Skip to main content
Top
Published in: Journal of Scientific Computing 1/2020

01-01-2020

An Efficient Formulation of Chebyshev Tau Method for Constant Coefficients Systems of Multi-order FDEs

Authors: A. Faghih, P. Mokhtary

Published in: Journal of Scientific Computing | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of the present work is to introduce a computational approach employing Chebyshev Tau method for approximating the solutions of constant coefficients systems of multi-order fractional differential equations. For this purpose, a series representation for the exact solutions in a neighborhood of the origin is obtained to monitor their smoothness properties. We prove that some derivatives of the exact solutions of the underlying problem often suffer from discontinuity at the origin. To fix this drawback and design a high order approach a regularization procedure is developed. In addition to avoid high computational costs, a suitable strategy is implemented such that approximate solutions are obtained by solving some triangular algebraic systems. Complexity and convergence analysis of the proposed scheme are provided. Various practical test problems are presented to exhibit capability of the given approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdulaziz, O., Hashim, I., Momani, S.: Solving systems of fractional differential equations by homotopy-perturbation method. Phys. Lett. A 372(4), 451–459 (2008)MathSciNetMATHCrossRef Abdulaziz, O., Hashim, I., Momani, S.: Solving systems of fractional differential equations by homotopy-perturbation method. Phys. Lett. A 372(4), 451–459 (2008)MathSciNetMATHCrossRef
2.
go back to reference Atabakzadeh, M.H., Akrami, M.H., Erjaee, G.H.: Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Appl. Math. Model. 37(20–21), 8903–8911 (2013)MathSciNetMATHCrossRef Atabakzadeh, M.H., Akrami, M.H., Erjaee, G.H.: Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Appl. Math. Model. 37(20–21), 8903–8911 (2013)MathSciNetMATHCrossRef
3.
go back to reference Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)MATHCrossRef Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)MATHCrossRef
4.
go back to reference Bataineh, A.S., Alomari, A.K., Noorani, M.S.M., Hashim, I., Nazar, R.: Series solutions of systems of nonlinear fractional differential equations. Acta Appl. Math. 105(2), 189–198 (2009)MathSciNetMATHCrossRef Bataineh, A.S., Alomari, A.K., Noorani, M.S.M., Hashim, I., Nazar, R.: Series solutions of systems of nonlinear fractional differential equations. Acta Appl. Math. 105(2), 189–198 (2009)MathSciNetMATHCrossRef
5.
go back to reference Bhrawy, A., Alhamed, Y., Baleanu, D., Al-Zahrani, A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17(4), 1137–1157 (2014)MathSciNetMATHCrossRef Bhrawy, A., Alhamed, Y., Baleanu, D., Al-Zahrani, A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17(4), 1137–1157 (2014)MathSciNetMATHCrossRef
6.
go back to reference Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. 40(2), 832–845 (2016)MathSciNetMATHCrossRef Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. 40(2), 832–845 (2016)MathSciNetMATHCrossRef
7.
go back to reference Biazar, J., Farrokhi, L., Islam, M.R.: Modeling the pollution of a system of lakes. Appl. Math. Comput. 178(2), 423–430 (2006)MathSciNetMATH Biazar, J., Farrokhi, L., Islam, M.R.: Modeling the pollution of a system of lakes. Appl. Math. Comput. 178(2), 423–430 (2006)MathSciNetMATH
8.
go back to reference Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006)MATHCrossRef Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006)MATHCrossRef
9.
go back to reference Cardoso, L.C., Dos Santos, F.L.P., Camargo, R.F.: Analysis of fractional-order models for hepatitis B. Comput. Appl. Math. 37(4), 4570–4586 (2018)MathSciNetMATHCrossRef Cardoso, L.C., Dos Santos, F.L.P., Camargo, R.F.: Analysis of fractional-order models for hepatitis B. Comput. Appl. Math. 37(4), 4570–4586 (2018)MathSciNetMATHCrossRef
10.
go back to reference Changpin, L., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015) MATH Changpin, L., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015) MATH
11.
go back to reference Chen, W.C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36(5), 1305–1314 (2008)CrossRef Chen, W.C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36(5), 1305–1314 (2008)CrossRef
12.
