Skip to main content
Erschienen in: Journal of Dynamical and Control Systems 2/2022

20.09.2021

Optimal Distributed Control of the Three-dimensional Planetary Geostrophic Equations

verfasst von: Bo You

Erschienen in: Journal of Dynamical and Control Systems | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main objective of this paper is to study the optimal distributed control of the three-dimensional planetary geostrophic equations. We apply the well-posedness and regularity results proved in Cao and Titi (Commun Pure Appl Math 56:198–233, 2003) to establish the existence of an optimal control as well as the first-order necessary optimality condition for an associated optimal control problem in which a distributed control is applied to the temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cao CS, Titi ES. Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun Pure Appl Math 2003; 56:198–233.MathSciNetCrossRef Cao CS, Titi ES. Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun Pure Appl Math 2003; 56:198–233.MathSciNetCrossRef
2.
Zurück zum Zitat Tröltzsch F. 2010. Optimal control of partial differential equations: Theory, methods and applications. American Mathematical Society Providence, Rhode Island. Tröltzsch F. 2010. Optimal control of partial differential equations: Theory, methods and applications. American Mathematical Society Providence, Rhode Island.
3.
Zurück zum Zitat Pedlosky J. 1987. Geophysical fluid dynamics. Springer, New York. Pedlosky J. 1987. Geophysical fluid dynamics. Springer, New York.
4.
Zurück zum Zitat Samelson RM, Temam R, Wang S. Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation. Appl Anal 1998;70:147–173.MathSciNetCrossRef Samelson RM, Temam R, Wang S. Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation. Appl Anal 1998;70:147–173.MathSciNetCrossRef
5.
Zurück zum Zitat Samelson RM, Vallis GK. A simple friction and diffusion scheme for planetary geostrophic basin models. J Phys Oceanogr 1997;27:186–194.CrossRef Samelson RM, Vallis GK. A simple friction and diffusion scheme for planetary geostrophic basin models. J Phys Oceanogr 1997;27:186–194.CrossRef
6.
Zurück zum Zitat Pedlosky J. The equations for geostrophic motion in the ocean. J Phys Oceanogr 1984;14:448–455.CrossRef Pedlosky J. The equations for geostrophic motion in the ocean. J Phys Oceanogr 1984;14:448–455.CrossRef
7.
Zurück zum Zitat Samelson RM, Temam R, Wang S. Remarks on the planetary geostrophic model of gyre scale ocean circulation. Differ Integral Equ 2000;13:1–14.MathSciNetMATH Samelson RM, Temam R, Wang S. Remarks on the planetary geostrophic model of gyre scale ocean circulation. Differ Integral Equ 2000;13:1–14.MathSciNetMATH
8.
Zurück zum Zitat You B. Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation. Stochastics 2017;89(5): 766–785.MathSciNetCrossRef You B. Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation. Stochastics 2017;89(5): 766–785.MathSciNetCrossRef
9.
Zurück zum Zitat You B, Li F. The existence of a pullback attractor for the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Nonlinear Anal 2015;112:118–128.MathSciNetCrossRef You B, Li F. The existence of a pullback attractor for the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Nonlinear Anal 2015;112:118–128.MathSciNetCrossRef
10.
Zurück zum Zitat You B, Li F. Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise. Stoch Anal Appl 2016;34(2):278–292.MathSciNetCrossRef You B, Li F. Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise. Stoch Anal Appl 2016;34(2):278–292.MathSciNetCrossRef
11.
Zurück zum Zitat You B, Zhong CK, Li F. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete Cont Dyn Syst-B 2014;19(4):1213–1226.MathSciNetMATH You B, Zhong CK, Li F. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete Cont Dyn Syst-B 2014;19(4):1213–1226.MathSciNetMATH
12.
Zurück zum Zitat Ewald BD, Temam R. Maximum principles for the primitive equations of the atmosphere. Discrete Cont Dyn Syst A 2001;7:343–362.MathSciNetCrossRef Ewald BD, Temam R. Maximum principles for the primitive equations of the atmosphere. Discrete Cont Dyn Syst A 2001;7:343–362.MathSciNetCrossRef
13.
Zurück zum Zitat Chepyzhov VV, Vishik MI. Attractors for equations of mathematical physics. Providence: American Mathematical Society; 2002.MATH Chepyzhov VV, Vishik MI. Attractors for equations of mathematical physics. Providence: American Mathematical Society; 2002.MATH
14.
Zurück zum Zitat Temam R. Infinite-dimensional dynamical systems in mechanics and physics. New York: Springer; 1997.CrossRef Temam R. Infinite-dimensional dynamical systems in mechanics and physics. New York: Springer; 1997.CrossRef
15.
Zurück zum Zitat Frigeri S, Rocca E, Sprekels J. Optimal distributed control of a nonlocal Cahn-Hilliard/ Navier-Stokes system in two dimensions. Siam J Control Optim 2016;54(1):221–250.MathSciNetCrossRef Frigeri S, Rocca E, Sprekels J. Optimal distributed control of a nonlocal Cahn-Hilliard/ Navier-Stokes system in two dimensions. Siam J Control Optim 2016;54(1):221–250.MathSciNetCrossRef
16.
Zurück zum Zitat Fursikov AV, Gunzburger MD, Hou LS. Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case. Siam J Control Optim 2005;43(6):2191–2232.MathSciNetCrossRef Fursikov AV, Gunzburger MD, Hou LS. Optimal boundary control for the evolutionary Navier-Stokes system: the three-dimensional case. Siam J Control Optim 2005;43(6):2191–2232.MathSciNetCrossRef
Metadaten
Titel
Optimal Distributed Control of the Three-dimensional Planetary Geostrophic Equations
verfasst von
Bo You
Publikationsdatum
20.09.2021
Verlag
Springer US
Erschienen in
Journal of Dynamical and Control Systems / Ausgabe 2/2022
Print ISSN: 1079-2724
Elektronische ISSN: 1573-8698
DOI
https://doi.org/10.1007/s10883-021-09570-1

Weitere Artikel der Ausgabe 2/2022

Journal of Dynamical and Control Systems 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.