Skip to main content
Top
Published in: Neural Computing and Applications 7/2020

18-11-2019 | Original Article

An optimum forceful generation scheduling and unit commitment of thermal power system using sine cosine algorithm

Authors: Ashutosh Bhadoria, Sanjay Marwaha, Vikram Kumar Kamboj

Published in: Neural Computing and Applications | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conventional thermal power system-based units and its participation schedule known as unit commitment problem (UCP) is a significant and stimulating undertaking of allocating generated power among the dedicated units subject to numerous restrictions above a scheduled time prospect to obtain the slightest generation cost. This problem becomes further more complex by increasing the size of the power system. Since unit commitment problem is link optimization problem as it has both binary and continuous variable that is why it is most challenging problem to solve. In this paper, a recently invented optimizer sine–cosine is used to solve unit commitment problem. Sine cosine algorithm (SCA) is an innovative population centered optimization algorithm that has been used for solving the unit commitment optimization problems bounded by some constraints centered on the concept of a mathematical model of the sine and cosine functions. This paper offers the solution of unit commitment optimization problems of the electric power system by using the SCA, as UCP is linked optimization as it has both binary and continuous variables, the strategy adopted to tackle both variables is different. In this paper, proposed sine cosine algorithm searches allocation of generators (units that participate in generation to take upload) and once units are decided, allocation of generations (economic load dispatch) is done by mixed integer quadratic programming. The feasibility and efficacy of operation of SCA algorithm are verified for small- and medium-power systems, in which results for 4 unit, 5 unit, 6 unit, 7 unit, 10 units, 19 unit, 20 unit and 40 units are evaluated. The 10 generating units are evaluated with 5% and 10% spinning reserve. The results obviously show that the suggested method gives the superior type of solutions as compared to other algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Sheble GB, Fahd GN (1994) Unit commitment literature synopsis. IEEE Trans Power Syst 9(1):128–135CrossRef Sheble GB, Fahd GN (1994) Unit commitment literature synopsis. IEEE Trans Power Syst 9(1):128–135CrossRef
2.
go back to reference Baldwin CJ, Dale KM, Dittrich RF (1959) A study of the economic shutdown of generating units in daily dispatch. Trans Am Inst Electr Eng Part III Power Appar Syst 78(4):1272–1282 Baldwin CJ, Dale KM, Dittrich RF (1959) A study of the economic shutdown of generating units in daily dispatch. Trans Am Inst Electr Eng Part III Power Appar Syst 78(4):1272–1282
3.
go back to reference Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley
4.
go back to reference Dhillon JS, Kothari DP (2010) Power system optimization. Preintce Hall India Priv. Ltd., New Delhi Dhillon JS, Kothari DP (2010) Power system optimization. Preintce Hall India Priv. Ltd., New Delhi
5.
go back to reference Wood AJ, Wollenberg BF, Sheblé GB (2013) Power generation, operation, and control. Wiley Wood AJ, Wollenberg BF, Sheblé GB (2013) Power generation, operation, and control. Wiley
6.
go back to reference Delarue E, Cattrysse D, D’haeseleer W (2013) Enhanced priority list unit commitment method for power systems with a high share of renewables. Electr Power Syst Res 105:115–123CrossRef Delarue E, Cattrysse D, D’haeseleer W (2013) Enhanced priority list unit commitment method for power systems with a high share of renewables. Electr Power Syst Res 105:115–123CrossRef
7.
go back to reference Quan R, Jian J, Yang L (2015) Electrical power and energy systems an improved priority list and neighborhood search method for unit commitment. Int J Electr Power Energy Syst 67:278–285CrossRef Quan R, Jian J, Yang L (2015) Electrical power and energy systems an improved priority list and neighborhood search method for unit commitment. Int J Electr Power Energy Syst 67:278–285CrossRef
8.
go back to reference A. N. Intelligent, D. Programming, F. O. R. Unit, and C. Application (1991)An intelligent dynamic programming, vol 6(3), pp 1203–1209 A. N. Intelligent, D. Programming, F. O. R. Unit, and C. Application (1991)An intelligent dynamic programming, vol 6(3), pp 1203–1209
9.
