Skip to main content
Top

2019 | OriginalPaper | Chapter

Application of Lignin in Thermoplastic Materials

Authors : Sen Yang, Tong-Qi Yuan, Quentin Shi, Run-Cang Sun

Published in: Green Chemistry and Chemical Engineering

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Lignin
An abundant biopolymer with a high carbon content and high aromaticity.
Thermoplastic Materials
Become pliable or moldable above a specific temperature and solidifies upon cooling.
Biodegradability
The disintegration of mate rials by bacteria, fungi, or other biological means.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Smita R, Upendranath D (2008) Manipulation of lignin in plants with special reference to o-methyltransferase. Plant Sci 174(3):264–277CrossRef Smita R, Upendranath D (2008) Manipulation of lignin in plants with special reference to o-methyltransferase. Plant Sci 174(3):264–277CrossRef
2.
go back to reference Gosselink RJA, Jong ED, Guran B, Abächerli A (2004) Co-ordination network for lignin – standardisation, production and applications adapted to market requirements (eurolignin). Ind Crop Prod 20(2):121–129CrossRef Gosselink RJA, Jong ED, Guran B, Abächerli A (2004) Co-ordination network for lignin – standardisation, production and applications adapted to market requirements (eurolignin). Ind Crop Prod 20(2):121–129CrossRef
3.
go back to reference Sen S, Patil S, Argyropoulos DS (2016) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 47(1):4862–4887 Sen S, Patil S, Argyropoulos DS (2016) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 47(1):4862–4887
4.
go back to reference Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237–259CrossRef Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237–259CrossRef
5.
go back to reference Lochab B, Shukla S, Varma I (2014) Naturally occurring phenolic sources: monomers and polymers. RSC Adv 4(42):21712–21752CrossRef Lochab B, Shukla S, Varma I (2014) Naturally occurring phenolic sources: monomers and polymers. RSC Adv 4(42):21712–21752CrossRef
6.
go back to reference Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reaction. Wiley-Interscience, New York Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reaction. Wiley-Interscience, New York
7.
go back to reference Sun R, Lawther JM, Banks WB (1997) A tentative chemical structure of wheat straw lignin. Ind Crop Prod 6(1):1–8CrossRef Sun R, Lawther JM, Banks WB (1997) A tentative chemical structure of wheat straw lignin. Ind Crop Prod 6(1):1–8CrossRef
8.
go back to reference Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237–259CrossRef Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237–259CrossRef
9.
go back to reference Naseem A, Tabasum S, Zia KM, Zuber M, Ali M, Noreen A (2016) Lignin-derivatives based polymers, blends and composites: a review. Int J Biol Macromol 93(Pt A):296–131PubMedCrossRef Naseem A, Tabasum S, Zia KM, Zuber M, Ali M, Noreen A (2016) Lignin-derivatives based polymers, blends and composites: a review. Int J Biol Macromol 93(Pt A):296–131PubMedCrossRef
10.
go back to reference Ugartondo V, Mitjans M, Vinardell MP (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99(14):6683–6687PubMedCrossRef Ugartondo V, Mitjans M, Vinardell MP (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99(14):6683–6687PubMedCrossRef
11.
go back to reference Patschinski P, Zhang C, Zipse H (2014) The lewis base-catalyzed silylation of alcohols–a mechanistic analysis. J Org Chem 79(17):8348–8357PubMedCrossRef Patschinski P, Zhang C, Zipse H (2014) The lewis base-catalyzed silylation of alcohols–a mechanistic analysis. J Org Chem 79(17):8348–8357PubMedCrossRef
12.
go back to reference Mohan D, Pittman CU Jr, Bricka M, Smith F, Yancey B, Mohammad J (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310(1):57–73PubMedCrossRef Mohan D, Pittman CU Jr, Bricka M, Smith F, Yancey B, Mohammad J (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310(1):57–73PubMedCrossRef
13.
go back to reference Funakoshi H, Shiraish N, Norimoto M, Aoki T, Hayashi H (1979) Studies on the thermoplasticization of wood. Holzforschung 33(5):159–166CrossRef Funakoshi H, Shiraish N, Norimoto M, Aoki T, Hayashi H (1979) Studies on the thermoplasticization of wood. Holzforschung 33(5):159–166CrossRef
14.
go back to reference Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE (2009) Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy 33(9):1122–1130CrossRef Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE (2009) Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy 33(9):1122–1130CrossRef
15.
go back to reference Jeong H, Park J, Kim S, Lee J, Ahn N, Roh HG (2013) Preparation and characterization of thermoplastic polyurethanes using partially acetylated Kraft lignin. Fibers Polym 14(7):1082–1093CrossRef Jeong H, Park J, Kim S, Lee J, Ahn N, Roh HG (2013) Preparation and characterization of thermoplastic polyurethanes using partially acetylated Kraft lignin. Fibers Polym 14(7):1082–1093CrossRef
16.
go back to reference Sadeghifar H, Cui C, Argyropoulos DS (2012) Toward thermoplastic lignin polymers. Part 1. selective masking of phenolic hydroxyl groups in Kraft lignins via methylation and oxypropylation chemistries. Ind Eng Chem Res 51(51):16713–16720CrossRef Sadeghifar H, Cui C, Argyropoulos DS (2012) Toward thermoplastic lignin polymers. Part 1. selective masking of phenolic hydroxyl groups in Kraft lignins via methylation and oxypropylation chemistries. Ind Eng Chem Res 51(51):16713–16720CrossRef
17.
go back to reference Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81(1):9–18CrossRef Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81(1):9–18CrossRef
18.
go back to reference Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a fourier transform infrared model compound study. Biomacromolecules 6(5):2815–2221PubMedCrossRef Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a fourier transform infrared model compound study. Biomacromolecules 6(5):2815–2221PubMedCrossRef
19.
go back to reference Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98(8):1655–1663PubMedCrossRef Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98(8):1655–1663PubMedCrossRef
20.
go back to reference Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6(3):3547–3568 Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6(3):3547–3568
21.
go back to reference Chakar FS, Ragauskas AJ, Abaecherli A, Guran B, Gosselink RJ, Jong DD (2004) Review of current and future softwood Kraft lignin process chemistry. Ind Crop Prod 20(2):131–141CrossRef Chakar FS, Ragauskas AJ, Abaecherli A, Guran B, Gosselink RJ, Jong DD (2004) Review of current and future softwood Kraft lignin process chemistry. Ind Crop Prod 20(2):131–141CrossRef
22.
go back to reference Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6(3):3547–3568 Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6(3):3547–3568
23.
go back to reference Fang W, Alekhina M, Ershova O, Heikkinen S, Sixta H (2015) Purification and characterization of Kraft lignin. J Mol Biol 367(4):1023–1033 Fang W, Alekhina M, Ershova O, Heikkinen S, Sixta H (2015) Purification and characterization of Kraft lignin. J Mol Biol 367(4):1023–1033
24.
go back to reference Fan J, Zhan HY (2008) Optimization of synthesis of spherical lignosulphonate resin and its structure characterization. Chin J Chem Eng 16(3):407–410CrossRef Fan J, Zhan HY (2008) Optimization of synthesis of spherical lignosulphonate resin and its structure characterization. Chin J Chem Eng 16(3):407–410CrossRef
25.
go back to reference Myrvold BO (2008) A new model for the structure of lignosulphonates: part 1. Behaviour in dilute solutions. Ind Crop Prod 27(2):214–219CrossRef Myrvold BO (2008) A new model for the structure of lignosulphonates: part 1. Behaviour in dilute solutions. Ind Crop Prod 27(2):214–219CrossRef
26.
go back to reference Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. part ii: influence of pretreatment on the properties of rye straw lignin. Bioresour Technol 102(5):4157–4164PubMedCrossRef Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. part ii: influence of pretreatment on the properties of rye straw lignin. Bioresour Technol 102(5):4157–4164PubMedCrossRef
27.
go back to reference Li MF, Sun SN, Xu F, Sun RC (2012) Sequential solvent fractionation of heterogeneous bamboo organosolv lignin for value-added application. Sep Purif Technol 101(16):18–25CrossRef Li MF, Sun SN, Xu F, Sun RC (2012) Sequential solvent fractionation of heterogeneous bamboo organosolv lignin for value-added application. Sep Purif Technol 101(16):18–25CrossRef
28.
go back to reference Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48CrossRef Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48CrossRef
29.
go back to reference Suhas, Carrott PJ, Ribeiro Carrott MM (2007) Lignin-from natural adsorbent to activated carbon: a review. Bioresour Technol 98(12):2301–2312PubMedCrossRef Suhas, Carrott PJ, Ribeiro Carrott MM (2007) Lignin-from natural adsorbent to activated carbon: a review. Bioresour Technol 98(12):2301–2312PubMedCrossRef
30.
go back to reference Muhammad N, Man Z, Mohamad Azmi BK (2012) Ionic liquid- a future solvent for the enhanced uses of wood biomass. Eur J Wood Wood Prod 70(1–3):125–133CrossRef Muhammad N, Man Z, Mohamad Azmi BK (2012) Ionic liquid- a future solvent for the enhanced uses of wood biomass. Eur J Wood Wood Prod 70(1–3):125–133CrossRef
31.
go back to reference Mandavgane SA, Paradkar GD, Varu J, Pamar R, Subramanian D (2007) Desilication of agro based black liquor and green liquor using jet loop reactor. Indian J Chem Technol 14(6):606–610 Mandavgane SA, Paradkar GD, Varu J, Pamar R, Subramanian D (2007) Desilication of agro based black liquor and green liquor using jet loop reactor. Indian J Chem Technol 14(6):606–610
32.
go back to reference Tafti SF, Tabarsi P, Mansouri N, Mirsaeidi M, Motazedi Ghajar MA, Karimi S (2006) Chronic granulomatous disease with unusual clinical manifestation, outcome, and pattern of inheritance in an iranian family. J Clin Immunol 26(3):291–296PubMedCrossRef Tafti SF, Tabarsi P, Mansouri N, Mirsaeidi M, Motazedi Ghajar MA, Karimi S (2006) Chronic granulomatous disease with unusual clinical manifestation, outcome, and pattern of inheritance in an iranian family. J Clin Immunol 26(3):291–296PubMedCrossRef
33.
go back to reference Öhman F (2006) Precipitation and separation of lignin from Kraft Black Liquor. PhD thesis, Chalmers University of Technology, Gothenburg Öhman F (2006) Precipitation and separation of lignin from Kraft Black Liquor. PhD thesis, Chalmers University of Technology, Gothenburg
34.
go back to reference Meryemoglu B, Hesenov A, Irmak S, Atanur OM, Erbatur O (2010) Aqueous-phase reforming of biomass using various types of supported precious metal and raney-nickel catalysts for hydrogen production. Int J Hydrogen Energy 35(22):12580–12587CrossRef Meryemoglu B, Hesenov A, Irmak S, Atanur OM, Erbatur O (2010) Aqueous-phase reforming of biomass using various types of supported precious metal and raney-nickel catalysts for hydrogen production. Int J Hydrogen Energy 35(22):12580–12587CrossRef
35.
36.
go back to reference Nofar M, Heuzey MC, Carreau PJ, Kamal MR, Randall J (2016) Coalescence in pla-pbat blends under shear flow: effects of blend preparation and pla molecular weight. J Rheol 60(4):637–648CrossRef Nofar M, Heuzey MC, Carreau PJ, Kamal MR, Randall J (2016) Coalescence in pla-pbat blends under shear flow: effects of blend preparation and pla molecular weight. J Rheol 60(4):637–648CrossRef
37.
go back to reference Argyropoulos DS (2014) The emerging bio-refinery industry needs to refine lignin prior to use. J Biotechnol 4(1):125–126 Argyropoulos DS (2014) The emerging bio-refinery industry needs to refine lignin prior to use. J Biotechnol 4(1):125–126
38.
go back to reference Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290CrossRef Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290CrossRef
39.
go back to reference Gordobil O, Moriana R, Zhang L, Labidi J, Sevastyanova O (2016) Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Ind Crop Prod 83(45):155–165CrossRef Gordobil O, Moriana R, Zhang L, Labidi J, Sevastyanova O (2016) Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Ind Crop Prod 83(45):155–165CrossRef
40.
go back to reference Cui C, Sadeghifar H, Sen S, Argyropoulos DS (2013) Toward thermoplastic lignin polymers; part II: thermal & polymer characteristics of Kraft lignin & derivatives. Bioresources 8(1):864–886CrossRef Cui C, Sadeghifar H, Sen S, Argyropoulos DS (2013) Toward thermoplastic lignin polymers; part II: thermal & polymer characteristics of Kraft lignin & derivatives. Bioresources 8(1):864–886CrossRef
41.
go back to reference Wiermans L, Schumacher H, Klaaen CM, Dominguezdemaria P (2014) Unprecedented catalyst-free lignin dearomatization with hydrogen peroxide and dimethyl carbonate. RSC Adv 5(6):4009–4018CrossRef Wiermans L, Schumacher H, Klaaen CM, Dominguezdemaria P (2014) Unprecedented catalyst-free lignin dearomatization with hydrogen peroxide and dimethyl carbonate. RSC Adv 5(6):4009–4018CrossRef
42.
go back to reference Sadeghifar H, Cui C, Argyropoulos DS (2012) Toward thermoplastic lignin polymers. part 1. selective masking of phenolic hydroxyl groups in Kraft lignins via methylation and oxypropylation chemistries. Ind Eng Chem Res 51(51):16713–16720CrossRef Sadeghifar H, Cui C, Argyropoulos DS (2012) Toward thermoplastic lignin polymers. part 1. selective masking of phenolic hydroxyl groups in Kraft lignins via methylation and oxypropylation chemistries. Ind Eng Chem Res 51(51):16713–16720CrossRef
43.
go back to reference Kumar P, Srivastava VC, Mishra IM (2015) Dimethyl carbonate synthesis via, transesterification of propylene carbonate with methanol by ceria-zinc catalysts: role of catalyst support and reaction parameters. Korean J Chem Eng 32(9):1774–1783CrossRef Kumar P, Srivastava VC, Mishra IM (2015) Dimethyl carbonate synthesis via, transesterification of propylene carbonate with methanol by ceria-zinc catalysts: role of catalyst support and reaction parameters. Korean J Chem Eng 32(9):1774–1783CrossRef
44.
go back to reference Argyropoulos DS, Sen S, Patil S (2015) Methylation of softwood Kraft lignin with dimethyl carbonate. Green Chem 17(2):1077–1087CrossRef Argyropoulos DS, Sen S, Patil S (2015) Methylation of softwood Kraft lignin with dimethyl carbonate. Green Chem 17(2):1077–1087CrossRef
45.
go back to reference Stanley JNG, Selva M, Masters AF, Maschmeyer T, Perosa A (2013) Reactions of p-coumaryl alcohol model compounds with dimethyl carbonate. Towards the upgrading of lignin building blocks. Green Chem 15(11):3195–3204CrossRef Stanley JNG, Selva M, Masters AF, Maschmeyer T, Perosa A (2013) Reactions of p-coumaryl alcohol model compounds with dimethyl carbonate. Towards the upgrading of lignin building blocks. Green Chem 15(11):3195–3204CrossRef
46.
go back to reference Memoli S, Selva M, Tundo P (2001) Dimethylcarbonate for eco-friendly methylation reactions. Chemosphere 43(1):115–121PubMedCrossRef Memoli S, Selva M, Tundo P (2001) Dimethylcarbonate for eco-friendly methylation reactions. Chemosphere 43(1):115–121PubMedCrossRef
47.
go back to reference Hofmann K, Glasser WG (1993) Engineering plastics from lignin. 21. Synthesis and properties of epoxidized lignin-poly(propylene oxide) copolymers. J Wood Chem Technol 13(1):73–95CrossRef Hofmann K, Glasser WG (1993) Engineering plastics from lignin. 21. Synthesis and properties of epoxidized lignin-poly(propylene oxide) copolymers. J Wood Chem Technol 13(1):73–95CrossRef
48.
go back to reference Ahvazi B, Wojciechowicz O, Tonthat TM, Hawari J (2011) Preparation of lignopolyols from wheat straw soda lignin. J Agric Food Chem 59(19):10505–10516PubMedCrossRef Ahvazi B, Wojciechowicz O, Tonthat TM, Hawari J (2011) Preparation of lignopolyols from wheat straw soda lignin. J Agric Food Chem 59(19):10505–10516PubMedCrossRef
49.
go back to reference Hatakeyama H, Tsujimoto Y, Zarubin MJ, Krutov SM, Hatakeyama T (2010) Thermal decomposition and glass transition of industrial hydrolysis lignin. J Therm Anal Calorim 101(1):289–295CrossRef Hatakeyama H, Tsujimoto Y, Zarubin MJ, Krutov SM, Hatakeyama T (2010) Thermal decomposition and glass transition of industrial hydrolysis lignin. J Therm Anal Calorim 101(1):289–295CrossRef
50.
go back to reference Buono P, Duval A, Verge P, Averous L, Habibi Y (2016) New insights on the chemical modification of lignin: acetylation versus silylation. ACS Sustain Chem Eng 4(10):5212–5222CrossRef Buono P, Duval A, Verge P, Averous L, Habibi Y (2016) New insights on the chemical modification of lignin: acetylation versus silylation. ACS Sustain Chem Eng 4(10):5212–5222CrossRef
51.
go back to reference Corey EJ, Shirahama H, Yamamoto H, Terashima S, Venkateswarlu A, Schaaf TK (1971) Stereospecific total synthesis of prostaglandins e3 and f3.alpha. J Am Chem Soc 93(6):1490–1491PubMedCrossRef Corey EJ, Shirahama H, Yamamoto H, Terashima S, Venkateswarlu A, Schaaf TK (1971) Stereospecific total synthesis of prostaglandins e3 and f3.alpha. J Am Chem Soc 93(6):1490–1491PubMedCrossRef
52.
go back to reference Patschinski P, Zhang C, Zipse H (2014) The lewis base-catalyzed silylation of alcohols – a mechanistic analysis. J Org Chem 79(17):8348–8357PubMedCrossRef Patschinski P, Zhang C, Zipse H (2014) The lewis base-catalyzed silylation of alcohols – a mechanistic analysis. J Org Chem 79(17):8348–8357PubMedCrossRef
53.
go back to reference Lewis WK, Gilliland ER, Bauer WC (2002) Characteristics of fluidized particles. J Ind Eng Chem 41(6):1104–1117CrossRef Lewis WK, Gilliland ER, Bauer WC (2002) Characteristics of fluidized particles. J Ind Eng Chem 41(6):1104–1117CrossRef
54.
go back to reference Glasser WG, Gratzl JS, Collins JJ, Forss K, Mccarthy JL (2002) Lignin. xvii. preparation and characterization of acetyl lignin sulfonate methyl esters. Macromolecules 8(5):565–573CrossRef Glasser WG, Gratzl JS, Collins JJ, Forss K, Mccarthy JL (2002) Lignin. xvii. preparation and characterization of acetyl lignin sulfonate methyl esters. Macromolecules 8(5):565–573CrossRef
55.
go back to reference Mousavioun P, Doherty W (2010) Chemical and thermal properties of fractionated bagase soda lignin. Ind Crop Prod 31(1):52–58CrossRef Mousavioun P, Doherty W (2010) Chemical and thermal properties of fractionated bagase soda lignin. Ind Crop Prod 31(1):52–58CrossRef
56.
go back to reference Fox SC, Mcdonald AG (2010) Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters. Bioresources 5(2):990–1009 Fox SC, Mcdonald AG (2010) Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters. Bioresources 5(2):990–1009
57.
go back to reference Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of pla lignin blends. Polym Degrad Stab 108:330–338CrossRef Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of pla lignin blends. Polym Degrad Stab 108:330–338CrossRef
58.
go back to reference Pu Y, Ragauskas AJ (2005) Structural analysis of acetylated hardwood lignins and their photoyell. Can J Chem 83(12):2132–2139CrossRef Pu Y, Ragauskas AJ (2005) Structural analysis of acetylated hardwood lignins and their photoyell. Can J Chem 83(12):2132–2139CrossRef
59.
go back to reference Lisperguer J, Perez P, Urizar S (2009) Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J Chil Chem Soc 54(4):460–463CrossRef Lisperguer J, Perez P, Urizar S (2009) Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J Chil Chem Soc 54(4):460–463CrossRef
60.
go back to reference Monteil-Rivera F, Paquet L (2015) Solvent-free catalyst-free microwave-assisted acylation of lignin. Ind Crop Prod 65:446–453CrossRef Monteil-Rivera F, Paquet L (2015) Solvent-free catalyst-free microwave-assisted acylation of lignin. Ind Crop Prod 65:446–453CrossRef
61.
go back to reference Cachet N, Camy S, Benjelloun-Mlayah B, Condoret JS, Delmas M (2014) Esterification of organosolv lignin under supercritical conditions. Ind Crop Prod 58(58):287–297CrossRef Cachet N, Camy S, Benjelloun-Mlayah B, Condoret JS, Delmas M (2014) Esterification of organosolv lignin under supercritical conditions. Ind Crop Prod 58(58):287–297CrossRef
62.
go back to reference Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J (2006) Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 31(12):1068–1132CrossRef Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J (2006) Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 31(12):1068–1132CrossRef
63.
go back to reference Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X (2011) Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem Soc Rev 40(3):1282–1295PubMedCrossRef Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X (2011) Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem Soc Rev 40(3):1282–1295PubMedCrossRef
64.
go back to reference Liu H, Chung H (2017) Lignin-based polymers via graft copolymerization. J Polym Sci A Polym Chem 55:3515–3528CrossRef Liu H, Chung H (2017) Lignin-based polymers via graft copolymerization. J Polym Sci A Polym Chem 55:3515–3528CrossRef
65.
go back to reference Wang DB, Li XM, Yang Q, Zeng GM, Liao DX, Zhang J (2008) Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresour Technol 99(13):5466–5473PubMedCrossRef Wang DB, Li XM, Yang Q, Zeng GM, Liao DX, Zhang J (2008) Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresour Technol 99(13):5466–5473PubMedCrossRef
66.
go back to reference Matsushita Y, Imai M, Iwatsuki A, Fukushima K (2008) The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials. Bioresour Technol 99(8):3024–3028PubMedCrossRef Matsushita Y, Imai M, Iwatsuki A, Fukushima K (2008) The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials. Bioresour Technol 99(8):3024–3028PubMedCrossRef
67.
go back to reference Areskogh D, Li J, Gellerstedt G, Henriksson G (2010) Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis. Biomacromolecules 11(4):904–910PubMedCrossRef Areskogh D, Li J, Gellerstedt G, Henriksson G (2010) Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis. Biomacromolecules 11(4):904–910PubMedCrossRef
68.
go back to reference Areskogh D, Li J, Gellerstedt G, Henriksson G (2010) Structural modification of commercial lignosulphonates through laccase catalysis and ozonolysis. Ind Crop Prod 32(3):458–466CrossRef Areskogh D, Li J, Gellerstedt G, Henriksson G (2010) Structural modification of commercial lignosulphonates through laccase catalysis and ozonolysis. Ind Crop Prod 32(3):458–466CrossRef
69.
go back to reference Senamartins G, Almeidavara E, Duarte JC (2008) Eco-friendly new products from enzymatically modified industrial lignins. Ind Crop Prod 27(2):189–195CrossRef Senamartins G, Almeidavara E, Duarte JC (2008) Eco-friendly new products from enzymatically modified industrial lignins. Ind Crop Prod 27(2):189–195CrossRef
70.
go back to reference Weng JK, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19(2):166–172PubMedCrossRef Weng JK, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19(2):166–172PubMedCrossRef
71.
go back to reference Rials TG, Glasser WG (1986) Engineering plastics from lignin- xiii. Effect of lignin structure on polyurethane network formation. Holzforschung 40(6):353–360CrossRef Rials TG, Glasser WG (1986) Engineering plastics from lignin- xiii. Effect of lignin structure on polyurethane network formation. Holzforschung 40(6):353–360CrossRef
72.
go back to reference Kadla JF, Kubo S (2004) Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Compos Part A-Appl Sci 35(3):395–400CrossRef Kadla JF, Kubo S (2004) Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Compos Part A-Appl Sci 35(3):395–400CrossRef
73.
go back to reference Lu X, Weiss RA (1992) Specific interactions and ionic aggregation in miscible blends of nylon-6 and zinc sulfonated polystyrene ionomer. Macromolecules 25(23):6185–6189CrossRef Lu X, Weiss RA (1992) Specific interactions and ionic aggregation in miscible blends of nylon-6 and zinc sulfonated polystyrene ionomer. Macromolecules 25(23):6185–6189CrossRef
74.
go back to reference And SK, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37(18):6904–6911CrossRef And SK, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37(18):6904–6911CrossRef
75.
go back to reference And SK, Kadla JF (2003) The formation of strong intermolecular interactions in immiscible blends of poly(vinyl alcohol) (PVA) and lignin. Biomacromolecules 4(3):561–567CrossRef And SK, Kadla JF (2003) The formation of strong intermolecular interactions in immiscible blends of poly(vinyl alcohol) (PVA) and lignin. Biomacromolecules 4(3):561–567CrossRef
76.
go back to reference Chen F, Dai H, Dong X, Yang J, Zhong M (2011) Physical properties of lignin-based polypropylene blends. Polym Compos 32(7):1019–1025CrossRef Chen F, Dai H, Dong X, Yang J, Zhong M (2011) Physical properties of lignin-based polypropylene blends. Polym Compos 32(7):1019–1025CrossRef
77.
go back to reference Kharade AY, Kale DD (2015) Lignin-filled polyolefins. J Appl Polym Sci 72(10):1321–1326CrossRef Kharade AY, Kale DD (2015) Lignin-filled polyolefins. J Appl Polym Sci 72(10):1321–1326CrossRef
78.
go back to reference Blanco I, Bottino FA (2016) Thermal characterization of a series of novel hepta cyclopentyl bridged poss/ps nanocomposites. J Therm Anal Calorim 125(2):637–643CrossRef Blanco I, Bottino FA (2016) Thermal characterization of a series of novel hepta cyclopentyl bridged poss/ps nanocomposites. J Therm Anal Calorim 125(2):637–643CrossRef
79.
go back to reference Atifi S, Miao C, Hamad WY (2017) Surface modification of lignin for applications in polypropylene blends. J Appl Polym Sci 134(29):45103CrossRef Atifi S, Miao C, Hamad WY (2017) Surface modification of lignin for applications in polypropylene blends. J Appl Polym Sci 134(29):45103CrossRef
80.
go back to reference Shi Z, Fu F, Wang S, He S, Yang R (2013) Modification of chinese fir with alkyl ketene dimer (AKD): processing and characterization. Bioresources 8(1):581–591 Shi Z, Fu F, Wang S, He S, Yang R (2013) Modification of chinese fir with alkyl ketene dimer (AKD): processing and characterization. Bioresources 8(1):581–591
81.
go back to reference Yang S, Zhang Y, Yu J, Zhen Z, Huang T, Tang Q (2014) Antibacterial and mechanical properties of honeycomb ceramic materials incorporated with silver and zinc. Mater Des 59(6):461–465CrossRef Yang S, Zhang Y, Yu J, Zhen Z, Huang T, Tang Q (2014) Antibacterial and mechanical properties of honeycomb ceramic materials incorporated with silver and zinc. Mater Des 59(6):461–465CrossRef
82.
go back to reference Miao C, Hamad WY (2017) Controlling lignin particle size for polymer blend applications. J Appl Polym Sci 134(14):44669 Miao C, Hamad WY (2017) Controlling lignin particle size for polymer blend applications. J Appl Polym Sci 134(14):44669
83.
go back to reference Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polym Composite. Compos Part B 39(6):933–961CrossRef Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polym Composite. Compos Part B 39(6):933–961CrossRef
84.
go back to reference Sadeghifar H, Argyropoulos DS (2015) Correlations of the antioxidant properties of softwood Kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustain Chem Eng 3(2):349–356CrossRef Sadeghifar H, Argyropoulos DS (2015) Correlations of the antioxidant properties of softwood Kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustain Chem Eng 3(2):349–356CrossRef
85.
go back to reference Cui C, Sun R, Argyropoulos DS (2014) Fractional precipitation of softwood Kraft lignin: isolation of narrow fractions common to a variety of lignins. ACS Sustain Chem Eng 2(4):959–968CrossRef Cui C, Sun R, Argyropoulos DS (2014) Fractional precipitation of softwood Kraft lignin: isolation of narrow fractions common to a variety of lignins. ACS Sustain Chem Eng 2(4):959–968CrossRef
86.
go back to reference Podolyák B, Kun D, Renner K, Pukánszky B (2017) Hydrogen bonding interactions in poly(ethylene-co-vinyl alcohol)/lignin blends. Int J Biol Macromol 107:1203–1211PubMedCrossRef Podolyák B, Kun D, Renner K, Pukánszky B (2017) Hydrogen bonding interactions in poly(ethylene-co-vinyl alcohol)/lignin blends. Int J Biol Macromol 107:1203–1211PubMedCrossRef
87.
go back to reference Falkehag SI (1975) Lignin in materials. Appl Polym Symp 28:247–257 Falkehag SI (1975) Lignin in materials. Appl Polym Symp 28:247–257
88.
go back to reference Dutta S, Sarkanen S (1990) A new emphasis in strategies for developing lignin-based plastics. Mrs Proc 197(31):31–39CrossRef Dutta S, Sarkanen S (1990) A new emphasis in strategies for developing lignin-based plastics. Mrs Proc 197(31):31–39CrossRef
89.
go back to reference Li Y, Mlynár J, Sarkanen S (1997) The first 85% Kraft lignin-based thermoplastics. J Polym Sci Polym Phys 35(12):1899–1910CrossRef Li Y, Mlynár J, Sarkanen S (1997) The first 85% Kraft lignin-based thermoplastics. J Polym Sci Polym Phys 35(12):1899–1910CrossRef
90.
go back to reference Lewis NG, Davin LB, Sarkanen S (1999) 3.18–the nature and function of lignins. Compr Nat Prod Chem 3(18):617–745CrossRef Lewis NG, Davin LB, Sarkanen S (1999) 3.18–the nature and function of lignins. Compr Nat Prod Chem 3(18):617–745CrossRef
91.
go back to reference Kadla JF, Kubo S (2003) Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and Kraft lignin. Macromolecules 36(20):7803–7811CrossRef Kadla JF, Kubo S (2003) Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and Kraft lignin. Macromolecules 36(20):7803–7811CrossRef
92.
go back to reference Yan L, