Skip to main content
Top
Published in: The Journal of Supercomputing 4/2016

01-04-2016

Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier

Authors: H. V. Jayashree, Himanshu Thapliyal, Hamid R. Arabnia, V. K. Agrawal

Published in: The Journal of Supercomputing | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A reversible logic has application in quantum computing. A reversible logic design needs resources such as ancilla and garbage qubits to reconfigure circuit functions or gate functions. The removal of garbage qubits and ancilla qubits are essential in designing an efficient quantum circuit. In the literature, there are multiple designs that have been proposed for a reversible multiplication operation. A multiplication hardware is essential for the circuit design of quantum algorithms, quantum cryptanalysis, and digital signal processing applications. The existing designs of reversible quantum integer multipliers suffer from redundant garbage qubits. In this work, we propose a reversible logic based, garbage-free and ancilla qubit optimized design of a quantum integer multiplier. The proposed quantum integer multiplier utilizes a novel add and rotate methodology that is specially suitable for a reversible computing paradigm. The proposed design methodology is the modified version of a conventional shift and add method. The proposed design of the quantum integer multiplier incorporates add or no operation based on multiplier qubits and followed by a rotate right operation. The proposed design of the quantum integer multiplier produces zero garbage qubits and shows an improvement ranging from 60 to 90 % in ancilla qubits count over the existing work on reversible quantum integer multipliers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Margolus N (1990) Parallel quantum computation. Complex Entropy Phys Inf Santa Fe Inst Stud Sci Complex 8:273–287 Margolus N (1990) Parallel quantum computation. Complex Entropy Phys Inf Santa Fe Inst Stud Sci Complex 8:273–287
5.
go back to reference Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457CrossRef Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457CrossRef
6.
go back to reference Smolin JA, DiVincenzo DP (1996) Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Phys Rev A 53(4):2855–2856MathSciNetCrossRef Smolin JA, DiVincenzo DP (1996) Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Phys Rev A 53(4):2855–2856MathSciNetCrossRef
7.
go back to reference Draper TG, Kutin SA, Rains EM, Svore KM (2006) A logarithmic-depth quantum carry-lookahead adder. Quantum Inf Comput 6(4):351–369MathSciNetMATH Draper TG, Kutin SA, Rains EM, Svore KM (2006) A logarithmic-depth quantum carry-lookahead adder. Quantum Inf Comput 6(4):351–369MathSciNetMATH
8.
go back to reference Takahashi Y, Kunihiro N (2005) A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput 5(6):440–448MathSciNetMATH Takahashi Y, Kunihiro N (2005) A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput 5(6):440–448MathSciNetMATH
9.
go back to reference Takahashi Y (2009) Quantum arithmetic circuits: a survey. IEICE Trans Fundam Electron Commun Comput Sci 92(5):1276–1283CrossRef Takahashi Y (2009) Quantum arithmetic circuits: a survey. IEICE Trans Fundam Electron Commun Comput Sci 92(5):1276–1283CrossRef
11.
go back to reference Choi B-S, Van Meter R (2011) On the effect of quantum interaction distance on quantum addition circuits. ACM J Emerg Technol Comput Syst (JETC) 7(3):11 Choi B-S, Van Meter R (2011) On the effect of quantum interaction distance on quantum addition circuits. ACM J Emerg Technol Comput Syst (JETC) 7(3):11
12.
13.
go back to reference Thapliyal H, Ranganathan N (2013) Design of efficient reversible logic-based binary and bcd adder circuits. ACM J Emerg Technol Comput Syst (JETC) 9(3):17 Thapliyal H, Ranganathan N (2013) Design of efficient reversible logic-based binary and bcd adder circuits. ACM J Emerg Technol Comput Syst (JETC) 9(3):17
14.
go back to reference Thapliyal H, Jayashree H, Nagamani A, Arabnia HR (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Transactions on computational science XVII. Springer, New York, pp 73–97 Thapliyal H, Jayashree H, Nagamani A, Arabnia HR (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Transactions on computational science XVII. Springer, New York, pp 73–97
