Skip to main content
Top
Published in: Acta Mechanica 12/2023

05-09-2023 | Original Paper

An analytical stress–stretch relation for porous elastomeric materials with large deformation

Authors: Qiang Zhang, Yan Shi, Cunfa Gao

Published in: Acta Mechanica | Issue 12/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Porous elastomeric materials have wide applications in aerospace, electronics, biomedicine, and other fields. However, closed-form analytical solutions for macroscopic strain energy density of high-order porous elastomers have not been well resolved. In this work, we propose a new approach for constitutive modeling of porous elastomeric materials under large deformation, mainly relying on expressing the macroscopic strain energy density function of the composite material as a function of the strain energy of elastomer matrix via a strain-amplification relation. Such amplification relation, as constructed through a thick-walled sphere volume element model, is utilized in a mapping of the macroscopic deformation to the average deformation of elastomer matrix in the sense of the first invariant by a scaling coefficient–amplification factor, which depends on both the initial void volume fraction and the macroscopic volumetric deformation ratio. The analytical stress–stretch relation is then derived and given in simple form of only three material parameters. Discussions on how the factors affect the amplification factor are made and the behavior of the model is shown in several deformation simulations. The prediction results of this model are compared with those of existing models, and reasonable agreement is obtained.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ba, A., Kovalenko, A., Aristegui, C., Mondain-Monval, O., Brunet, T.: Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials. Sci. Rep. 7, 40106 (2017)CrossRef Ba, A., Kovalenko, A., Aristegui, C., Mondain-Monval, O., Brunet, T.: Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials. Sci. Rep. 7, 40106 (2017)CrossRef
2.
go back to reference Xu, Y., Sun, B., Ling, Y., Fei, Q., Chen, Z., Li, X., Guo, P., Jeon, N., Goswami, S., Liao, Y.: Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. 117, 205–213 (2020)CrossRef Xu, Y., Sun, B., Ling, Y., Fei, Q., Chen, Z., Li, X., Guo, P., Jeon, N., Goswami, S., Liao, Y.: Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. 117, 205–213 (2020)CrossRef
3.
go back to reference Gerecht, S., Townsend, S.A., Pressler, H., Zhu, H., Nijst, C.L., Bruggeman, J.P., Nichol, J.W., Langer, R.: A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 28, 4826–4835 (2007)CrossRef Gerecht, S., Townsend, S.A., Pressler, H., Zhu, H., Nijst, C.L., Bruggeman, J.P., Nichol, J.W., Langer, R.: A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 28, 4826–4835 (2007)CrossRef
4.
go back to reference Clough, E.C., Plaisted, T.A., Eckel, Z.C., Cante, K., Hundley, J.M., Schaedler, T.A.: Elastomeric microlattice impact attenuators. Matter 1, 1519–1531 (2019)CrossRef Clough, E.C., Plaisted, T.A., Eckel, Z.C., Cante, K., Hundley, J.M., Schaedler, T.A.: Elastomeric microlattice impact attenuators. Matter 1, 1519–1531 (2019)CrossRef
5.
go back to reference Xiong, J., Thangavel, G., Wang, J., Zhou, X., Lee, P.S.: Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 6, eabb4246 (2020) Xiong, J., Thangavel, G., Wang, J., Zhou, X., Lee, P.S.: Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 6, eabb4246 (2020)
6.
go back to reference Jiang, Y., Wang, Q.: Highly-stretchable 3D-architected mechanical metamaterials. Sci. Rep. 6, 34147 (2016)CrossRef Jiang, Y., Wang, Q.: Highly-stretchable 3D-architected mechanical metamaterials. Sci. Rep. 6, 34147 (2016)CrossRef
7.
