Skip to main content
Top
Published in: Empirical Economics 4/2023

28-02-2023

An artificial intelligence approach to forecasting when there are structural breaks: a reinforcement learning-based framework for fast switching

Authors: Jeronymo Marcondes Pinto, Emerson Fernandes Marçal

Published in: Empirical Economics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Economic forecasting during structural breaks is challenging due to the possible systematic failure of existent models. Robust forecast devices are able to provide unbiased forecasts just after structural change but at the cost of higher variance in normal times. Therefore, there is a trade-off between bias and variance when we intend to forecast a variable under the possibility of structural breaks. In order to choose the best model for each case scenario, we propose a novel algorithm based on the Reinforcement Learning method. Our method is able to gather history performance from all the tested models and choose the one with best performance depending on the “state” of data as soon as the effects of this change are perceived. Hence, our method is able to adapt to the changes of the structural break very fast and change back to a model with less variance as soon as those effects vanish. We provide evidence based on an extensive and rigorous empirical test with Monte Carlo and real data forecasting exercises that this algorithm can improve forecast performance in a scenario of structural change without losing significant performance under normal times.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
All the code and data used to perform this study is available at: https://​gitlab.​com/​jeronymomp/​reinforcement_​learning_​forecast.
 
3
All data was collected in June 24 of 2021.
 
Literature
go back to reference Aggarwal CC et al (2018) Neural networks and deep learning. Springer, New YorkCrossRef Aggarwal CC et al (2018) Neural networks and deep learning. Springer, New YorkCrossRef
go back to reference Atiya AF (2020) Why does forecast combination work so well? Int J Forecast 36(1):197–200CrossRef Atiya AF (2020) Why does forecast combination work so well? Int J Forecast 36(1):197–200CrossRef
go back to reference Bataa E, Osborn DR, Sensier M, van Dijk D (2013) Structural breaks in the international dynamics of inflation. Rev Econ Stat 95(2):646–659CrossRef Bataa E, Osborn DR, Sensier M, van Dijk D (2013) Structural breaks in the international dynamics of inflation. Rev Econ Stat 95(2):646–659CrossRef
go back to reference Canarella G, Miller SM (2016) Inflation persistence and structural breaks: The experience of inflation targeting countries and the USA. J Econ Stud Canarella G, Miller SM (2016) Inflation persistence and structural breaks: The experience of inflation targeting countries and the USA. J Econ Stud
go back to reference Castle JL, Clements MP, Hendry DF (2015) Robust approaches to forecasting. Int J Forecast 31(1):99–112CrossRef Castle JL, Clements MP, Hendry DF (2015) Robust approaches to forecasting. Int J Forecast 31(1):99–112CrossRef
go back to reference Castle JL, Clements MP, Hendry DF (2016) An overview of forecasting facing breaks. J Bus Cycle Res 12(1):3–23CrossRef Castle JL, Clements MP, Hendry DF (2016) An overview of forecasting facing breaks. J Bus Cycle Res 12(1):3–23CrossRef
go back to reference Castle JL, Fawcett NW, Hendry DF (2010) Forecasting with equilibrium-correction models during structural breaks. J Econ 158(1):25–36CrossRef Castle JL, Fawcett NW, Hendry DF (2010) Forecasting with equilibrium-correction models during structural breaks. J Econ 158(1):25–36CrossRef
go back to reference Chien C-F, Lin Y-S, Lin S-K (2020) Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semiconductor component distributor. Int J Prod Res 58(9):2784–2804CrossRef Chien C-F, Lin Y-S, Lin S-K (2020) Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semiconductor component distributor. Int J Prod Res 58(9):2784–2804CrossRef
