Skip to main content
Erschienen in: Acta Mechanica 12/2023

05.09.2023 | Original Paper

An analytical stress–stretch relation for porous elastomeric materials with large deformation

verfasst von: Qiang Zhang, Yan Shi, Cunfa Gao

Erschienen in: Acta Mechanica | Ausgabe 12/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Porous elastomeric materials have wide applications in aerospace, electronics, biomedicine, and other fields. However, closed-form analytical solutions for macroscopic strain energy density of high-order porous elastomers have not been well resolved. In this work, we propose a new approach for constitutive modeling of porous elastomeric materials under large deformation, mainly relying on expressing the macroscopic strain energy density function of the composite material as a function of the strain energy of elastomer matrix via a strain-amplification relation. Such amplification relation, as constructed through a thick-walled sphere volume element model, is utilized in a mapping of the macroscopic deformation to the average deformation of elastomer matrix in the sense of the first invariant by a scaling coefficient–amplification factor, which depends on both the initial void volume fraction and the macroscopic volumetric deformation ratio. The analytical stress–stretch relation is then derived and given in simple form of only three material parameters. Discussions on how the factors affect the amplification factor are made and the behavior of the model is shown in several deformation simulations. The prediction results of this model are compared with those of existing models, and reasonable agreement is obtained.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ba, A., Kovalenko, A., Aristegui, C., Mondain-Monval, O., Brunet, T.: Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials. Sci. Rep. 7, 40106 (2017)CrossRef Ba, A., Kovalenko, A., Aristegui, C., Mondain-Monval, O., Brunet, T.: Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials. Sci. Rep. 7, 40106 (2017)CrossRef
2.
Zurück zum Zitat Xu, Y., Sun, B., Ling, Y., Fei, Q., Chen, Z., Li, X., Guo, P., Jeon, N., Goswami, S., Liao, Y.: Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. 117, 205–213 (2020)CrossRef Xu, Y., Sun, B., Ling, Y., Fei, Q., Chen, Z., Li, X., Guo, P., Jeon, N., Goswami, S., Liao, Y.: Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. 117, 205–213 (2020)CrossRef
3.
Zurück zum Zitat Gerecht, S., Townsend, S.A., Pressler, H., Zhu, H., Nijst, C.L., Bruggeman, J.P., Nichol, J.W., Langer, R.: A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 28, 4826–4835 (2007)CrossRef Gerecht, S., Townsend, S.A., Pressler, H., Zhu, H., Nijst, C.L., Bruggeman, J.P., Nichol, J.W., Langer, R.: A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 28, 4826–4835 (2007)CrossRef
4.
Zurück zum Zitat Clough, E.C., Plaisted, T.A., Eckel, Z.C., Cante, K., Hundley, J.M., Schaedler, T.A.: Elastomeric microlattice impact attenuators. Matter 1, 1519–1531 (2019)CrossRef Clough, E.C., Plaisted, T.A., Eckel, Z.C., Cante, K., Hundley, J.M., Schaedler, T.A.: Elastomeric microlattice impact attenuators. Matter 1, 1519–1531 (2019)CrossRef
5.
Zurück zum Zitat Xiong, J., Thangavel, G., Wang, J., Zhou, X., Lee, P.S.: Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 6, eabb4246 (2020) Xiong, J., Thangavel, G., Wang, J., Zhou, X., Lee, P.S.: Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 6, eabb4246 (2020)
6.
Zurück zum Zitat Jiang, Y., Wang, Q.: Highly-stretchable 3D-architected mechanical metamaterials. Sci. Rep. 6, 34147 (2016)CrossRef Jiang, Y., Wang, Q.: Highly-stretchable 3D-architected mechanical metamaterials. Sci. Rep. 6, 34147 (2016)CrossRef
7.