go back to reference Traugutt, N.A., Mistry, D., Luo, C., Yu, K., Ge, Q., Yakacki, C.M.: Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater., e2000797 (2020) Traugutt, N.A., Mistry, D., Luo, C., Yu, K., Ge, Q., Yakacki, C.M.: Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater., e2000797 (2020)
8.
go back to reference Wirth, D.M., Jaquez, A., Gandarilla, S., Hochberg, J.D., Church, D.C., Pokorski, J.K.: Highly Expandable Foam for Lithographic 3D Printing. ACS Appl Mater Interfaces 12, 19033–19043 (2020)CrossRef Wirth, D.M., Jaquez, A., Gandarilla, S., Hochberg, J.D., Church, D.C., Pokorski, J.K.: Highly Expandable Foam for Lithographic 3D Printing. ACS Appl Mater Interfaces 12, 19033–19043 (2020)CrossRef
9.
go back to reference Mu, X., Bertron, T., Dunn, C., Qiao, H., Wu, J., Zhao, Z., Saldana, C., Qi, H.J.: Porous polymeric materials by 3D printing of photocurable resin. Mater. Horiz. 4, 442–449 (2017)CrossRef Mu, X., Bertron, T., Dunn, C., Qiao, H., Wu, J., Zhao, Z., Saldana, C., Qi, H.J.: Porous polymeric materials by 3D printing of photocurable resin. Mater. Horiz. 4, 442–449 (2017)CrossRef
10.
go back to reference Hensleigh, R.M., Cui, H., Oakdale, J.S., Ye, J.C., Campbell, P.G., Duoss, E.B., Spadaccini, C.M., Zheng, X., Worsley, M.A.: Additive manufacturing of complex micro-architected graphene aerogels. Mater. Horiz. 5, 1035–1401 (2018)CrossRef Hensleigh, R.M., Cui, H., Oakdale, J.S., Ye, J.C., Campbell, P.G., Duoss, E.B., Spadaccini, C.M., Zheng, X., Worsley, M.A.: Additive manufacturing of complex micro-architected graphene aerogels. Mater. Horiz. 5, 1035–1401 (2018)CrossRef
11.
go back to reference Lewis, J.A.: Direct ink writing of 3D functional materials. Adv. Func. Mater. 16, 2193–2204 (2006)CrossRef Lewis, J.A.: Direct ink writing of 3D functional materials. Adv. Func. Mater. 16, 2193–2204 (2006)CrossRef
12.
go back to reference Feng, W., Christensen, R.: Nonlinear deformation of elastomeric foams. Int. J. Non Linear Mech. 17, 355–367 (1982)CrossRef Feng, W., Christensen, R.: Nonlinear deformation of elastomeric foams. Int. J. Non Linear Mech. 17, 355–367 (1982)CrossRef
13.
go back to reference Danielsson, M., Parks, D., Boyce, M.: Constitutive modeling of porous hyperelastic materials. Mech. Mater. 36, 347–358 (2004)CrossRef Danielsson, M., Parks, D., Boyce, M.: Constitutive modeling of porous hyperelastic materials. Mech. Mater. 36, 347–358 (2004)CrossRef
14.
15.
go back to reference Guo, Z., Caner, F., Peng, X., Moran, B.: On constitutive modelling of porous neo-Hookean composites. J. Mech. Phys. Solids 56, 2338–2357 (2008)MathSciNetCrossRefMATH Guo, Z., Caner, F., Peng, X., Moran, B.: On constitutive modelling of porous neo-Hookean composites. J. Mech. Phys. Solids 56, 2338–2357 (2008)MathSciNetCrossRefMATH
16.
go back to reference Chen, Y., Guo, W., Yang, P., Zhao, J., Guo, Z., Dong, L., Zhong, Z.: Constitutive modeling of neo-Hookean materials with spherical voids in finite deformation. Extreme Mech. Lett. 24, 47–57 (2018)CrossRef Chen, Y., Guo, W., Yang, P., Zhao, J., Guo, Z., Dong, L., Zhong, Z.: Constitutive modeling of neo-Hookean materials with spherical voids in finite deformation. Extreme Mech. Lett. 24, 47–57 (2018)CrossRef
17.
go back to reference Drozdov, A.D., Christiansen, J.D.: Modeling the elastic response of polymer foams at finite deformations. Int. J. Mech. Sci. 171, 105398 (2020) Drozdov, A.D., Christiansen, J.D.: Modeling the elastic response of polymer foams at finite deformations. Int. J. Mech. Sci. 171, 105398 (2020)
18.
go back to reference Hashin, Z.: Large isotropic elastic deformation of composites and porous media. Int. J. Solids Struct. 21, 711–720 (1985)CrossRefMATH Hashin, Z.: Large isotropic elastic deformation of composites and porous media. Int. J. Solids Struct. 21, 711–720 (1985)CrossRefMATH
19.
