Skip to main content
Erschienen in: Empirical Economics 4/2023

28.02.2023

An artificial intelligence approach to forecasting when there are structural breaks: a reinforcement learning-based framework for fast switching

verfasst von: Jeronymo Marcondes Pinto, Emerson Fernandes Marçal

Erschienen in: Empirical Economics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Economic forecasting during structural breaks is challenging due to the possible systematic failure of existent models. Robust forecast devices are able to provide unbiased forecasts just after structural change but at the cost of higher variance in normal times. Therefore, there is a trade-off between bias and variance when we intend to forecast a variable under the possibility of structural breaks. In order to choose the best model for each case scenario, we propose a novel algorithm based on the Reinforcement Learning method. Our method is able to gather history performance from all the tested models and choose the one with best performance depending on the “state” of data as soon as the effects of this change are perceived. Hence, our method is able to adapt to the changes of the structural break very fast and change back to a model with less variance as soon as those effects vanish. We provide evidence based on an extensive and rigorous empirical test with Monte Carlo and real data forecasting exercises that this algorithm can improve forecast performance in a scenario of structural change without losing significant performance under normal times.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
All the code and data used to perform this study is available at: https://​gitlab.​com/​jeronymomp/​reinforcement_​learning_​forecast.
 
3
All data was collected in June 24 of 2021.
 
Literatur
Zurück zum Zitat Aggarwal CC et al (2018) Neural networks and deep learning. Springer, New YorkCrossRef Aggarwal CC et al (2018) Neural networks and deep learning. Springer, New YorkCrossRef
Zurück zum Zitat Atiya AF (2020) Why does forecast combination work so well? Int J Forecast 36(1):197–200CrossRef Atiya AF (2020) Why does forecast combination work so well? Int J Forecast 36(1):197–200CrossRef
Zurück zum Zitat Bataa E, Osborn DR, Sensier M, van Dijk D (2013) Structural breaks in the international dynamics of inflation. Rev Econ Stat 95(2):646–659CrossRef Bataa E, Osborn DR, Sensier M, van Dijk D (2013) Structural breaks in the international dynamics of inflation. Rev Econ Stat 95(2):646–659CrossRef
Zurück zum Zitat Canarella G, Miller SM (2016) Inflation persistence and structural breaks: The experience of inflation targeting countries and the USA. J Econ Stud Canarella G, Miller SM (2016) Inflation persistence and structural breaks: The experience of inflation targeting countries and the USA. J Econ Stud
Zurück zum Zitat Castle JL, Clements MP, Hendry DF (2015) Robust approaches to forecasting. Int J Forecast 31(1):99–112CrossRef Castle JL, Clements MP, Hendry DF (2015) Robust approaches to forecasting. Int J Forecast 31(1):99–112CrossRef
Zurück zum Zitat Castle JL, Clements MP, Hendry DF (2016) An overview of forecasting facing breaks. J Bus Cycle Res 12(1):3–23CrossRef Castle JL, Clements MP, Hendry DF (2016) An overview of forecasting facing breaks. J Bus Cycle Res 12(1):3–23CrossRef
Zurück zum Zitat Castle JL, Fawcett NW, Hendry DF (2010) Forecasting with equilibrium-correction models during structural breaks. J Econ 158(1):25–36CrossRef Castle JL, Fawcett NW, Hendry DF (2010) Forecasting with equilibrium-correction models during structural breaks. J Econ 158(1):25–36CrossRef
Zurück zum Zitat Chien C-F, Lin Y-S, Lin S-K (2020) Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semiconductor component distributor. Int J Prod Res 58(9):2784–2804CrossRef Chien C-F, Lin Y-S, Lin S-K (2020) Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semiconductor component distributor. Int J Prod Res 58(9):2784–2804CrossRef