go back to reference Clements M, Hendry D (1998) Forecasting economic time series. Cambridge University Press, Cambridge, MACrossRef Clements M, Hendry D (1998) Forecasting economic time series. Cambridge University Press, Cambridge, MACrossRef
go back to reference Clements MP, Hendry DF (1996) Intercept corrections and structural change. J Appl Econ 11(5):475–494CrossRef Clements MP, Hendry DF (1996) Intercept corrections and structural change. J Appl Econ 11(5):475–494CrossRef
go back to reference Clements MP, Hendry DF (2001) Forecasting non-stationary economic time series. MIT Press, Cambridge, MA Clements MP, Hendry DF (2001) Forecasting non-stationary economic time series. MIT Press, Cambridge, MA
go back to reference Diebold FX, Shin M (2018) Machine learning for regularized survey forecast combination: Partially-egalitarian lasso and its derivatives. Int J Forecast Diebold FX, Shin M (2018) Machine learning for regularized survey forecast combination: Partially-egalitarian lasso and its derivatives. Int J Forecast
go back to reference Dong Y, Tang X, Yuan Y (2020) Principled reward shaping for reinforcement learning via lyapunov stability theory. Neurocomputing 393:83–90CrossRef Dong Y, Tang X, Yuan Y (2020) Principled reward shaping for reinforcement learning via lyapunov stability theory. Neurocomputing 393:83–90CrossRef
go back to reference Doornik JA (2009) Autometrics. In: In honour of David F. Hendry, Citeseer Doornik JA (2009) Autometrics. In: In honour of David F. Hendry, Citeseer
go back to reference Elavarasan D, Vincent PD (2020) Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications. IEEE Access 8:86886–86901CrossRef Elavarasan D, Vincent PD (2020) Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications. IEEE Access 8:86886–86901CrossRef
go back to reference Giacomini R, White H (2006) Tests of conditional predictive ability. Econometrica 74(6):1545–1578CrossRef Giacomini R, White H (2006) Tests of conditional predictive ability. Econometrica 74(6):1545–1578CrossRef
go back to reference Hansen PR, Lunde A, Nason JM (2011) The model confidence set. Econometrica 79(2):453–497CrossRef Hansen PR, Lunde A, Nason JM (2011) The model confidence set. Econometrica 79(2):453–497CrossRef
go back to reference Hendry DF (2006) Robustifying forecasts from equilibrium-correction systems. J Econ 135(1–2):399–426 Hendry DF (2006) Robustifying forecasts from equilibrium-correction systems. J Econ 135(1–2):399–426
go back to reference Inoue A, Jin L, Rossi B (2017) Rolling window selection for out-of-sample forecasting with time-varying parameters. J Econ 196(1):55–67CrossRef Inoue A, Jin L, Rossi B (2017) Rolling window selection for out-of-sample forecasting with time-varying parameters. J Econ 196(1):55–67CrossRef
go back to reference Ji S, Wang Z, Li T, Zheng Y (2020) Spatio-temporal feature fusion for dynamic taxi route recommendation via deep reinforcement learning. Knowl Based Syst 205:106302CrossRef Ji S, Wang Z, Li T, Zheng Y (2020) Spatio-temporal feature fusion for dynamic taxi route recommendation via deep reinforcement learning. Knowl Based Syst 205:106302CrossRef
go back to reference Karim F, Majumdar S, Darabi H, Harford S (2019) Multivariate LSTM-FCNs for time series classification. Neural Netw 116:237–245CrossRef Karim F, Majumdar S, Darabi H, Harford S (2019) Multivariate LSTM-FCNs for time series classification. Neural Netw 116:237–245CrossRef
go back to reference Murphy KP (2012) Machine learning: a probabilistic perspective. MIT press, Cambridge, MA Murphy KP (2012) Machine learning: a probabilistic perspective. MIT press, Cambridge, MA
go back to reference Oh E, Wang H (2020) Reinforcement-learning-based energy storage system operation strategies to manage wind power forecast uncertainty. IEEE Access 8:20965–20976CrossRef Oh E, Wang H (2020) Reinforcement-learning-based energy storage system operation strategies to manage wind power forecast uncertainty. IEEE Access 8:20965–20976CrossRef