go back to reference Pang CK, Sheble GB, Albuyeh F (1981) Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments. IEEE Trans Power Appar Syst 100(3):1212–1218CrossRef Pang CK, Sheble GB, Albuyeh F (1981) Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments. IEEE Trans Power Appar Syst 100(3):1212–1218CrossRef
10.
go back to reference Padhy NP (2001) Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms. Int J Electr Power Energy Syst 23(8):827–836CrossRef Padhy NP (2001) Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms. Int J Electr Power Energy Syst 23(8):827–836CrossRef
11.
go back to reference Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12):1861–1871CrossRef Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12):1861–1871CrossRef
12.
go back to reference Beltran C, Heredia FJ (2002) Unit commitment by augmented Lagrangian relaxation. Testing 112(2):295–314MATH Beltran C, Heredia FJ (2002) Unit commitment by augmented Lagrangian relaxation. Testing 112(2):295–314MATH
13.
go back to reference Lee FN (1988) Short-term thermal unit commitment-a new method. IEEE Trans Power Syst 3(2):421–428CrossRef Lee FN (1988) Short-term thermal unit commitment-a new method. IEEE Trans Power Syst 3(2):421–428CrossRef
14.
go back to reference Tseng C-L, Li CA, Oren SS (2000) Solving the unit commitment problem by a unit decommitment method. J Optim Theory Appl 105(3):707–730CrossRefMathSciNetMATH Tseng C-L, Li CA, Oren SS (2000) Solving the unit commitment problem by a unit decommitment method. J Optim Theory Appl 105(3):707–730CrossRefMathSciNetMATH
15.
go back to reference Cohen AI, Yoshimura M (1983) A branch-and-bound algorithm for unit commitment. IEEE Trans Power Appar Syst 2:444–451CrossRef Cohen AI, Yoshimura M (1983) A branch-and-bound algorithm for unit commitment. IEEE Trans Power Appar Syst 2:444–451CrossRef
16.
go back to reference Dillon TS (1978) Reserve determination F. i (Pit), no. 6, pp 2154–2166 Dillon TS (1978) Reserve determination F. i (Pit), no. 6, pp 2154–2166
17.
go back to reference Niu P, Niu S, Liu N, Chang L (2019) The defect of the Grey Wolf optimization algorithm and its verification method. Knowl Based Syst 171:37–43CrossRef Niu P, Niu S, Liu N, Chang L (2019) The defect of the Grey Wolf optimization algorithm and its verification method. Knowl Based Syst 171:37–43CrossRef
18.
go back to reference Ji B, Yuan X, Li X, Huang Y, Li W (2014) Application of quantum-inspired binary gravitational search algorithm for thermal unit commitment with wind power integration. Energy Convers Manag 87:589–598CrossRef Ji B, Yuan X, Li X, Huang Y, Li W (2014) Application of quantum-inspired binary gravitational search algorithm for thermal unit commitment with wind power integration. Energy Convers Manag 87:589–598CrossRef
19.
go back to reference Gjorgiev B, Kančev D, Čepin M, Volkanovski A (2015) Multi-objective unit commitment with introduction of a methodology for probabilistic assessment of generating capacities availability. Eng Appl Artif Intell 37:236–249CrossRef Gjorgiev B, Kančev D, Čepin M, Volkanovski A (2015) Multi-objective unit commitment with introduction of a methodology for probabilistic assessment of generating capacities availability. Eng Appl Artif Intell 37:236–249CrossRef
20.
go back to reference Singh SN, Shukla A (2016) Multi-objective unit commitment using search space-based crazy particle swarm optimisation and normal boundary intersection technique. IET Gener Transm Distrib 10(5):1222–1231CrossRef Singh SN, Shukla A (2016) Multi-objective unit commitment using search space-based crazy particle swarm optimisation and normal boundary intersection technique. IET Gener Transm Distrib 10(5):1222–1231CrossRef
21.
go back to reference Casolino GM, Liuzzi G, Losi A (2015) Combined cycle unit commitment in a changing electricity market scenario. Int J Electr Power Energy Syst 73:114–123CrossRef Casolino GM, Liuzzi G, Losi A (2015) Combined cycle unit commitment in a changing electricity market scenario. Int J Electr Power Energy Syst 73:114–123CrossRef
22.