Zurück zum Zitat Clements M, Hendry D (1998) Forecasting economic time series. Cambridge University Press, Cambridge, MACrossRef Clements M, Hendry D (1998) Forecasting economic time series. Cambridge University Press, Cambridge, MACrossRef
Zurück zum Zitat Clements MP, Hendry DF (1996) Intercept corrections and structural change. J Appl Econ 11(5):475–494CrossRef Clements MP, Hendry DF (1996) Intercept corrections and structural change. J Appl Econ 11(5):475–494CrossRef
Zurück zum Zitat Clements MP, Hendry DF (2001) Forecasting non-stationary economic time series. MIT Press, Cambridge, MA Clements MP, Hendry DF (2001) Forecasting non-stationary economic time series. MIT Press, Cambridge, MA
Zurück zum Zitat Diebold FX, Shin M (2018) Machine learning for regularized survey forecast combination: Partially-egalitarian lasso and its derivatives. Int J Forecast Diebold FX, Shin M (2018) Machine learning for regularized survey forecast combination: Partially-egalitarian lasso and its derivatives. Int J Forecast
Zurück zum Zitat Dong Y, Tang X, Yuan Y (2020) Principled reward shaping for reinforcement learning via lyapunov stability theory. Neurocomputing 393:83–90CrossRef Dong Y, Tang X, Yuan Y (2020) Principled reward shaping for reinforcement learning via lyapunov stability theory. Neurocomputing 393:83–90CrossRef
Zurück zum Zitat Doornik JA (2009) Autometrics. In: In honour of David F. Hendry, Citeseer Doornik JA (2009) Autometrics. In: In honour of David F. Hendry, Citeseer
Zurück zum Zitat Elavarasan D, Vincent PD (2020) Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications. IEEE Access 8:86886–86901CrossRef Elavarasan D, Vincent PD (2020) Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications. IEEE Access 8:86886–86901CrossRef
Zurück zum Zitat Giacomini R, White H (2006) Tests of conditional predictive ability. Econometrica 74(6):1545–1578CrossRef Giacomini R, White H (2006) Tests of conditional predictive ability. Econometrica 74(6):1545–1578CrossRef
Zurück zum Zitat Hansen PR, Lunde A, Nason JM (2011) The model confidence set. Econometrica 79(2):453–497CrossRef Hansen PR, Lunde A, Nason JM (2011) The model confidence set. Econometrica 79(2):453–497CrossRef
Zurück zum Zitat Hendry DF (2006) Robustifying forecasts from equilibrium-correction systems. J Econ 135(1–2):399–426 Hendry DF (2006) Robustifying forecasts from equilibrium-correction systems. J Econ 135(1–2):399–426
Zurück zum Zitat Inoue A, Jin L, Rossi B (2017) Rolling window selection for out-of-sample forecasting with time-varying parameters. J Econ 196(1):55–67CrossRef Inoue A, Jin L, Rossi B (2017) Rolling window selection for out-of-sample forecasting with time-varying parameters. J Econ 196(1):55–67CrossRef
Zurück zum Zitat Ji S, Wang Z, Li T, Zheng Y (2020) Spatio-temporal feature fusion for dynamic taxi route recommendation via deep reinforcement learning. Knowl Based Syst 205:106302CrossRef Ji S, Wang Z, Li T, Zheng Y (2020) Spatio-temporal feature fusion for dynamic taxi route recommendation via deep reinforcement learning. Knowl Based Syst 205:106302CrossRef
Zurück zum Zitat Karim F, Majumdar S, Darabi H, Harford S (2019) Multivariate LSTM-FCNs for time series classification. Neural Netw 116:237–245CrossRef Karim F, Majumdar S, Darabi H, Harford S (2019) Multivariate LSTM-FCNs for time series classification. Neural Netw 116:237–245CrossRef
Zurück zum Zitat Murphy KP (2012) Machine learning: a probabilistic perspective. MIT press, Cambridge, MA Murphy KP (2012) Machine learning: a probabilistic perspective. MIT press, Cambridge, MA
Zurück zum Zitat Oh E, Wang H (2020) Reinforcement-learning-based energy storage system operation strategies to manage wind power forecast uncertainty. IEEE Access 8:20965–20976CrossRef Oh E, Wang H (2020) Reinforcement-learning-based energy storage system operation strategies to manage wind power forecast uncertainty. IEEE Access 8:20965–20976CrossRef
