Skip to main content
Top
Published in: Wireless Networks 5/2020

06-03-2020

An optimal network coding based backpressure routing approach for massive IoT network

Authors: S. Malathy, V. Porkodi, A. Sampathkumar, M. H. D. Nour Hindia, Kaharudin Dimyati, Valmik Tilwari, Faizan Qamar, Iraj Sadegh Amiri

Published in: Wireless Networks | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to mitigate the power consumption issue for the sensor’s nodes, an efficient power optimized routing protocol is needed. Therefore, this paper proposes a network coding backpressure routing (NCBPR) routing scheme for a large-scale Internet of Things (IoT) networks, which exploits the backpressure algorithm in order to divert packets flow. In the network, the packets are flowing from the highly congested node to low congested node, which helps to balance the load and optimized the fair use of the battery power of all the participating nodes. It divides the network into the small clusters, where the selection of clusters head depends upon an additional parameter of battery power apart from other optimum path parameters. It also employs an efficient data aggregation mechanism, which improves the throughput of the network by eliminating redundant packets. The network has been designed by considering 300 nodes in a network and the results have been drawn in terms of network throughput, packet delivery ratio and energy consumption. The results are presented in comparison with conventional well-known information-fusion-based role assignment (InFRA) and data routing for in-network aggregation (DRINA) routing schemes. The results prove that the proposed NCBPR scheme delivers significant improvement, such as throughput which increased by 21.38 and 12.13%, packet delivery ratio improved by 24.73 and 11.38%, and sensors node’s energy consumption is decreased by 61.46 and 44.35% as compared to conventional InFRA and DRINA schemes, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Hindia, M. N., Qamar, F., Abbas, T., Dimyati, K., Abu Talip, M. S., & Amiri, I. S. (2019). Interference cancelation for high-density fifth-generation relaying network using stochastic geometrical approach. International Journal of Distributed Sensor Networks,15(7), 1550147719855879.CrossRef Hindia, M. N., Qamar, F., Abbas, T., Dimyati, K., Abu Talip, M. S., & Amiri, I. S. (2019). Interference cancelation for high-density fifth-generation relaying network using stochastic geometrical approach. International Journal of Distributed Sensor Networks,15(7), 1550147719855879.CrossRef
4.
go back to reference Hindia, M. N., Qamar, F., Rahman, T. A., & Amiri, I. S. (2018). A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Networks,74, 34–46.CrossRef Hindia, M. N., Qamar, F., Rahman, T. A., & Amiri, I. S. (2018). A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Networks,74, 34–46.CrossRef
5.
go back to reference Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal,3(5), 637–646.CrossRef Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal,3(5), 637–646.CrossRef
6.
go back to reference Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal,4(5), 1125–1142.CrossRef Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal,4(5), 1125–1142.CrossRef
7.
go back to reference Stankovic, J. A. (2014). Research directions for the internet of things. IEEE Internet of Things Journal,1(1), 3–9.MathSciNetCrossRef Stankovic, J. A. (2014). Research directions for the internet of things. IEEE Internet of Things Journal,1(1), 3–9.MathSciNetCrossRef
8.
go back to reference Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics,10(4), 2233–2243.CrossRef Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics,10(4), 2233–2243.CrossRef
9.
go back to reference Gachhadar, A., Qamar, F., Dong, D. S., Majed, M. B., Hanafi, E., & Amiri, I. S. (2019). Traffic offloading in 5G heterogeneous networks using rank based network selection. Journal of Engineering Science and Technology Review,12(2), 9–16.CrossRef Gachhadar, A., Qamar, F., Dong, D. S., Majed, M. B., Hanafi, E., & Amiri, I. S. (2019). Traffic offloading in 5G heterogeneous networks using rank based network selection. Journal of Engineering Science and Technology Review,12(2), 9–16.CrossRef
10.