go back to reference Quan H, Srinivasan D, Khambadkone AM, Khosravi A (2015) A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources. Appl Energy 152:71–82CrossRef Quan H, Srinivasan D, Khambadkone AM, Khosravi A (2015) A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources. Appl Energy 152:71–82CrossRef
23.
go back to reference Zhang N, Hu Z, Han X, Zhang J, Zhou Y (2015) A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power. Int J Electr Power Energy Syst 65:201–209CrossRef Zhang N, Hu Z, Han X, Zhang J, Zhou Y (2015) A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power. Int J Electr Power Energy Syst 65:201–209CrossRef
24.
go back to reference Singhal PK, Naresh R, Sharma V (2015) A modified binary artificial bee colony algorithm for ramp rate constrained unit commitment problem. Int Transac Electr Energy Syst 25(12):3472–3491CrossRef Singhal PK, Naresh R, Sharma V (2015) A modified binary artificial bee colony algorithm for ramp rate constrained unit commitment problem. Int Transac Electr Energy Syst 25(12):3472–3491CrossRef
25.
go back to reference Todosijević R, Mladenović M, Hanafi S, Crévits I (2012) VNS based heuristic for solving the unit commitment problem. Electron Notes Discret Math 39:153–160CrossRefMATH Todosijević R, Mladenović M, Hanafi S, Crévits I (2012) VNS based heuristic for solving the unit commitment problem. Electron Notes Discret Math 39:153–160CrossRefMATH
26.
go back to reference Kamboj VK, Bath SK, Dhillon JS (2016) Implementation of hybrid harmony/random search algorithm considering ensemble and pitch violation for unit commitment problem. Int J Electr Power Energy Syst 77:228–249CrossRef Kamboj VK, Bath SK, Dhillon JS (2016) Implementation of hybrid harmony/random search algorithm considering ensemble and pitch violation for unit commitment problem. Int J Electr Power Energy Syst 77:228–249CrossRef
27.
go back to reference Saravanan B, Kumar C, Kothari DP (2016) A solution to unit commitment problem using fire works algorithm. Int J Electr Power Energy Syst 77:221–227CrossRef Saravanan B, Kumar C, Kothari DP (2016) A solution to unit commitment problem using fire works algorithm. Int J Electr Power Energy Syst 77:221–227CrossRef
28.
go back to reference Shukla A, Singh SN (2016) Advanced three-stage pseudo-inspired weight-improved crazy particle swarm optimization for unit commitment problem. Energy 96:23–36CrossRef Shukla A, Singh SN (2016) Advanced three-stage pseudo-inspired weight-improved crazy particle swarm optimization for unit commitment problem. Energy 96:23–36CrossRef
29.
go back to reference Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRef Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRef
30.
go back to reference Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133CrossRef Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133CrossRef
31.
go back to reference J. M. Anita and I. J. Raglend, “Solution of emission constrained Unit Commitment problem using Shuffled Frog Leaping Algorithm,” in Circuits, Power and Computing Technologies (ICCPCT), 2013 International Conference on, 2013, pp. 93–98 J. M. Anita and I. J. Raglend, “Solution of emission constrained Unit Commitment problem using Shuffled Frog Leaping Algorithm,” in Circuits, Power and Computing Technologies (ICCPCT), 2013 International Conference on, 2013, pp. 93–98
32.
go back to reference Rajan CCA, Mohan MR, Manivannan K (2003) Neural-based tabu search method for solving unit commitment problem. IEE Proc Gener Trans Distrib 150(4):469–474CrossRef Rajan CCA, Mohan MR, Manivannan K (2003) Neural-based tabu search method for solving unit commitment problem. IEE Proc Gener Trans Distrib 150(4):469–474CrossRef
33.
go back to reference Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
34.
go back to reference Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232CrossRefMATH Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232CrossRefMATH
35.
go back to reference Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82CrossRef Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82CrossRef
36.