Zurück zum Zitat Traugutt, N.A., Mistry, D., Luo, C., Yu, K., Ge, Q., Yakacki, C.M.: Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater., e2000797 (2020) Traugutt, N.A., Mistry, D., Luo, C., Yu, K., Ge, Q., Yakacki, C.M.: Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater., e2000797 (2020)
8.
Zurück zum Zitat Wirth, D.M., Jaquez, A., Gandarilla, S., Hochberg, J.D., Church, D.C., Pokorski, J.K.: Highly Expandable Foam for Lithographic 3D Printing. ACS Appl Mater Interfaces 12, 19033–19043 (2020)CrossRef Wirth, D.M., Jaquez, A., Gandarilla, S., Hochberg, J.D., Church, D.C., Pokorski, J.K.: Highly Expandable Foam for Lithographic 3D Printing. ACS Appl Mater Interfaces 12, 19033–19043 (2020)CrossRef
9.
Zurück zum Zitat Mu, X., Bertron, T., Dunn, C., Qiao, H., Wu, J., Zhao, Z., Saldana, C., Qi, H.J.: Porous polymeric materials by 3D printing of photocurable resin. Mater. Horiz. 4, 442–449 (2017)CrossRef Mu, X., Bertron, T., Dunn, C., Qiao, H., Wu, J., Zhao, Z., Saldana, C., Qi, H.J.: Porous polymeric materials by 3D printing of photocurable resin. Mater. Horiz. 4, 442–449 (2017)CrossRef
10.
Zurück zum Zitat Hensleigh, R.M., Cui, H., Oakdale, J.S., Ye, J.C., Campbell, P.G., Duoss, E.B., Spadaccini, C.M., Zheng, X., Worsley, M.A.: Additive manufacturing of complex micro-architected graphene aerogels. Mater. Horiz. 5, 1035–1401 (2018)CrossRef Hensleigh, R.M., Cui, H., Oakdale, J.S., Ye, J.C., Campbell, P.G., Duoss, E.B., Spadaccini, C.M., Zheng, X., Worsley, M.A.: Additive manufacturing of complex micro-architected graphene aerogels. Mater. Horiz. 5, 1035–1401 (2018)CrossRef
11.
Zurück zum Zitat Lewis, J.A.: Direct ink writing of 3D functional materials. Adv. Func. Mater. 16, 2193–2204 (2006)CrossRef Lewis, J.A.: Direct ink writing of 3D functional materials. Adv. Func. Mater. 16, 2193–2204 (2006)CrossRef
12.
Zurück zum Zitat Feng, W., Christensen, R.: Nonlinear deformation of elastomeric foams. Int. J. Non Linear Mech. 17, 355–367 (1982)CrossRef Feng, W., Christensen, R.: Nonlinear deformation of elastomeric foams. Int. J. Non Linear Mech. 17, 355–367 (1982)CrossRef
13.
Zurück zum Zitat Danielsson, M., Parks, D., Boyce, M.: Constitutive modeling of porous hyperelastic materials. Mech. Mater. 36, 347–358 (2004)CrossRef Danielsson, M., Parks, D., Boyce, M.: Constitutive modeling of porous hyperelastic materials. Mech. Mater. 36, 347–358 (2004)CrossRef
14.
15.
Zurück zum Zitat Guo, Z., Caner, F., Peng, X., Moran, B.: On constitutive modelling of porous neo-Hookean composites. J. Mech. Phys. Solids 56, 2338–2357 (2008)MathSciNetCrossRefMATH Guo, Z., Caner, F., Peng, X., Moran, B.: On constitutive modelling of porous neo-Hookean composites. J. Mech. Phys. Solids 56, 2338–2357 (2008)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Chen, Y., Guo, W., Yang, P., Zhao, J., Guo, Z., Dong, L., Zhong, Z.: Constitutive modeling of neo-Hookean materials with spherical voids in finite deformation. Extreme Mech. Lett. 24, 47–57 (2018)CrossRef Chen, Y., Guo, W., Yang, P., Zhao, J., Guo, Z., Dong, L., Zhong, Z.: Constitutive modeling of neo-Hookean materials with spherical voids in finite deformation. Extreme Mech. Lett. 24, 47–57 (2018)CrossRef
17.
Zurück zum Zitat Drozdov, A.D., Christiansen, J.D.: Modeling the elastic response of polymer foams at finite deformations. Int. J. Mech. Sci. 171, 105398 (2020) Drozdov, A.D., Christiansen, J.D.: Modeling the elastic response of polymer foams at finite deformations. Int. J. Mech. Sci. 171, 105398 (2020)
18.
Zurück zum Zitat Hashin, Z.: Large isotropic elastic deformation of composites and porous media. Int. J. Solids Struct. 21, 711–720 (1985)CrossRefMATH Hashin, Z.: Large isotropic elastic deformation of composites and porous media. Int. J. Solids Struct. 21, 711–720 (1985)CrossRefMATH
19.
