Skip to main content
Top
Published in: Journal of Computational Electronics 3/2017

17-06-2017

An improved model for the \({I{-}V}\) characteristics of submicron SiC MESFETs by evaluating the potential distribution inside the channel

Authors: M. M. Ahmed, M. Riaz, U. F. Ahmed

Published in: Journal of Computational Electronics | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a detailed mathematical model describing the \(I{-}V\) characteristics of submicron SiC MESFETs. Poisson’s equation with appropriate boundary conditions has been solved to determine the potential distribution inside the channel. The location (\(L_1\)) of the Schottky barrier gate with a corresponding depletion layer width (\(u_1\)) where the carrier’s velocity gets saturated has been evaluated. It has been demonstrated that, both \(L_1\) and \(u_1\) are bias dependent, and their values change by changing the drain biasing even after the onset of current saturation. This causes a modification in the depletion layer underneath the Schottky barrier gate and, thus, changes the available channel cross-section for the flow of current. It has been shown that finite output conductance in the saturation region of operation, which is usually observed in submicron devices, can be explained with Schottky barrier depletion layer modification. The \(I{-}V\) characteristics of submicron SiC MESFET are modeled and compared with conventional velocity saturation techniques, where the depletion layer after the onset of current saturation has been treated as a constant. It is observed that the proposed technique gave \(\sim \)15.9% improvement in the modeled characteristics of a submicron SiC MESFET.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Mahabadi, S.E.J., Moghadam, H.A.: Comprehensive study of a 4H–SiC MES–MOSFET. Physica E Low Dimens. Syst. Nanostruct. 74, 25–29 (2015)CrossRef Mahabadi, S.E.J., Moghadam, H.A.: Comprehensive study of a 4H–SiC MES–MOSFET. Physica E Low Dimens. Syst. Nanostruct. 74, 25–29 (2015)CrossRef
2.
go back to reference Ahmed, M.M.: An improved method to estimate intrinsic small signal parameters of a GaAs MESFET from measured DC characteristics. IEEE Trans. Electron Devices 50(11), 2196–2201 (2003)CrossRef Ahmed, M.M.: An improved method to estimate intrinsic small signal parameters of a GaAs MESFET from measured DC characteristics. IEEE Trans. Electron Devices 50(11), 2196–2201 (2003)CrossRef
3.
go back to reference Riaz, M., Ahmed, M.M., Munir, U.: An improved model for current voltage characteristics of submicron SiC MESFETs. Solid State Electron. 121, 54–61 (2016)CrossRef Riaz, M., Ahmed, M.M., Munir, U.: An improved model for current voltage characteristics of submicron SiC MESFETs. Solid State Electron. 121, 54–61 (2016)CrossRef
4.
go back to reference Saremi, M., Afzali-Kusha, A., Mohammadi, S.: Ground plane fin-shaped field effect transistor GP-FinFET: a FinFET for low leakage power circuits. Microelectron. Eng. 95, 74–82 (2012)CrossRef Saremi, M., Afzali-Kusha, A., Mohammadi, S.: Ground plane fin-shaped field effect transistor GP-FinFET: a FinFET for low leakage power circuits. Microelectron. Eng. 95, 74–82 (2012)CrossRef
5.
go back to reference Ahmed, M.M.: Effects of active-channel thickness on submicron GaAs metal semiconductor field-effect transistor characteristics. J. Vac. Sci. Technol. B 16(3), 968–971 (1998)CrossRef Ahmed, M.M.: Effects of active-channel thickness on submicron GaAs metal semiconductor field-effect transistor characteristics. J. Vac. Sci. Technol. B 16(3), 968–971 (1998)CrossRef
6.