37.
go back to reference Cuevas E, Echavarra A, Ramrez-Ortegn MA (2014) An optimization algorithm in- spired by the states of matter that improves the balance between exploration and exploitation. Appl Intel 40:256CrossRef Cuevas E, Echavarra A, Ramrez-Ortegn MA (2014) An optimization algorithm in- spired by the states of matter that improves the balance between exploration and exploitation. Appl Intel 40:256CrossRef
38.
go back to reference Cuevas E, Echavarra A, Zaldvar D, Prez-Cisneros MA (2012) Novel evolutionary algorithm inspired by the states of matter for template matching. Expert Syst Appl 40:635973 Cuevas E, Echavarra A, Zaldvar D, Prez-Cisneros MA (2012) Novel evolutionary algorithm inspired by the states of matter for template matching. Expert Syst Appl 40:635973
39.
go back to reference Yang X-S (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, Heidelberg, pp 65–74CrossRef Yang X-S (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, Heidelberg, pp 65–74CrossRef
40.
go back to reference Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and naturalcomputation. Springer, Berlin, Heidelberg Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and naturalcomputation. Springer, Berlin, Heidelberg
41.
go back to reference Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE
43.
go back to reference Yang XF (2010) Algorithm, Levy flights and global optimization. In: Research and development in intelligent systems, vol XXVI. Springer, pp 209–218 Yang XF (2010) Algorithm, Levy flights and global optimization. In: Research and development in intelligent systems, vol XXVI. Springer, pp 209–218
44.
go back to reference John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge
45.
go back to reference Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47CrossRef Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47CrossRef
46.
go back to reference Mirjalili S (2015) Knowledge-based systems moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249CrossRef Mirjalili S (2015) Knowledge-based systems moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249CrossRef
47.
go back to reference Cuevas E, Echavarra A, Ma R-O (2014) An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation. Appl Intell 40:256CrossRef Cuevas E, Echavarra A, Ma R-O (2014) An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation. Appl Intell 40:256CrossRef
48.
go back to reference Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513CrossRef Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513CrossRef
49.
go back to reference Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073CrossRef Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073CrossRef
50.
go back to reference Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. IEEE Int Conf Syst Man Cybern Comput Cybern Simul 5:4104–4108 Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. IEEE Int Conf Syst Man Cybern Comput Cybern Simul 5:4104–4108
52.
go back to reference Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multi objective optimization. Eng Optim 46:1222–1237CrossRefMathSciNet Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multi objective optimization. Eng Optim 46:1222–1237CrossRefMathSciNet
53.
go back to reference Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRef Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRef
54.
go back to reference Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef
55.
go back to reference Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359CrossRefMathSciNetMATH Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359CrossRefMathSciNetMATH
56.
go back to reference Tokoro KI, Masuda Y, Nishino H (2008) Soving unit commitment problem by combining of continuous relaxation method and genetic algorithm. In: 2008 SICE Annual Conference, pp 3474–3478 Tokoro KI, Masuda Y, Nishino H (2008) Soving unit commitment problem by combining of continuous relaxation method and genetic algorithm. In: 2008 SICE Annual Conference, pp 3474–3478
57.
go back to reference Damousis IG, Bakirtzis AG, Dokopoulos PS (2004) A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Trans Power Syst 19(2):1165–1172CrossRef Damousis IG, Bakirtzis AG, Dokopoulos PS (2004) A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Trans Power Syst 19(2):1165–1172CrossRef
58.
go back to reference Ganguly D, Sarkar V, Pal J (2004) A new genetic approach for solving the unit commitment problem. In: International conference on power system technology-POWERCON 2004, pp 542–547 Ganguly D, Sarkar V, Pal J (2004) A new genetic approach for solving the unit commitment problem. In: International conference on power system technology-POWERCON 2004, pp 542–547
59.
go back to reference Lee S, Park H, Jeon M (2007) Binary particle swarm optimization with bit change mutation. IEICE Trans Fundam Electron 90:2253–2256CrossRef Lee S, Park H, Jeon M (2007) Binary particle swarm optimization with bit change mutation. IEICE Trans Fundam Electron 90:2253–2256CrossRef
60.