15.
go back to reference Thapliyal H, Arabnia H, Vinod AP (2006) Combined integer and floating point multiplication architecture (CIFM) for FPGAs and its reversible logic implementation. In: 49th IEEE international midwest symposium on circuits and systems (MWSCAS’06), vol 2. IEEE, pp 438–442 Thapliyal H, Arabnia H, Vinod AP (2006) Combined integer and floating point multiplication architecture (CIFM) for FPGAs and its reversible logic implementation. In: 49th IEEE international midwest symposium on circuits and systems (MWSCAS’06), vol 2. IEEE, pp 438–442
16.
17.
go back to reference Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (RPLA) using Fredkin & Feynman gates for industrial electronics and applications. arXiv:cs/0609029 Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (RPLA) using Fredkin & Feynman gates for industrial electronics and applications. arXiv:​cs/​0609029
18.
go back to reference Thapliyal H, Srinivas M, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: ESA, pp 165–181 Thapliyal H, Srinivas M, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: ESA, pp 165–181
19.
go back to reference Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: reversible logic synthesis of parallel binary adder-subtractor. In: Embedded systems and applications, pp 60–68 Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: reversible logic synthesis of parallel binary adder-subtractor. In: Embedded systems and applications, pp 60–68
20.
go back to reference Thapliyal H, Srinivas M, Arabnia HR (2005) A reversible version of \(4 \times 4\) bit array multiplier with minimum gates and garbage outputs. In: Embedded systems and applications, pp 106–116 Thapliyal H, Srinivas M, Arabnia HR (2005) A reversible version of \(4 \times 4\) bit array multiplier with minimum gates and garbage outputs. In: Embedded systems and applications, pp 106–116
21.
go back to reference Thapliyal H, Arabnia HR, Srinivas M (2009) Efficient reversible logic design of BCD subtractors. In: Transactions on computational science III. Springer, New York, pp 99–121 Thapliyal H, Arabnia HR, Srinivas M (2009) Efficient reversible logic design of BCD subtractors. In: Transactions on computational science III. Springer, New York, pp 99–121
22.
go back to reference Prasad AK, Shende V, Markov I, Hayes J, Patel KN (2006) Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4):277–293CrossRef Prasad AK, Shende V, Markov I, Hayes J, Patel KN (2006) Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4):277–293CrossRef
23.
go back to reference Golubitsky O, Maslov D (2012) A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans Comput 61(9):1341–1353MathSciNetCrossRef Golubitsky O, Maslov D (2012) A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans Comput 61(9):1341–1353MathSciNetCrossRef
24.
go back to reference Maslov D, Dueck GW (2004) Reversible cascades with minimal garbage. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(11):1497–1509CrossRef Maslov D, Dueck GW (2004) Reversible cascades with minimal garbage. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(11):1497–1509CrossRef
25.
go back to reference Yang G, Song X, Hung WN, Perkowski MA (2008) Bi-directional synthesis of 4-bit reversible circuits. Comput J 51(2):207–215CrossRef Yang G, Song X, Hung WN, Perkowski MA (2008) Bi-directional synthesis of 4-bit reversible circuits. Comput J 51(2):207–215CrossRef
26.
go back to reference Maslov D, Saeedi M (2011) Reversible circuit optimization via leaving the boolean domain. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(6):806–816CrossRef Maslov D, Saeedi M (2011) Reversible circuit optimization via leaving the boolean domain. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(6):806–816CrossRef
27.
go back to reference Maslov D (2015) On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization. arXiv:1508.03273 Maslov D (2015) On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization. arXiv:​1508.​03273
28.