go back to reference Chen, Y., Ke, X., Wei, Y.: Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis. Appl. Math. Comput. 251, 475–488 (2015)MathSciNetMATH Chen, Y., Ke, X., Wei, Y.: Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis. Appl. Math. Comput. 251, 475–488 (2015)MathSciNetMATH
13.
go back to reference Daftardar-Gejji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301(2), 508–518 (2005)MathSciNetMATHCrossRef Daftardar-Gejji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301(2), 508–518 (2005)MathSciNetMATHCrossRef
14.
go back to reference Demirci, E., Unal, A., Özalp, N.: A fractional order SEIR model with density dependent death rate. J. Math. Stat. 40(2), 287–295 (2011)MathSciNetMATH Demirci, E., Unal, A., Özalp, N.: A fractional order SEIR model with density dependent death rate. J. Math. Stat. 40(2), 287–295 (2011)MathSciNetMATH
15.
go back to reference Demirci, E., Ozalp, N.: A method for solving differential equations of fractional order. J. Comput. Appl. Math. 236(11), 2754–2762 (2012)MathSciNetMATHCrossRef Demirci, E., Ozalp, N.: A method for solving differential equations of fractional order. J. Comput. Appl. Math. 236(11), 2754–2762 (2012)MathSciNetMATHCrossRef
16.
go back to reference Diethelm, K., Siegmund, S., Tuan, H.T.: Asymptotic behavior of solutions of linear multi-order fractional differential systems. Fract. Calc. Appl. Anal. 20(5), 1165–1195 (2017)MathSciNetMATHCrossRef Diethelm, K., Siegmund, S., Tuan, H.T.: Asymptotic behavior of solutions of linear multi-order fractional differential systems. Fract. Calc. Appl. Anal. 20(5), 1165–1195 (2017)MathSciNetMATHCrossRef
17.
18.
go back to reference Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers, New York (2003)MATH Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers, New York (2003)MATH
19.
go back to reference Ertürk, V.S., Momani, S.: Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 215(1), 142–151 (2008)MathSciNetMATHCrossRef Ertürk, V.S., Momani, S.: Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 215(1), 142–151 (2008)MathSciNetMATHCrossRef
20.
go back to reference Ferrás, L.L., Ford, N.J., Morgado, M.L., Rebelo, M.: A hybrid numerical scheme for fractional-order systems. In: International Conference on Innovation, Engineering and Entrepreneurship, Vol. 505, pp. 735–742. Springer, Cham (2018) Ferrás, L.L., Ford, N.J., Morgado, M.L., Rebelo, M.: A hybrid numerical scheme for fractional-order systems. In: International Conference on Innovation, Engineering and Entrepreneurship, Vol. 505, pp. 735–742. Springer, Cham (2018)
21.
go back to reference Fitt, A.D., Goodwin, A.R.H., Ronaldson, K.A., Wakeham, W.A.: A fractional differential equation for a MEMS viscometer used in the oil industry. J. Comput. Appl. Math. 229(2), 373–381 (2009)MathSciNetMATHCrossRef Fitt, A.D., Goodwin, A.R.H., Ronaldson, K.A., Wakeham, W.A.: A fractional differential equation for a MEMS viscometer used in the oil industry. J. Comput. Appl. Math. 229(2), 373–381 (2009)MathSciNetMATHCrossRef
22.
go back to reference Ghanbari, F., Ghanbari, K., Mokhtary, P.: High-order Legendre collocation method for fractional order linear semi explicit differential algebraic equations. Electron. Trans. Numer. Anal. 48, 387–409 (2018)MathSciNetMATHCrossRef Ghanbari, F., Ghanbari, K., Mokhtary, P.: High-order Legendre collocation method for fractional order linear semi explicit differential algebraic equations. Electron. Trans. Numer. Anal. 48, 387–409 (2018)MathSciNetMATHCrossRef
23.
go back to reference Ghanbari, F., Ghanbari, K., Mokhtary, P.: Generalized Jacobi Galerkin method for nonlinear fractional differential algebraic equations. Comput. Appl. Math. 37, 5456–5475 (2018)MathSciNetMATHCrossRef Ghanbari, F., Ghanbari, K., Mokhtary, P.: Generalized Jacobi Galerkin method for nonlinear fractional differential algebraic equations. Comput. Appl. Math. 37, 5456–5475 (2018)MathSciNetMATHCrossRef
24.
go back to reference Ghanbari, F., Mokhtary, P., Ghanbari, K.: On the numerical solution of a class of linear fractional integro-differential algebraic equations with weakly singular kernels. Appl. Numer. Math. 144, 1–20 (2019)MathSciNetMATHCrossRef Ghanbari, F., Mokhtary, P., Ghanbari, K.: On the numerical solution of a class of linear fractional integro-differential algebraic equations with weakly singular kernels. Appl. Numer. Math. 144, 1–20 (2019)MathSciNetMATHCrossRef
25.