go back to reference Ahmed, M.M., Ahmed, H., Ladbrooke, P.H.: Effects of interface states on submicron GaAs metal-semiconductor field-effect transistors assessed by gate leakage current. J. Vac. Sci. Technol. B 13(4), 1519–1525 (1995)CrossRef Ahmed, M.M., Ahmed, H., Ladbrooke, P.H.: Effects of interface states on submicron GaAs metal-semiconductor field-effect transistors assessed by gate leakage current. J. Vac. Sci. Technol. B 13(4), 1519–1525 (1995)CrossRef
7.
go back to reference Ahmed, M.M.: Compression in transconductance at low gate voltages in submicron GaAs metal semiconductor field-effect transistors. J. Vac. Sci. Technol. B 15(6), 2052–2056 (1997)CrossRef Ahmed, M.M.: Compression in transconductance at low gate voltages in submicron GaAs metal semiconductor field-effect transistors. J. Vac. Sci. Technol. B 15(6), 2052–2056 (1997)CrossRef
8.
go back to reference Khemissi, S., Azizi, C.: A two-dimensional analytical modeling of the current-voltage characteristics for submicron gate-length GaAs MESFETs. Int. J. Eng. Technol. 12, 27 (2012) Khemissi, S., Azizi, C.: A two-dimensional analytical modeling of the current-voltage characteristics for submicron gate-length GaAs MESFETs. Int. J. Eng. Technol. 12, 27 (2012)
9.
go back to reference Caughey, D.M., Thomas, R.E.: Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)CrossRef Caughey, D.M., Thomas, R.E.: Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)CrossRef
10.
go back to reference Mnatsakanov, T.T., Levinshtein, M.E., Pomortseva, L.I., Yurkov, S.N.: Carrier mobility model for simulation of SiC-based electronic devices. Semicond. Sci. Technol. 17(9), 974–977 (2002)CrossRef Mnatsakanov, T.T., Levinshtein, M.E., Pomortseva, L.I., Yurkov, S.N.: Carrier mobility model for simulation of SiC-based electronic devices. Semicond. Sci. Technol. 17(9), 974–977 (2002)CrossRef
11.
go back to reference Lu, H., Zhang, Y., Zhang, Y., Zhang, T.: A comprehensive model of frequency dispersion in 4H-SiC MESFET. Solid State Electron. 53(3), 285–291 (2009)CrossRef Lu, H., Zhang, Y., Zhang, Y., Zhang, T.: A comprehensive model of frequency dispersion in 4H-SiC MESFET. Solid State Electron. 53(3), 285–291 (2009)CrossRef
12.
go back to reference Khan, I.A., Cooper, J.A.: Measurement of high-field electron transport in silicon carbide. IEEE Trans. Electron Devices 47(2), 269–273 (2000)CrossRef Khan, I.A., Cooper, J.A.: Measurement of high-field electron transport in silicon carbide. IEEE Trans. Electron Devices 47(2), 269–273 (2000)CrossRef
13.
go back to reference Lv, H., Zhang, Y., Zhang, Y., Yang, L.A.: Analytic model of I-V characteristics of 4H–SiC MESFETs based on multiparameter mobility model. IEEE Trans. Electron Devices 51(7), 1065–1068 (2004)CrossRef Lv, H., Zhang, Y., Zhang, Y., Yang, L.A.: Analytic model of I-V characteristics of 4H–SiC MESFETs based on multiparameter mobility model. IEEE Trans. Electron Devices 51(7), 1065–1068 (2004)CrossRef
14.
go back to reference Bertilsson, K., Nilsson, H.E., Hjelm, M., Petersson, C.S., Käckell, P., Persson, C.: The effect of different transport models in simulation of high frequency 4H–SiC and 6H–SiC vertical MESFETs. Solid State Electron. 45(5), 645–653 (2001)CrossRef Bertilsson, K., Nilsson, H.E., Hjelm, M., Petersson, C.S., Käckell, P., Persson, C.: The effect of different transport models in simulation of high frequency 4H–SiC and 6H–SiC vertical MESFETs. Solid State Electron. 45(5), 645–653 (2001)CrossRef
15.
go back to reference Roschke, M., Schwierz, F.: Electron mobility models for 4H, 6H, and 3C SiC MESFETs. IEEE Trans. Electron Devices 48(7), 1442–1447 (2001)CrossRef Roschke, M., Schwierz, F.: Electron mobility models for 4H, 6H, and 3C SiC MESFETs. IEEE Trans. Electron Devices 48(7), 1442–1447 (2001)CrossRef
16.