Zurück zum Zitat Castañeda, P.P.: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids 44, 827–862 (1996)MathSciNetCrossRefMATH Castañeda, P.P.: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids 44, 827–862 (1996)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Lopez-Pamies, O., Ponte Castañeda, P.: Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. J. Elastic., 76, 247–287 (2004) Lopez-Pamies, O., Ponte Castañeda, P.: Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. J. Elastic., 76, 247–287 (2004)
21.
Zurück zum Zitat Shrimali, B., Lefèvre, V., Lopez-Pamies, O.: A simple explicit homogenization solution for the macroscopic elastic response of isotropic porous elastomers. J. Mech. Phys. Solids 122, 364–380 (2019)MathSciNetCrossRef Shrimali, B., Lefèvre, V., Lopez-Pamies, O.: A simple explicit homogenization solution for the macroscopic elastic response of isotropic porous elastomers. J. Mech. Phys. Solids 122, 364–380 (2019)MathSciNetCrossRef
23.
Zurück zum Zitat Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRefMATH Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRefMATH
24.
Zurück zum Zitat Singh, V., Racherla, V.: Deformation behavior of fluid-filled porous elastomers: analytical estimates and validation. J. Mech. Phys. Solids 163, 104835 (2022)MathSciNetCrossRef Singh, V., Racherla, V.: Deformation behavior of fluid-filled porous elastomers: analytical estimates and validation. J. Mech. Phys. Solids 163, 104835 (2022)MathSciNetCrossRef
25.
Zurück zum Zitat Mullins, L., Tobin, N.: Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers. Rubber Chem. Technol. 30, 555–571 (1957)CrossRef Mullins, L., Tobin, N.: Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers. Rubber Chem. Technol. 30, 555–571 (1957)CrossRef
26.
Zurück zum Zitat Govindjee, S., Simo, J.: A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J. Mech. Phys. Solids 39, 87–112 (1991)MathSciNetCrossRefMATH Govindjee, S., Simo, J.: A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J. Mech. Phys. Solids 39, 87–112 (1991)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Jörgen S. Bergström, M.C.B.: Mechanical Behavior of Particle Filled Elastomers, Rubber Chemistry and Technology, 72 (1999) 633–656. Jörgen S. Bergström, M.C.B.: Mechanical Behavior of Particle Filled Elastomers, Rubber Chemistry and Technology, 72 (1999) 633–656.
28.
Zurück zum Zitat Qi, M.C.B.H.J.: Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials. J. Mech. Phys. Solids 52, 2187–2205 (2004)CrossRefMATH Qi, M.C.B.H.J.: Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials. J. Mech. Phys. Solids 52, 2187–2205 (2004)CrossRefMATH
29.
Zurück zum Zitat Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain, Proceedings of the Royal Society of London. A. Math. Phys. Sci. 326, 131–147 (1972) Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain, Proceedings of the Royal Society of London. A. Math. Phys. Sci. 326, 131–147 (1972)
30.
Zurück zum Zitat Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRef Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRef
31.
Zurück zum Zitat Lopez-Pamies, O., Nakamura, T., Idiart, M.I.: Cavitation in elastomeric solids: II—onset-of-cavitation surfaces for Neo-Hookean materials. J. Mech. Phys. Solids 59, 1488–1505 (2011)MathSciNetCrossRefMATH Lopez-Pamies, O., Nakamura, T., Idiart, M.I.: Cavitation in elastomeric solids: II—onset-of-cavitation surfaces for Neo-Hookean materials. J. Mech. Phys. Solids 59, 1488–1505 (2011)MathSciNetCrossRefMATH
Metadaten
Titel
An analytical stress–stretch relation for porous elastomeric materials with large deformation
verfasst von
Qiang Zhang
Yan Shi
Cunfa Gao
Publikationsdatum
05.09.2023
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 12/2023
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03697-x

Weitere Artikel der Ausgabe 12/2023

Acta Mechanica 12/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.