go back to reference Ghanbari, F., Mokhtary, P., Ghanbari, K.: Numerical solution of a class of fractional order integro-differential algebraic equations using Müntz–Jacobi Tau method. J. Comput. Appl. Math. 362, 172–184 (2019)MathSciNetMATHCrossRef Ghanbari, F., Mokhtary, P., Ghanbari, K.: Numerical solution of a class of fractional order integro-differential algebraic equations using Müntz–Jacobi Tau method. J. Comput. Appl. Math. 362, 172–184 (2019)MathSciNetMATHCrossRef
26.
go back to reference Hamri, N.E., Houmor, T.: Chaotic dynamics of the fractional order nonlinear Bloch system. Electron. J. Theor. Phys. 8(25), 233–244 (2011) Hamri, N.E., Houmor, T.: Chaotic dynamics of the fractional order nonlinear Bloch system. Electron. J. Theor. Phys. 8(25), 233–244 (2011)
27.
go back to reference Hille, E.: Lectures on Ordinary Differential Equations. Addison-Wesley, Reading (1969)MATH Hille, E.: Lectures on Ordinary Differential Equations. Addison-Wesley, Reading (1969)MATH
28.
go back to reference Kaczorek, T.: Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans. Circuits Syst. I. Regul. Pap. 58(6), 1203–1210 (2011)MathSciNetCrossRef Kaczorek, T.: Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans. Circuits Syst. I. Regul. Pap. 58(6), 1203–1210 (2011)MathSciNetCrossRef
29.
go back to reference Khader, M.M., El Danaf, T.S., Hendy, A.S.: A computational matrix method for solving systems of high order fractional differential equations. Appl. Math. Model. 37(6), 4035–4050 (2013)MathSciNetMATHCrossRef Khader, M.M., El Danaf, T.S., Hendy, A.S.: A computational matrix method for solving systems of high order fractional differential equations. Appl. Math. Model. 37(6), 4035–4050 (2013)MathSciNetMATHCrossRef
30.
go back to reference Khader, M.M., Sweilam, N.H., Mahdy, A.M.S.: Two computational algorithms for the numerical solution for system of fractional differential equations. Arab J. Math. Sci. 21(1), 39–52 (2015)MathSciNetMATH Khader, M.M., Sweilam, N.H., Mahdy, A.M.S.: Two computational algorithms for the numerical solution for system of fractional differential equations. Arab J. Math. Sci. 21(1), 39–52 (2015)MathSciNetMATH
31.
go back to reference Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
32.
go back to reference Liu, W., Chen, K.: Chaotic behavior in a new fractional-order love triangle system with competition. J. Appl. Anal. Comput. 5(1), 103–113 (2015)MathSciNetMATH Liu, W., Chen, K.: Chaotic behavior in a new fractional-order love triangle system with competition. J. Appl. Anal. Comput. 5(1), 103–113 (2015)MathSciNetMATH
33.
go back to reference Magin, R., Feng, X., Baleanu, D.: Solving the fractional order Bloch equation. Concepts Magn. Reson. 34(1), 16–23 (2009)CrossRef Magin, R., Feng, X., Baleanu, D.: Solving the fractional order Bloch equation. Concepts Magn. Reson. 34(1), 16–23 (2009)CrossRef
34.
go back to reference Mokhtary, P.: Discrete Galerkin method for fractional integro-differential equations. Acta Math. Sci. Ser. B Engl. Ed. 36(2), 560–578 (2016)MathSciNetMATHCrossRef Mokhtary, P.: Discrete Galerkin method for fractional integro-differential equations. Acta Math. Sci. Ser. B Engl. Ed. 36(2), 560–578 (2016)MathSciNetMATHCrossRef
35.
go back to reference Mokhtary, P.: Numerical analysis of an operational Jacobi Tau method for fractional weakly singular integro-differential equations. Appl. Numer. Math. 121, 52–67 (2017)MathSciNetMATHCrossRef Mokhtary, P.: Numerical analysis of an operational Jacobi Tau method for fractional weakly singular integro-differential equations. Appl. Numer. Math. 121, 52–67 (2017)MathSciNetMATHCrossRef
36.
go back to reference Mokhtary, P.: Numerical treatment of a well-posed Chebyshev Tau method for Bagley-Torvik equation with high-order of accuracy. Numer. Algorithms 72, 875–891 (2016)MathSciNetMATHCrossRef Mokhtary, P.: Numerical treatment of a well-posed Chebyshev Tau method for Bagley-Torvik equation with high-order of accuracy. Numer. Algorithms 72, 875–891 (2016)MathSciNetMATHCrossRef
37.
go back to reference Mokhtary, P., Ghoreishi, F.: Convergence analysis of spectral Tau method for fractional Riccati differential equations. Bull. Iran. Math. Soc. 40(5), 1275–1290 (2014)MathSciNetMATH Mokhtary, P., Ghoreishi, F.: Convergence analysis of spectral Tau method for fractional Riccati differential equations. Bull. Iran. Math. Soc. 40(5), 1275–1290 (2014)MathSciNetMATH
38.