go back to reference Qi, W., et al. (2018). Minimizing delay and transmission times with long lifetime in code dissemination scheme for high loss ratio and low duty cycle wireless sensor networks. Sensors,18(10), 3516.CrossRef Qi, W., et al. (2018). Minimizing delay and transmission times with long lifetime in code dissemination scheme for high loss ratio and low duty cycle wireless sensor networks. Sensors,18(10), 3516.CrossRef
11.
go back to reference Gui, J., Li, Z., & Zeng, Z. (2019). Improving energy-efficiency for resource allocation by relay-aided in-band D2D communications in C-RAN-based systems. IEEE Access,7, 8358–8375.CrossRef Gui, J., Li, Z., & Zeng, Z. (2019). Improving energy-efficiency for resource allocation by relay-aided in-band D2D communications in C-RAN-based systems. IEEE Access,7, 8358–8375.CrossRef
12.
go back to reference Ren, J., Guo, H., Xu, C., & Zhang, Y. (2017). Serving at the edge: A scalable iot architecture based on transparent computing. IEEE Network,31(5), 96–105.CrossRef Ren, J., Guo, H., Xu, C., & Zhang, Y. (2017). Serving at the edge: A scalable iot architecture based on transparent computing. IEEE Network,31(5), 96–105.CrossRef
13.
go back to reference Zhou, H., Wang, H., Li, X., & Leung, V. C. M. (2018). A survey on mobile data offloading technologies. IEEE Access,6, 5101–5111.CrossRef Zhou, H., Wang, H., Li, X., & Leung, V. C. M. (2018). A survey on mobile data offloading technologies. IEEE Access,6, 5101–5111.CrossRef
14.
go back to reference Deng, Q., et al. (2019). Compressed sensing for image reconstruction via back-off and rectification of greedy algorithm. Signal Processing,157, 280–287.CrossRef Deng, Q., et al. (2019). Compressed sensing for image reconstruction via back-off and rectification of greedy algorithm. Signal Processing,157, 280–287.CrossRef
15.
go back to reference Ju, X., et al. (2018). An energy conserving and transmission radius adaptive scheme to optimize performance of energy harvesting sensor networks. Sensors,18(9), 2885.CrossRef Ju, X., et al. (2018). An energy conserving and transmission radius adaptive scheme to optimize performance of energy harvesting sensor networks. Sensors,18(9), 2885.CrossRef
16.
go back to reference Qamar, F., et al. (2019). Investigation of future 5G-IoT millimeter-wave network performance at 38 GHz for urban microcell outdoor environment. Electronics,8(5), 495.CrossRef Qamar, F., et al. (2019). Investigation of future 5G-IoT millimeter-wave network performance at 38 GHz for urban microcell outdoor environment. Electronics,8(5), 495.CrossRef
17.
go back to reference Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences,9(8), 1582.CrossRef Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences,9(8), 1582.CrossRef
19.
go back to reference Le Nguyen, P., Ji, Y., Liu, Z., Vu, H., & Nguyen, K.-V. (2017). Distributed hole-bypassing protocol in WSNs with constant stretch and load balancing. Computer Networks,129, 232–250.CrossRef Le Nguyen, P., Ji, Y., Liu, Z., Vu, H., & Nguyen, K.-V. (2017). Distributed hole-bypassing protocol in WSNs with constant stretch and load balancing. Computer Networks,129, 232–250.CrossRef
20.
go back to reference Liu, X., Yang, Q., Luo, J., Ding, B., & Zhang, S. (2018). An energy-aware offloading framework for edge-augmented mobile RFID systems. IEEE Internet of Things Journal,6, 3994–4004.CrossRef Liu, X., Yang, Q., Luo, J., Ding, B., & Zhang, S. (2018). An energy-aware offloading framework for edge-augmented mobile RFID systems. IEEE Internet of Things Journal,6, 3994–4004.CrossRef
21.
go back to reference Zhang, S., Wang, G., Bhuiyan, M. Z. A., & Liu, Q. (2018). A dual privacy preserving scheme in continuous location-based services. IEEE Internet of Things Journal,5(5), 4191–4200.CrossRef Zhang, S., Wang, G., Bhuiyan, M. Z. A., & Liu, Q. (2018). A dual privacy preserving scheme in continuous location-based services. IEEE Internet of Things Journal,5(5), 4191–4200.CrossRef
22.
go back to reference Huang, M., Liu, W., Wang, T., Song, H., Li, X., & Liu, A. (2019). A queuing delay utilization scheme for on-path service aggregation in services-oriented computing networks. IEEE Access,7, 23816–23833.CrossRef Huang, M., Liu, W., Wang, T., Song, H., Li, X., & Liu, A. (2019). A queuing delay utilization scheme for on-path service aggregation in services-oriented computing networks. IEEE Access,7, 23816–23833.CrossRef
23.
go back to reference Huang, M., Liu, A., Zhao, M., & Wang, T. (2019). Multi working sets alternate covering scheme for continuous partial coverage in WSNs. Peer-to-Peer Networking and Applications,12(3), 553–567.CrossRef Huang, M., Liu, A., Zhao, M., & Wang, T. (2019). Multi working sets alternate covering scheme for continuous partial coverage in WSNs. Peer-to-Peer Networking and Applications,12(3), 553–567.CrossRef
24.
go back to reference Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad hoc networks. International Journal of Technology,10(7), 1376–1384.CrossRef Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad hoc networks. International Journal of Technology,10(7), 1376–1384.CrossRef
31.
go back to reference Qamar, F., Dimyati, K. B., Hindia, M. N., Noordin, K. A. B., & Al-Samman, A. M. (2017). A comprehensive review on coordinated multi-point operation for LTE-A. Computer Networks,123, 19–37.CrossRef Qamar, F., Dimyati, K. B., Hindia, M. N., Noordin, K. A. B., & Al-Samman, A. M. (2017). A comprehensive review on coordinated multi-point operation for LTE-A. Computer Networks,123, 19–37.CrossRef
32.
go back to reference Gachhadar, A., Hindia, M. N., Qamar, F., Siddiqui, M. H. S., Noordin, K. A., & Amiri, I. S. (2018). Modified genetic algorithm based power allocation scheme for amplify-and-forward cooperative relay network. Computers & Electrical Engineering,69, 628–641.CrossRef Gachhadar, A., Hindia, M. N., Qamar, F., Siddiqui, M. H. S., Noordin, K. A., & Amiri, I. S. (2018). Modified genetic algorithm based power allocation scheme for amplify-and-forward cooperative relay network. Computers & Electrical Engineering,69, 628–641.CrossRef
33.
go back to reference Qamar, F., Dimyati, K., Hindia, M. N., Noordin, K. A., & Amiri, I. S. (2019). A stochastically geometrical poisson point process approach for the future 5G D2D enabled cooperative cellular network. IEEE Access,7, 60465–60485.CrossRef Qamar, F., Dimyati, K., Hindia, M. N., Noordin, K. A., & Amiri, I. S. (2019). A stochastically geometrical poisson point process approach for the future 5G D2D enabled cooperative cellular network. IEEE Access,7, 60465–60485.CrossRef
34.
go back to reference Noordin, K. A. B., Hindia, M. N. Qamar, F., & Dimyati, K. (2018). Power allocation scheme using PSO for amplify and forward cooperative relaying network. In Science and information conference (pp. 636–647). Springer. Noordin, K. A. B., Hindia, M. N. Qamar, F., & Dimyati, K. (2018). Power allocation scheme using PSO for amplify and forward cooperative relaying network. In Science and information conference (pp. 636–647). Springer.
