Skip to main content
Top
Published in: Journal of Dynamical and Control Systems 2/2022

20-09-2021

Optimal Distributed Control of the Three-dimensional Planetary Geostrophic Equations

Author: Bo You

Published in: Journal of Dynamical and Control Systems | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main objective of this paper is to study the optimal distributed control of the three-dimensional planetary geostrophic equations. We apply the well-posedness and regularity results proved in Cao and Titi (Commun Pure Appl Math 56:198–233, 2003) to establish the existence of an optimal control as well as the first-order necessary optimality condition for an associated optimal control problem in which a distributed control is applied to the temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cao CS, Titi ES. Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun Pure Appl Math 2003; 56:198–233.MathSciNetCrossRef Cao CS, Titi ES. Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun Pure Appl Math 2003; 56:198–233.MathSciNetCrossRef
2.
go back to reference Tröltzsch F. 2010. Optimal control of partial differential equations: Theory, methods and applications. American Mathematical Society Providence, Rhode Island. Tröltzsch F. 2010. Optimal control of partial differential equations: Theory, methods and applications. American Mathematical Society Providence, Rhode Island.
3.
go back to reference Pedlosky J. 1987. Geophysical fluid dynamics. Springer, New York. Pedlosky J. 1987. Geophysical fluid dynamics. Springer, New York.
4.
go back to reference Samelson RM, Temam R, Wang S. Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation. Appl Anal 1998;70:147–173.MathSciNetCrossRef Samelson RM, Temam R, Wang S. Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation. Appl Anal 1998;70:147–173.MathSciNetCrossRef
5.
go back to reference Samelson RM, Vallis GK. A simple friction and diffusion scheme for planetary geostrophic basin models. J Phys Oceanogr 1997;27:186–194.CrossRef Samelson RM, Vallis GK. A simple friction and diffusion scheme for planetary geostrophic basin models. J Phys Oceanogr 1997;27:186–194.CrossRef
6.
go back to reference Pedlosky J. The equations for geostrophic motion in the ocean. J Phys Oceanogr 1984;14:448–455.CrossRef Pedlosky J. The equations for geostrophic motion in the ocean. J Phys Oceanogr 1984;14:448–455.CrossRef
7.
go back to reference Samelson RM, Temam R, Wang S. Remarks on the planetary geostrophic model of gyre scale ocean circulation. Differ Integral Equ 2000;13:1–14.MathSciNetMATH Samelson RM, Temam R, Wang S. Remarks on the planetary geostrophic model of gyre scale ocean circulation. Differ Integral Equ 2000;13:1–14.MathSciNetMATH
8.
go back to reference You B. Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation. Stochastics 2017;89(5): 766–785.MathSciNetCrossRef You B. Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation. Stochastics 2017;89(5): 766–785.MathSciNetCrossRef
9.
go back to reference You B, Li F. The existence of a pullback attractor for the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Nonlinear Anal 2015;112:118–128.MathSciNetCrossRef You B, Li F. The existence of a pullback attractor for the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Nonlinear Anal 2015;112:118–128.MathSciNetCrossRef
10.
go back to reference You B, Li F. Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise. Stoch Anal Appl 2016;34(2):278–292.MathSciNetCrossRef You B, Li F. Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise. Stoch Anal Appl 2016;34(2):278–292.MathSciNetCrossRef
11.
go back to reference You B, Zhong CK, Li F. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete Cont Dyn Syst-B 2014;19(4):1213–1226.MathSciNetMATH You B, Zhong CK, Li F. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete Cont Dyn Syst-B 2014;19(4):1213–1226.MathSciNetMATH
12.
go back to reference Ewald BD, Temam R. Maximum principles for the primitive equations of the atmosphere. Discrete Cont Dyn Syst A 2001;7:343–362.MathSciNetCrossRef Ewald BD, Temam R. Maximum principles for the primitive equations of the atmosphere. Discrete Cont Dyn Syst A 2001;7:343–362.MathSciNetCrossRef
13.
go back to reference Chepyzhov VV, Vishik MI. Attractors for equations of mathematical physics. Providence: American Mathematical Society; 2002.MATH Chepyzhov VV, Vishik MI. Attractors for equations of mathematical physics. Providence: American Mathematical Society; 2002.MATH
14.
go back to reference Temam R. Infinite-dimensional dynamical systems in mechanics and physics. New York: Springer; 1997.CrossRef Temam R. Infinite-dimensional dynamical systems in mechanics and physics. New York: Springer; 1997.CrossRef
15.
go back to reference Frigeri S, Rocca E, Sprekels J. Optimal distributed control of a nonlocal Cahn-Hilliard/ Navier-Stokes system in two dimensions. Siam J Control Optim 2016;54(1):221–250.MathSciNetCrossRef Frigeri S, Rocca E, Sprekels J. Optimal distributed control of a nonlocal Cahn-Hilliard/ Navier-Stokes system in two dimensions. Siam J Control Optim 2016;54(1):221–250.MathSciNetCrossRef
16.
go back to reference Fursikov AV, Gunzburger MD, Hou LS. Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case. Siam J Control Optim 2005;43(6):2191–2232.MathSciNetCrossRef Fursikov AV, Gunzburger MD, Hou LS. Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case. Siam J Control Optim 2005;43(6):2191–2232.MathSciNetCrossRef
Metadata
Title
Optimal Distributed Control of the Three-dimensional Planetary Geostrophic Equations
Author
Bo You
Publication date
20-09-2021
Publisher
Springer US
Published in
Journal of Dynamical and Control Systems / Issue 2/2022
Print ISSN: 1079-2724
Electronic ISSN: 1573-8698
DOI
https://doi.org/10.1007/s10883-021-09570-1

Other articles of this Issue 2/2022

Journal of Dynamical and Control Systems 2/2022 Go to the issue

Premium Partners