go back to reference Pinto JM, Castle JL (2022) Machine learning dynamic switching approach to forecasting in the presence of structural breaks. J Bus Cycle Res 18:129–157CrossRef Pinto JM, Castle JL (2022) Machine learning dynamic switching approach to forecasting in the presence of structural breaks. J Bus Cycle Res 18:129–157CrossRef
go back to reference Sargent TJ, Ljungqvist L (2000) Recursive macroeconomic theory. Mass Inst Technol Sargent TJ, Ljungqvist L (2000) Recursive macroeconomic theory. Mass Inst Technol
go back to reference Sewak M (2019) Deep reinforcement learning: frontiers of artificial intelligence. Springer, New YorkCrossRef Sewak M (2019) Deep reinforcement learning: frontiers of artificial intelligence. Springer, New YorkCrossRef
go back to reference Shahid F, Zameer A, Muneeb M (2021) A novel genetic LSTM model for wind power forecast. Energy 223:120069CrossRef Shahid F, Zameer A, Muneeb M (2021) A novel genetic LSTM model for wind power forecast. Energy 223:120069CrossRef
go back to reference Silver D, Singh S, Precup D, Sutton RS (2021) Reward is enough. Artif Intell 299:103535CrossRef Silver D, Singh S, Precup D, Sutton RS (2021) Reward is enough. Artif Intell 299:103535CrossRef
go back to reference Sutton RS (1988) Learning to predict by the methods of temporal differences. Machine Learn 3(1):9–44CrossRef Sutton RS (1988) Learning to predict by the methods of temporal differences. Machine Learn 3(1):9–44CrossRef
go back to reference Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press, Cambridge, MA Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press, Cambridge, MA
go back to reference Syarif I, Prugel-Bennett A, Wills G (2016) SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA (Telecommun Comput Electron Control) 14(4):1502–1509CrossRef Syarif I, Prugel-Bennett A, Wills G (2016) SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA (Telecommun Comput Electron Control) 14(4):1502–1509CrossRef
go back to reference Wan H, Guo S, Yin K, Liang X, Lin Y (2020) CTS-LSTM: LSTM-based neural networks for correlatedtime series prediction. Knowl Based Syst 191:105239CrossRef Wan H, Guo S, Yin K, Liang X, Lin Y (2020) CTS-LSTM: LSTM-based neural networks for correlatedtime series prediction. Knowl Based Syst 191:105239CrossRef
go back to reference Wang L, Wang Z, Qu H, Liu S (2018) Optimal forecast combination based on neural networks for time series forecasting. Appl Soft Comput 66:1–17CrossRef Wang L, Wang Z, Qu H, Liu S (2018) Optimal forecast combination based on neural networks for time series forecasting. Appl Soft Comput 66:1–17CrossRef
go back to reference Wu J, Chen S, Liu X (2020) Efficient hyperparameter optimization through model-based reinforcement learning. Neurocomputing 409:381–393CrossRef Wu J, Chen S, Liu X (2020) Efficient hyperparameter optimization through model-based reinforcement learning. Neurocomputing 409:381–393CrossRef
go back to reference Yan Z, Wang J, Sheng L, Yang Z (2021) An effective compression algorithm for real-time transmission data using predictive coding with mixed models of LSTM and XGBoost. Neurocomputing 462:247–259CrossRef Yan Z, Wang J, Sheng L, Yang Z (2021) An effective compression algorithm for real-time transmission data using predictive coding with mixed models of LSTM and XGBoost. Neurocomputing 462:247–259CrossRef
Metadata
Title
An artificial intelligence approach to forecasting when there are structural breaks: a reinforcement learning-based framework for fast switching
Authors
Jeronymo Marcondes Pinto
Emerson Fernandes Marçal
Publication date
28-02-2023
Publisher
Springer Berlin Heidelberg
Published in
Empirical Economics / Issue 4/2023
Print ISSN: 0377-7332
Electronic ISSN: 1435-8921
DOI
https://doi.org/10.1007/s00181-023-02389-8

Other articles of this Issue 4/2023

Empirical Economics 4/2023 Go to the issue

Premium Partner