go back to reference Ting TO, Rao MVC, Loo CK, Ngu SS (2003) Solving unit commitment problem using hybrid particle swarm optimization. J Heuristics 9:507–520CrossRefMATH Ting TO, Rao MVC, Loo CK, Ngu SS (2003) Solving unit commitment problem using hybrid particle swarm optimization. J Heuristics 9:507–520CrossRefMATH
61.
go back to reference Wang B, Li Y, Watada J (2011) Re-scheduling the unit commitment problem in fuzzy environment. In: 2011 IEEE international conference on fuzzy systems Wang B, Li Y, Watada J (2011) Re-scheduling the unit commitment problem in fuzzy environment. In: 2011 IEEE international conference on fuzzy systems
62.
go back to reference Eldin AS, El-Sayed MAH, Youssef HKM (2008) A two-stage genetic based technique for the unit commitment optimization problem. In: 2008 12th international middle-east power system conference. IEEE Eldin AS, El-Sayed MAH, Youssef HKM (2008) A two-stage genetic based technique for the unit commitment optimization problem. In: 2008 12th international middle-east power system conference. IEEE
63.
go back to reference Ting TO, Rao MVC, Loo CK (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst 21(1):411–418CrossRef Ting TO, Rao MVC, Loo CK (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst 21(1):411–418CrossRef
64.
go back to reference Simopoulos DN, Kavatza SD, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. IEEE Trans Power Syst 21(1):68–76CrossRef Simopoulos DN, Kavatza SD, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. IEEE Trans Power Syst 21(1):68–76CrossRef
65.
go back to reference Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11(1):83–92CrossRef Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11(1):83–92CrossRef
66.
go back to reference Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with Lagrange relaxation. Power Eng Soc Gen Meet IEEE 3:2752–2759 Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with Lagrange relaxation. Power Eng Soc Gen Meet IEEE 3:2752–2759
67.
go back to reference Senjyu T, Miyagi T, Saber AY, Urasaki N, Funabashi T (2006) Emerging solution of large-scale unit commitment problem by stochastic priority list. Electr Power Syst Res 76(5):283–292CrossRef Senjyu T, Miyagi T, Saber AY, Urasaki N, Funabashi T (2006) Emerging solution of large-scale unit commitment problem by stochastic priority list. Electr Power Syst Res 76(5):283–292CrossRef
68.
go back to reference Cheng C, Liu C, Liu C (2000) Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Trans Power Syst 15(2):707–714CrossRef Cheng C, Liu C, Liu C (2000) Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Trans Power Syst 15(2):707–714CrossRef
69.
go back to reference Juste KA, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459CrossRef Juste KA, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459CrossRef
70.
go back to reference Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Int J Electr Power Energy Syst 28(7):482–490CrossRef Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Int J Electr Power Energy Syst 28(7):482–490CrossRef
71.
go back to reference Sum-im T, Ongsakul W (2003) Ant colony search algorithm for unit commitment. IEEE Int Conf Ind Technol 1:72–77 Sum-im T, Ongsakul W (2003) Ant colony search algorithm for unit commitment. IEEE Int Conf Ind Technol 1:72–77
72.
go back to reference Chusanapiputt S, Nualhong D, Jantarang S, Phoomvuthisarn S (2008) A solution to unit commitment problem using hybrid ant system/priority list method. In: PECon 2008–IEEE 2nd international power energy conference, no. PECon 08, pp 1183–1188 Chusanapiputt S, Nualhong D, Jantarang S, Phoomvuthisarn S (2008) A solution to unit commitment problem using hybrid ant system/priority list method. In: PECon 2008–IEEE 2nd international power energy conference, no. PECon 08, pp 1183–1188
73.
go back to reference Khanmohammadi S, Amiri M, Haque M (2010) A new three-stage method solving unit commitment problem energy, pp 3072–3080 Khanmohammadi S, Amiri M, Haque M (2010) A new three-stage method solving unit commitment problem energy, pp 3072–3080
74.
go back to reference Cheng CP, Liu CW, Liu CC (2000) Unit commitment by annealing-genetic algorithms. Electr Power Energy Syst 24:149–158CrossRef Cheng CP, Liu CW, Liu CC (2000) Unit commitment by annealing-genetic algorithms. Electr Power Energy Syst 24:149–158CrossRef
75.