go back to reference Ladbrooke, P.H.: MMIC Design: GaAs FETs and HEMTs. Artech House, Boston (1989) Ladbrooke, P.H.: MMIC Design: GaAs FETs and HEMTs. Artech House, Boston (1989)
17.
go back to reference Zhu, C.L., Rusli, Tin, C.C., Yoon, S.F., Ahn, J.: A three-region analytical model for short-channel SiC MESFETs. Microelectron. Eng. 83(1), 96–99 (2006)CrossRef Zhu, C.L., Rusli, Tin, C.C., Yoon, S.F., Ahn, J.: A three-region analytical model for short-channel SiC MESFETs. Microelectron. Eng. 83(1), 96–99 (2006)CrossRef
18.
go back to reference Tsap, B.: Silicon carbide microwave field-effect transistor: effect of field dependent mobility. Solid State Electron. 38(6), 1215–1219 (1995)CrossRef Tsap, B.: Silicon carbide microwave field-effect transistor: effect of field dependent mobility. Solid State Electron. 38(6), 1215–1219 (1995)CrossRef
19.
go back to reference Lakhdar, N., Djeffal, F.: A two-dimensional analytical model of subthreshold behavior to study the scaling capability of deep submicron double-gate GaN-MESFETs. J. Comput. Electron. 10(4), 382–387 (2011)CrossRef Lakhdar, N., Djeffal, F.: A two-dimensional analytical model of subthreshold behavior to study the scaling capability of deep submicron double-gate GaN-MESFETs. J. Comput. Electron. 10(4), 382–387 (2011)CrossRef
20.
go back to reference Chang, C.S., Day, D.Y.S.: Analytic theory for current–voltage characteristics and field distribution of GaAs MESFET’s. IEEE Trans. Electron Devices 36(2), 269–280 (1989)CrossRef Chang, C.S., Day, D.Y.S.: Analytic theory for current–voltage characteristics and field distribution of GaAs MESFET’s. IEEE Trans. Electron Devices 36(2), 269–280 (1989)CrossRef
21.
go back to reference Murray, S.P., Roenker, K.P.: An analytical model for SiC MESFETs. Solid State Electron. 46(10), 1495–1505 (2002)CrossRef Murray, S.P., Roenker, K.P.: An analytical model for SiC MESFETs. Solid State Electron. 46(10), 1495–1505 (2002)CrossRef
22.
go back to reference Enoki, T., Sugitani, S., Yamane, Y.: Characteristics including electron velocity overshoot for 0.1-\(\mu \)m-gate-length GaAs SAINT MESFET’s. IEEE Trans. Electron Devices 37(4), 935–941 (1990) Enoki, T., Sugitani, S., Yamane, Y.: Characteristics including electron velocity overshoot for 0.1-\(\mu \)m-gate-length GaAs SAINT MESFET’s. IEEE Trans. Electron Devices 37(4), 935–941 (1990)
23.
go back to reference Chun, C.: Iterative methods improving newton’s method by the decomposition method. Comput. Math. Appl. 50(10), 1559–1568 (2005)MathSciNetCrossRefMATH Chun, C.: Iterative methods improving newton’s method by the decomposition method. Comput. Math. Appl. 50(10), 1559–1568 (2005)MathSciNetCrossRefMATH
24.
go back to reference Wang, X., Qin, Y., Qian, W., Zhang, S., Fan, X.: A family of newton type iterative methods for solving nonlinear equations. Algorithms 8(3), 786–798 (2015) Wang, X., Qin, Y., Qian, W., Zhang, S., Fan, X.: A family of newton type iterative methods for solving nonlinear equations. Algorithms 8(3), 786–798 (2015)
25.
go back to reference Ahmed, M.M.: Schottky barrier depletion modification-a source of output conductance in submicron GaAs MESFETs. IEEE Trans. Electron Devices 48(5), 830–834 (2001)CrossRef Ahmed, M.M.: Schottky barrier depletion modification-a source of output conductance in submicron GaAs MESFETs. IEEE Trans. Electron Devices 48(5), 830–834 (2001)CrossRef
Metadata
Title
An improved model for the characteristics of submicron SiC MESFETs by evaluating the potential distribution inside the channel
Authors
M. M. Ahmed
M. Riaz
U. F. Ahmed
Publication date
17-06-2017
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2017
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1010-y

Other articles of this Issue 3/2017

Journal of Computational Electronics 3/2017 Go to the issue