–58.MathSciNetCrossRef
9.
go back to reference Dou D, Zhang RF. A note on dimensional entropy for amenable group Actions. Topol Methods Nonlinear Anal 2018;51:599–608.MathSciNetMATH Dou D, Zhang RF. A note on dimensional entropy for amenable group Actions. Topol Methods Nonlinear Anal 2018;51:599–608.MathSciNetMATH
10.
go back to reference Dinaburg E. A connection between various entropy characterizations of dynamical systems. Izv Akad Nauk SSSR 1971;35:324–66.MathSciNet Dinaburg E. A connection between various entropy characterizations of dynamical systems. Izv Akad Nauk SSSR 1971;35:324–66.MathSciNet
11.
go back to reference Downarowicz T, Frej B, Romagnoli PP. Shearer’s inequality and Infimum Rule for Shannon entropy and topological entropy. Dynamics and numbers. Providence: American Mathematical Society; 2015. p. 63–75. Downarowicz T, Frej B, Romagnoli PP. Shearer’s inequality and Infimum Rule for Shannon entropy and topological entropy. Dynamics and numbers. Providence: American Mathematical Society; 2015. p. 63–75.
12.
go back to reference Downarowicz T, Vol. 18. Entropy in dynamical systems. Cambridge: Cambridge University Press; 2011.CrossRef Downarowicz T, Vol. 18. Entropy in dynamical systems. Cambridge: Cambridge University Press; 2011.CrossRef
13.
go back to reference Huang W, Ye XD, Zhang GH. Local entropy theory for a countable discrete amenable group action. J Funct Anal 2011;261:1028–82.MathSciNetCrossRef Huang W, Ye XD, Zhang GH. Local entropy theory for a countable discrete amenable group action. J Funct Anal 2011;261:1028–82.MathSciNetCrossRef
14.
go back to reference Huang XJ, Liu JS, Zhu CR. The Katok’s entropy formula for amenable group actions. J Math Anal Appl 2018;38:4467–82.MathSciNetMATH Huang XJ, Liu JS, Zhu CR. The Katok’s entropy formula for amenable group actions. J Math Anal Appl 2018;38:4467–82.MathSciNetMATH
15.
go back to reference Huang XJ, Gao JM, Zhu CR. Sequence entropies and mean sequence dimension for amenable group actions. J Differ Equ 2020;269:9404–31.MathSciNetCrossRef Huang XJ, Gao JM, Zhu CR. Sequence entropies and mean sequence dimension for amenable group actions. J Differ Equ 2020;269:9404–31.MathSciNetCrossRef
17.
go back to reference Kolmogorov AN. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl Akad Nauk SSSR 1958;119:861–4.MathSciNetMATH Kolmogorov AN. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl Akad Nauk SSSR 1958;119:861–4.MathSciNetMATH
18.
go back to reference Kolmogorov AN. Entropy per unit time as a metric invariant of automorphisms. Dokl Akad Nauk SSSR 1959;124:754–5.MathSciNetMATH Kolmogorov AN. Entropy per unit time as a metric invariant of automorphisms. Dokl Akad Nauk SSSR 1959;124:754–5.MathSciNetMATH
19.
go back to reference Kerr D, Li HF. Soficity, amenability and dinamical entropy. Am J Math 2013;135:721–61.CrossRef Kerr D, Li HF. Soficity, amenability and dinamical entropy. Am J Math 2013;135:721–61.CrossRef
20.
go back to reference Kieffer JC. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann Probab 1975;3:1031–7.MathSciNetCrossRef Kieffer JC. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann Probab 1975;3:1031–7.MathSciNetCrossRef
21.
go back to reference Sadr MM, Shahrestani M. Topological entropy for arbitrary subsets of infinite product spaces. arXiv:2005.12856v2. Sadr MM, Shahrestani M. Topological entropy for arbitrary subsets of infinite product spaces. arXiv:2005.​12856v2.
22.
go back to reference Ollagnier JM. Ergodic theory and statistical mechanics. Berlin: Springer; 1985.CrossRef Ollagnier JM. Ergodic theory and statistical mechanics. Berlin: Springer; 1985.CrossRef
23.
26.
go back to reference Sinai Y. On the concept of entropy of a dynamical system. Dokl Russ Acad Sci 1959;124:768–71.MATH Sinai Y. On the concept of entropy of a dynamical system. Dokl Russ Acad Sci 1959;124:768–71.MATH
27.
go back to reference Walters P. 2000. An introduction to ergodic theory, vol 79. Springer Science & Business Media. Walters P. 2000. An introduction to ergodic theory, vol 79. Springer Science & Business Media.
29.
go back to reference Yan KS, Zeng FP. Relative entropy and mean Li-Yorke chaos for biorderable amenable group actions. Int J Bifurc Chaos 2020;30:1793–6551.MathSciNetMATH Yan KS, Zeng FP. Relative entropy and mean Li-Yorke chaos for biorderable amenable group actions. Int J Bifurc Chaos 2020;30:1793–6551.MathSciNetMATH
32.
go back to reference Zheng DM, Chen EC. Topological entropy of sets of generic points for actions of amenable groups. Sci China Math 2018;61:869–80.MathSciNetCrossRef Zheng DM, Chen EC. Topological entropy of sets of generic points for actions of amenable groups. Sci China Math 2018;61:869–80.MathSciNetCrossRef
Metadata
Title
An Alternative Definition of Topological Entropy for Amenable Group Actions
Authors
Haiyan Wu
Zhiming Li
Publication date
23-05-2021
Publisher
Springer US
Published in
Journal of Dynamical and Control Systems / Issue 2/2022
Print ISSN: 1079-2724
Electronic ISSN: 1573-8698
DOI
https://doi.org/10.1007/s10883-021-09547-0

Other articles of this Issue 2/2022

Journal of Dynamical and Control Systems 2/2022 Go to the issue

Premium Partners