Zurück zum Zitat Pinto JM, Castle JL (2022) Machine learning dynamic switching approach to forecasting in the presence of structural breaks. J Bus Cycle Res 18:129–157CrossRef Pinto JM, Castle JL (2022) Machine learning dynamic switching approach to forecasting in the presence of structural breaks. J Bus Cycle Res 18:129–157CrossRef
Zurück zum Zitat Sargent TJ, Ljungqvist L (2000) Recursive macroeconomic theory. Mass Inst Technol Sargent TJ, Ljungqvist L (2000) Recursive macroeconomic theory. Mass Inst Technol
Zurück zum Zitat Sewak M (2019) Deep reinforcement learning: frontiers of artificial intelligence. Springer, New YorkCrossRef Sewak M (2019) Deep reinforcement learning: frontiers of artificial intelligence. Springer, New YorkCrossRef
Zurück zum Zitat Shahid F, Zameer A, Muneeb M (2021) A novel genetic LSTM model for wind power forecast. Energy 223:120069CrossRef Shahid F, Zameer A, Muneeb M (2021) A novel genetic LSTM model for wind power forecast. Energy 223:120069CrossRef
Zurück zum Zitat Silver D, Singh S, Precup D, Sutton RS (2021) Reward is enough. Artif Intell 299:103535CrossRef Silver D, Singh S, Precup D, Sutton RS (2021) Reward is enough. Artif Intell 299:103535CrossRef
Zurück zum Zitat Sutton RS (1988) Learning to predict by the methods of temporal differences. Machine Learn 3(1):9–44CrossRef Sutton RS (1988) Learning to predict by the methods of temporal differences. Machine Learn 3(1):9–44CrossRef
Zurück zum Zitat Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press, Cambridge, MA Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press, Cambridge, MA
Zurück zum Zitat Syarif I, Prugel-Bennett A, Wills G (2016) SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA (Telecommun Comput Electron Control) 14(4):1502–1509CrossRef Syarif I, Prugel-Bennett A, Wills G (2016) SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA (Telecommun Comput Electron Control) 14(4):1502–1509CrossRef
Zurück zum Zitat Wan H, Guo S, Yin K, Liang X, Lin Y (2020) CTS-LSTM: LSTM-based neural networks for correlatedtime series prediction. Knowl Based Syst 191:105239CrossRef Wan H, Guo S, Yin K, Liang X, Lin Y (2020) CTS-LSTM: LSTM-based neural networks for correlatedtime series prediction. Knowl Based Syst 191:105239CrossRef
Zurück zum Zitat Wang L, Wang Z, Qu H, Liu S (2018) Optimal forecast combination based on neural networks for time series forecasting. Appl Soft Comput 66:1–17CrossRef Wang L, Wang Z, Qu H, Liu S (2018) Optimal forecast combination based on neural networks for time series forecasting. Appl Soft Comput 66:1–17CrossRef
Zurück zum Zitat Wu J, Chen S, Liu X (2020) Efficient hyperparameter optimization through model-based reinforcement learning. Neurocomputing 409:381–393CrossRef Wu J, Chen S, Liu X (2020) Efficient hyperparameter optimization through model-based reinforcement learning. Neurocomputing 409:381–393CrossRef
Zurück zum Zitat Yan Z, Wang J, Sheng L, Yang Z (2021) An effective compression algorithm for real-time transmission data using predictive coding with mixed models of LSTM and XGBoost. Neurocomputing 462:247–259CrossRef Yan Z, Wang J, Sheng L, Yang Z (2021) An effective compression algorithm for real-time transmission data using predictive coding with mixed models of LSTM and XGBoost. Neurocomputing 462:247–259CrossRef
Metadaten
Titel
An artificial intelligence approach to forecasting when there are structural breaks: a reinforcement learning-based framework for fast switching
verfasst von
Jeronymo Marcondes Pinto
Emerson Fernandes Marçal
Publikationsdatum
28.02.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Empirical Economics / Ausgabe 4/2023
Print ISSN: 0377-7332
Elektronische ISSN: 1435-8921
DOI
https://doi.org/10.1007/s00181-023-02389-8

Weitere Artikel der Ausgabe 4/2023

Empirical Economics 4/2023 Zur Ausgabe

Premium Partner