35.
go back to reference Hindia, M. N., Qamar, F., Majed, M. B., Rahman, T. A., & Amiri, I. S. (2019). Enabling remote-control for the power sub-stations over LTE-A networks. Telecommunication Systems,70(1), 37–53.CrossRef Hindia, M. N., Qamar, F., Majed, M. B., Rahman, T. A., & Amiri, I. S. (2019). Enabling remote-control for the power sub-stations over LTE-A networks. Telecommunication Systems,70(1), 37–53.CrossRef
36.
go back to reference Amiri, I., Dong, D. S., Pokhrel, Y. M., Gachhadar, A., Maharjan, R. K., & Qamar, F. (2019). Resource tuned optimal random network coding for single hop multicast future 5G networks. International Journal of Electronics and Telecommunications,65(3), 463–469. Amiri, I., Dong, D. S., Pokhrel, Y. M., Gachhadar, A., Maharjan, R. K., & Qamar, F. (2019). Resource tuned optimal random network coding for single hop multicast future 5G networks. International Journal of Electronics and Telecommunications,65(3), 463–469.
37.
go back to reference Qamar, F., Hindia, M. N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems,71, 627–643.CrossRef Qamar, F., Hindia, M. N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems,71, 627–643.CrossRef
44.
go back to reference Dasgupta, K., Kalpakis, K., & Namjoshi, P. (2003). An efficient clustering-based heuristic for data gathering and aggregation in sensor networks, vol. 3. IEEE (pp. 1948–1953). Dasgupta, K., Kalpakis, K., & Namjoshi, P. (2003). An efficient clustering-based heuristic for data gathering and aggregation in sensor networks, vol. 3. IEEE (pp. 1948–1953).
45.
go back to reference Ahlswede, R., Cai, N., Li, S. Y., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory,46(4), 1204–1216.MathSciNetMATHCrossRef Ahlswede, R., Cai, N., Li, S. Y., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory,46(4), 1204–1216.MathSciNetMATHCrossRef
47.
go back to reference Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., & Crowcroft, J. (2006). XORs in the air: Practical wireless network coding, vol. 36. ACM, 4 ed. (pp. 243–254). Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., & Crowcroft, J. (2006). XORs in the air: Practical wireless network coding, vol. 36. ACM, 4 ed. (pp. 243–254).
48.
go back to reference Kuo, W.-C., & Wang, C.-C. (2014). Robust and optimal opportunistic scheduling for downlink 2-flow inter-session network coding with varying channel quality. IEEE (pp. 655–663). Kuo, W.-C., & Wang, C.-C. (2014). Robust and optimal opportunistic scheduling for downlink 2-flow inter-session network coding with varying channel quality. IEEE (pp. 655–663).
49.
go back to reference Ho, T., & Viswanathan, H. (2009). Dynamic algorithms for multicast with intra-session network coding. IEEE Transactions on Information Theory,55(2), 797–815.MathSciNetMATHCrossRef Ho, T., & Viswanathan, H. (2009). Dynamic algorithms for multicast with intra-session network coding. IEEE Transactions on Information Theory,55(2), 797–815.MathSciNetMATHCrossRef
50.
go back to reference Sagduyu, Y. E., Berry, R. A., & Guo, D. (2013). Throughput and stability for relay-assisted wireless broadcast with network coding. IEEE Journal on Selected Areas in Communications,31(8), 1506–1516.CrossRef Sagduyu, Y. E., Berry, R. A., & Guo, D. (2013). Throughput and stability for relay-assisted wireless broadcast with network coding. IEEE Journal on Selected Areas in Communications,31(8), 1506–1516.CrossRef
51.
go back to reference Cheng, C.-T., Leung, H., & Maupin, P. (2013). A delay-aware network structure for wireless sensor networks with in-network data fusion. IEEE Sensors Journal,13(5), 1622–1631.CrossRef Cheng, C.-T., Leung, H., & Maupin, P. (2013). A delay-aware network structure for wireless sensor networks with in-network data fusion. IEEE Sensors Journal,13(5), 1622–1631.CrossRef
52.