go back to reference Castañeda, P.P.: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids 44, 827–862 (1996)MathSciNetCrossRefMATH Castañeda, P.P.: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids 44, 827–862 (1996)MathSciNetCrossRefMATH
20.
go back to reference Lopez-Pamies, O., Ponte Castañeda, P.: Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. J. Elastic., 76, 247–287 (2004) Lopez-Pamies, O., Ponte Castañeda, P.: Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. J. Elastic., 76, 247–287 (2004)
21.
go back to reference Shrimali, B., Lefèvre, V., Lopez-Pamies, O.: A simple explicit homogenization solution for the macroscopic elastic response of isotropic porous elastomers. J. Mech. Phys. Solids 122, 364–380 (2019)MathSciNetCrossRef Shrimali, B., Lefèvre, V., Lopez-Pamies, O.: A simple explicit homogenization solution for the macroscopic elastic response of isotropic porous elastomers. J. Mech. Phys. Solids 122, 364–380 (2019)MathSciNetCrossRef
23.
go back to reference Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRefMATH Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRefMATH
24.
go back to reference Singh, V., Racherla, V.: Deformation behavior of fluid-filled porous elastomers: analytical estimates and validation. J. Mech. Phys. Solids 163, 104835 (2022)MathSciNetCrossRef Singh, V., Racherla, V.: Deformation behavior of fluid-filled porous elastomers: analytical estimates and validation. J. Mech. Phys. Solids 163, 104835 (2022)MathSciNetCrossRef
25.
go back to reference Mullins, L., Tobin, N.: Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers. Rubber Chem. Technol. 30, 555–571 (1957)CrossRef Mullins, L., Tobin, N.: Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers. Rubber Chem. Technol. 30, 555–571 (1957)CrossRef
26.
go back to reference Govindjee, S., Simo, J.: A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J. Mech. Phys. Solids 39, 87–112 (1991)MathSciNetCrossRefMATH Govindjee, S., Simo, J.: A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J. Mech. Phys. Solids 39, 87–112 (1991)MathSciNetCrossRefMATH
27.
go back to reference Jörgen S. Bergström, M.C.B.: Mechanical Behavior of Particle Filled Elastomers, Rubber Chemistry and Technology, 72 (1999) 633–656. Jörgen S. Bergström, M.C.B.: Mechanical Behavior of Particle Filled Elastomers, Rubber Chemistry and Technology, 72 (1999) 633–656.
28.
go back to reference Qi, M.C.B.H.J.: Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials. J. Mech. Phys. Solids 52, 2187–2205 (2004)CrossRefMATH Qi, M.C.B.H.J.: Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials. J. Mech. Phys. Solids 52, 2187–2205 (2004)CrossRefMATH
29.
go back to reference Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain, Proceedings of the Royal Society of London. A. Math. Phys. Sci. 326, 131–147 (1972) Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain, Proceedings of the Royal Society of London. A. Math. Phys. Sci. 326, 131–147 (1972)
30.
go back to reference Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRef Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRef
31.
go back to reference Lopez-Pamies, O., Nakamura, T., Idiart, M.I.: Cavitation in elastomeric solids: II—onset-of-cavitation surfaces for Neo-Hookean materials. J. Mech. Phys. Solids 59, 1488–1505 (2011)MathSciNetCrossRefMATH Lopez-Pamies, O., Nakamura, T., Idiart, M.I.: Cavitation in elastomeric solids: II—onset-of-cavitation surfaces for Neo-Hookean materials. J. Mech. Phys. Solids 59, 1488–1505 (2011)MathSciNetCrossRefMATH
Metadata
Title
An analytical stress–stretch relation for porous elastomeric materials with large deformation
Authors
Qiang Zhang
Yan Shi
Cunfa Gao
Publication date
05-09-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 12/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03697-x

Other articles of this Issue 12/2023

Acta Mechanica 12/2023 Go to the issue

Premium Partners