go back to reference Saeedi M, Zamani MS, Sedighi M, Sasanian Z (2010) Reversible circuit synthesis using a cycle-based approach. J Emerg Technol Comput Syst 6:13:1–13:26CrossRef Saeedi M, Zamani MS, Sedighi M, Sasanian Z (2010) Reversible circuit synthesis using a cycle-based approach. J Emerg Technol Comput Syst 6:13:1–13:26CrossRef
29.
go back to reference Hung WN, Song X, Yang G, Yang J, Perkowski M (2006) Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans Comput-Aided Des 25(9):1652–1663CrossRef Hung WN, Song X, Yang G, Yang J, Perkowski M (2006) Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans Comput-Aided Des 25(9):1652–1663CrossRef
30.
go back to reference Zomorodi Moghadam M, Navi K (2012) Ultra-area-efficient reversible multiplier. Microelectron J 43(6):377–385CrossRef Zomorodi Moghadam M, Navi K (2012) Ultra-area-efficient reversible multiplier. Microelectron J 43(6):377–385CrossRef
31.
go back to reference Bhagyalakshmi H, Venkatesha M (2012) Optimized multiplier using reversible multi-control input Toffoli gates. Int J VLSI Des Commun Syst 3(6):27–40 Bhagyalakshmi H, Venkatesha M (2012) Optimized multiplier using reversible multi-control input Toffoli gates. Int J VLSI Des Commun Syst 3(6):27–40
32.
go back to reference Panchal VK, Nayak VH (2014) Analysis of multiplier circuit using reversible logic. Int J Sci Res Dev 1(6):279–284 Panchal VK, Nayak VH (2014) Analysis of multiplier circuit using reversible logic. Int J Sci Res Dev 1(6):279–284
33.
go back to reference Rangaraju H, Suresh AB, Muralidhara K (2013) Design of efficient reversible multiplier. In: Advances in computing and information technology. Springer, New York, pp 571–579 Rangaraju H, Suresh AB, Muralidhara K (2013) Design of efficient reversible multiplier. In: Advances in computing and information technology. Springer, New York, pp 571–579
34.
go back to reference Mamataj S, Das B, Chandran S (2015) An approach for designing an optimized reversible parallel multiplier by reversible gates. In: Computational advancement in communication circuits and systems. Springer, New York, pp 345–355 Mamataj S, Das B, Chandran S (2015) An approach for designing an optimized reversible parallel multiplier by reversible gates. In: Computational advancement in communication circuits and systems. Springer, New York, pp 345–355
35.
go back to reference Sultana J, Mitra SK, Chowdhury AR (2015) On the analysis of reversible booth’s multiplier. In: 2015 28th international conference on VLSI design (VLSID). IEEE, pp 170–175 Sultana J, Mitra SK, Chowdhury AR (2015) On the analysis of reversible booth’s multiplier. In: 2015 28th international conference on VLSI design (VLSID). IEEE, pp 170–175
37.
go back to reference Banerjee A, Das DK (2013) The design of reversible multiplier using ancient indian mathematics. In: 2013 international symposium on electronic system design (ISED). IEEE, pp 31–35 Banerjee A, Das DK (2013) The design of reversible multiplier using ancient indian mathematics. In: 2013 international symposium on electronic system design (ISED). IEEE, pp 31–35
38.
go back to reference Kotiyal S, Thapliyal H, Ranganathan N (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693 Kotiyal S, Thapliyal H, Ranganathan N (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693
39.
go back to reference Zhou R, Shi Y, Wang H, Cao J (2011) Transistor realization of reversible ZS series gates and reversible array multiplier. Microelectron J 42(2):305–315CrossRef Zhou R, Shi Y, Wang H, Cao J (2011) Transistor realization of reversible ZS series gates and reversible array multiplier. Microelectron J 42(2):305–315CrossRef
40.
go back to reference Portugal R, Figueiredo C (2006) Reversible Karatsubas algorithm. J Univers Comput Sci 12(5):499–511MathSciNet Portugal R, Figueiredo C (2006) Reversible Karatsubas algorithm. J Univers Comput Sci 12(5):499–511MathSciNet
Metadata
Title
Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier
Authors
H. V. Jayashree
Himanshu Thapliyal
Hamid R. Arabnia
V. K. Agrawal
Publication date
01-04-2016
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 4/2016
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-016-1676-0

Other articles of this Issue 4/2016

The Journal of Supercomputing 4/2016 Go to the issue

Premium Partner