go back to reference Jeong YW, Lee WN, Kim HH, Park JB, Shin JR (2009) Thermal unit commitment using binary differential evolution. J Electr Eng Technol 4(3):323–329CrossRef Jeong YW, Lee WN, Kim HH, Park JB, Shin JR (2009) Thermal unit commitment using binary differential evolution. J Electr Eng Technol 4(3):323–329CrossRef
76.
go back to reference Zhe W, Yi-xin YU, Hong-peng Z (2004) Social evolutionary programming based unit commitment. In: Proceedings of the CSEE, pp 24–28 Zhe W, Yi-xin YU, Hong-peng Z (2004) Social evolutionary programming based unit commitment. In: Proceedings of the CSEE, pp 24–28
77.
go back to reference Tingfan Y, Ting TO (2008) Methodological priority list for unit commitment problem. In: Proceedings of the international conference on computer science and software engineering (CSSE 2008), pp 176–179 Tingfan Y, Ting TO (2008) Methodological priority list for unit commitment problem. In: Proceedings of the international conference on computer science and software engineering (CSSE 2008), pp 176–179
78.
go back to reference Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36(4):8049–8055CrossRef Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36(4):8049–8055CrossRef
79.
go back to reference Senjyu T, Shimabukuro K, Uezato K, Funabashi T (2002) A unit commitment problem by using genetic algorithm based on unit characteristic classification. IEEE Power Eng Soc Winter Meet 1:58–63CrossRef Senjyu T, Shimabukuro K, Uezato K, Funabashi T (2002) A unit commitment problem by using genetic algorithm based on unit characteristic classification. IEEE Power Eng Soc Winter Meet 1:58–63CrossRef
80.
go back to reference Ongsakul W, Petcharaks N (2004) Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans Power Syst 19(1):620–628CrossRef Ongsakul W, Petcharaks N (2004) Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans Power Syst 19(1):620–628CrossRef
81.
go back to reference Fei L, Jinghua L (2009) A solution to the unit commitment problem based on local search method, in 09, Guilin, Guangxi, vol 2, pp. 51–56 Fei L, Jinghua L (2009) A solution to the unit commitment problem based on local search method, in 09, Guilin, Guangxi, vol 2, pp. 51–56
82.
go back to reference Jeong YW, Park JB, Jang SH, Lee KY (2009) A new quantum-inspired binary PSO for thermal unit commitment problems. In: Proceedings of the 15th international conference on intelligent system applications to power systems, pp 1–6 Jeong YW, Park JB, Jang SH, Lee KY (2009) A new quantum-inspired binary PSO for thermal unit commitment problems. In: Proceedings of the 15th international conference on intelligent system applications to power systems, pp 1–6
83.
go back to reference Chandram K, Subrahmanyam N, Sydulu M (2011) Unit commitment by improved pre-prepared power demand table and Muller method. Int J Electr Power Energy Syst 33(1):106–114CrossRef Chandram K, Subrahmanyam N, Sydulu M (2011) Unit commitment by improved pre-prepared power demand table and Muller method. Int J Electr Power Energy Syst 33(1):106–114CrossRef
84.
go back to reference Ouyang Z, Shahidehpour SM (1992) A multi-stage intelligent system for unit commitment. IEEE Trans Power Syst 7(2):639–646CrossRef Ouyang Z, Shahidehpour SM (1992) A multi-stage intelligent system for unit commitment. IEEE Trans Power Syst 7(2):639–646CrossRef
85.
go back to reference Chakraborty S, Senjyu T, Yona A, Funabashi T (2011) Fuzzy quantum computation based thermal unit commitment strategy with solar battery system injection. In: IEEE international conference in fuzzy systems, pp 2606–2613 Chakraborty S, Senjyu T, Yona A, Funabashi T (2011) Fuzzy quantum computation based thermal unit commitment strategy with solar battery system injection. In: IEEE international conference in fuzzy systems, pp 2606–2613
86.
go back to reference Chung CY, Yu H, Wong KP (2011) An advanced quantum-inspired evolutionary algorithm for unit commitment. IEEE Trans Power Syst 26(2):847–854CrossRef Chung CY, Yu H, Wong KP (2011) An advanced quantum-inspired evolutionary algorithm for unit commitment. IEEE Trans Power Syst 26(2):847–854CrossRef
87.
go back to reference Sadati N, Hajian M, Zamani M (2007) Unit commitment using particle swarm-based-simulated annealing optimization approach. In: Proceedings of the 2007 IEEE swarm intelligence symposium SIS 2007, no. Sis, pp 297–302 Sadati N, Hajian M, Zamani M (2007) Unit commitment using particle swarm-based-simulated annealing optimization approach. In: Proceedings of the 2007 IEEE swarm intelligence symposium SIS 2007, no. Sis, pp 297–302
88.
go back to reference Roy PK (2013) Solution of unit commitment problem using gravitational search algorithm. Electr Power Energy Syst 53:85–94CrossRef Roy PK (2013) Solution of unit commitment problem using gravitational search algorithm. Electr Power Energy Syst 53:85–94CrossRef
89.
go back to reference Najafi S (2011) A new heuristic algorithm for unit commitment problem. Energy Proc 14:2011 Najafi S (2011) A new heuristic algorithm for unit commitment problem. Energy Proc 14:2011
90.
go back to reference Afkousi-Paqaleh M, Rashidinejad M (2010) An implementation of harmony search algorithm to unit commitment problem. Electr Eng 10(1007):10–202 Afkousi-Paqaleh M, Rashidinejad M (2010) An implementation of harmony search algorithm to unit commitment problem. Electr Eng 10(1007):10–202
91.
go back to reference Pappala VS, Member S, Erlich I, Member S (2008) A New approach for solving the unit commitment problem by adaptive particle swarm optimization, vol 3, pp 1–6 Pappala VS, Member S, Erlich I, Member S (2008) A New approach for solving the unit commitment problem by adaptive particle swarm optimization, vol 3, pp 1–6
92.
go back to reference Xiong WXW, Li MLM, Cheng YCY (2008) An improved particle swarm optimization algorithm for unit commitment. Int Conf Intell Comput Technol Autom 1(4):21–25 Xiong WXW, Li MLM, Cheng YCY (2008) An improved particle swarm optimization algorithm for unit commitment. Int Conf Intell Comput Technol Autom 1(4):21–25
93.
go back to reference Victoire T (2004) Hybrid PSO–SQP for economic dispatch with valve-point effect. Elsevier, AmsterdamCrossRef Victoire T (2004) Hybrid PSO–SQP for economic dispatch with valve-point effect. Elsevier, AmsterdamCrossRef
94.
go back to reference Khanmohammadi S, Amiri M, Haque MT (2010) A new three-stage method for solving unit commitment problem. Energy 35(7):3072–3080CrossRef Khanmohammadi S, Amiri M, Haque MT (2010) A new three-stage method for solving unit commitment problem. Energy 35(7):3072–3080CrossRef
95.
go back to reference Sheblé GB, Maifeld TT, Brittig K, Fahd G, Fukurozaki-Coppinger S (1996) Unit commitment by genetic algorithm with penalty methods and a comparison of Lagrangian search and genetic algorithm-economic dispatch example. Int J Electr Power Energy Syst 18(6):339–346CrossRef Sheblé GB, Maifeld TT, Brittig K, Fahd G, Fukurozaki-Coppinger S (1996) Unit commitment by genetic algorithm with penalty methods and a comparison of Lagrangian search and genetic algorithm-economic dispatch example. Int J Electr Power Energy Syst 18(6):339–346CrossRef
Metadata
Title
An optimum forceful generation scheduling and unit commitment of thermal power system using sine cosine algorithm
Authors
Ashutosh Bhadoria
Sanjay Marwaha
Vikram Kumar Kamboj
Publication date
18-11-2019
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 7/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04598-8

Other articles of this Issue 7/2020

Neural Computing and Applications 7/2020 Go to the issue

Deep Learning & Neural Computing for Intelligent Sensing and Control

Deep belief network-based support vector regression method for traffic flow forecasting

Premium Partner