go back to reference Wang, T., Vosoughi, A., Heinzelman, W., & Seyedi, A. (2012). Maximizing gathered samples in wireless sensor networks with Slepian–Wolf coding. IEEE Transactions on Wireless Communications,11(2), 751–761.CrossRef Wang, T., Vosoughi, A., Heinzelman, W., & Seyedi, A. (2012). Maximizing gathered samples in wireless sensor networks with Slepian–Wolf coding. IEEE Transactions on Wireless Communications,11(2), 751–761.CrossRef
53.
go back to reference Cristescu, R., Beferull-Lozano, B., Vetterli, M., & Wattenhofer, R. (2006). Network correlated data gathering with explicit communication: NP-completeness and algorithms. IEEE/ACM Transactions on Networking (ToN),14(1), 41–54.CrossRef Cristescu, R., Beferull-Lozano, B., Vetterli, M., & Wattenhofer, R. (2006). Network correlated data gathering with explicit communication: NP-completeness and algorithms. IEEE/ACM Transactions on Networking (ToN),14(1), 41–54.CrossRef
54.
go back to reference Nakamura, E. F., Oliveira, H. A. B. F., Pontello, L. F., & Loureiro, A. A. F. (2006). On demand role assignment for event-detection in sensor networks. In 11th IEEE symposium on computers and communications (ISCC’06), 26–29 June 2006 (pp. 941–947). https://doi.org/10.1109/iscc.2006.110. Nakamura, E. F., Oliveira, H. A. B. F., Pontello, L. F., & Loureiro, A. A. F. (2006). On demand role assignment for event-detection in sensor networks. In 11th IEEE symposium on computers and communications (ISCC’06), 26–29 June 2006 (pp. 941–947). https://​doi.​org/​10.​1109/​iscc.​2006.​110.
55.
go back to reference Villas, L. A., Boukerche, A., Ramos, H. S., de Oliveira, H. A. B. F., de Araujo, R. B., & Loureiro, A. A. F. (2013). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers,62(4), 676–689.MathSciNetMATHCrossRef Villas, L. A., Boukerche, A., Ramos, H. S., de Oliveira, H. A. B. F., de Araujo, R. B., & Loureiro, A. A. F. (2013). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers,62(4), 676–689.MathSciNetMATHCrossRef
56.
go back to reference Rappaport, T. S. (1996). Wireless communications: Principles and practice. New Jersey: Prentice Hall PTR.MATH Rappaport, T. S. (1996). Wireless communications: Principles and practice. New Jersey: Prentice Hall PTR.MATH
57.
go back to reference Hu, S., & Han, J. (2014). Power control strategy for clustering wireless sensor networks based on multi-packet reception. IET Wireless Sensor Systems,4(3), 122–129.CrossRef Hu, S., & Han, J. (2014). Power control strategy for clustering wireless sensor networks based on multi-packet reception. IET Wireless Sensor Systems,4(3), 122–129.CrossRef
58.
go back to reference Guo, B., Li, H., Zhou, C., & Cheng, Y. (2011). Analysis of general network coding conditions and design of a free-ride-oriented routing metric. IEEE Transactions on Vehicular Technology,60(4), 1714–1727.CrossRef Guo, B., Li, H., Zhou, C., & Cheng, Y. (2011). Analysis of general network coding conditions and design of a free-ride-oriented routing metric. IEEE Transactions on Vehicular Technology,60(4), 1714–1727.CrossRef
Metadata
Title
An optimal network coding based backpressure routing approach for massive IoT network
Authors
S. Malathy
V. Porkodi
A. Sampathkumar
M. H. D. Nour Hindia
Kaharudin Dimyati
Valmik Tilwari
Faizan Qamar
Iraj Sadegh Amiri
Publication date
06-03-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02284-5

Other articles of this Issue 5/2020

Wireless Networks 5/2020 Go to the issue