go back to reference Mokhtary, P.: Reconstruction of exponentially rate of convergence to Legendre collocation solution of a class of fractional integro-differential equations. J. Comput. Appl. Math. 279, 145–158 (2015)MathSciNetMATHCrossRef Mokhtary, P.: Reconstruction of exponentially rate of convergence to Legendre collocation solution of a class of fractional integro-differential equations. J. Comput. Appl. Math. 279, 145–158 (2015)MathSciNetMATHCrossRef
39.
go back to reference Mokhtary, P., Ghoreishi, F.: Convergence analysis of the operational Tau method for Abel-type Volterra integral equations. Elect. Trans. Numer. Anal. 41, 289–305 (2014)MathSciNetMATH Mokhtary, P., Ghoreishi, F.: Convergence analysis of the operational Tau method for Abel-type Volterra integral equations. Elect. Trans. Numer. Anal. 41, 289–305 (2014)MathSciNetMATH
40.
go back to reference Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207(1), 96–110 (2007)MathSciNetMATHCrossRef Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207(1), 96–110 (2007)MathSciNetMATHCrossRef
41.
42.
go back to reference Petráš, I.: Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dyn. 57(1–2), 157–170 (2009)MATHCrossRef Petráš, I.: Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dyn. 57(1–2), 157–170 (2009)MATHCrossRef
43.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
44.
go back to reference Qin, S., Liu, F., Turner, I., Vegh, V., Yu, Q., Yang, Q.: Multi-term time-fractional Bloch equations and application in magnetic resonance imaging. J. Comput. Appl. Math. 319, 308–319 (2017)MathSciNetMATHCrossRef Qin, S., Liu, F., Turner, I., Vegh, V., Yu, Q., Yang, Q.: Multi-term time-fractional Bloch equations and application in magnetic resonance imaging. J. Comput. Appl. Math. 319, 308–319 (2017)MathSciNetMATHCrossRef
45.
go back to reference Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, New York (2011)MATHCrossRef Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, New York (2011)MATHCrossRef
46.
go back to reference Sweilam, N.H., Khader, M.M., Al-Bar, R.F.: Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 371(1–2), 26–33 (2007)MathSciNetMATHCrossRef Sweilam, N.H., Khader, M.M., Al-Bar, R.F.: Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 371(1–2), 26–33 (2007)MathSciNetMATHCrossRef
47.
go back to reference Wang, J., Xu, T. Z., Wei, Y. Q., Xie, J. Q.: Numerical solutions for systems of fractional order differential equations with Bernoulli wavelets. Int. J. Comput. Math. 1–20 (2018) Wang, J., Xu, T. Z., Wei, Y. Q., Xie, J. Q.: Numerical solutions for systems of fractional order differential equations with Bernoulli wavelets. Int. J. Comput. Math. 1–20 (2018)
48.
go back to reference Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral Galerkin methods for Volterra type integral equations. J. Sci. Comput. 53(2), 414–434 (2012)MathSciNetMATHCrossRef Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral Galerkin methods for Volterra type integral equations. J. Sci. Comput. 53(2), 414–434 (2012)MathSciNetMATHCrossRef
49.
go back to reference Yu, Y., Li, H.x, Wang, S., Yu, J.: Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons Fractals 42(2), 1181–1189 (2008)MathSciNetMATHCrossRef Yu, Y., Li, H.x, Wang, S., Yu, J.: Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons Fractals 42(2), 1181–1189 (2008)MathSciNetMATHCrossRef
50.
go back to reference Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical simulation of the fractional Bloch equations. J. Comput. Appl. Math. 255, 635–651 (2014)MathSciNetMATHCrossRef Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical simulation of the fractional Bloch equations. J. Comput. Appl. Math. 255, 635–651 (2014)MathSciNetMATHCrossRef
51.
go back to reference Zhu, H., Zhou, S., Zhang, J.: Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons Fractals 39(4), 1595–1603 (2009)MATHCrossRef Zhu, H., Zhou, S., Zhang, J.: Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons Fractals 39(4), 1595–1603 (2009)MATHCrossRef
Metadata
Title
An Efficient Formulation of Chebyshev Tau Method for Constant Coefficients Systems of Multi-order FDEs
Authors
A. Faghih
P. Mokhtary
Publication date
01-01-2020
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2020
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-01104-z

Other articles of this Issue 1/2020

Journal of Scientific Computing 1/2020 Go to the issue

Premium Partner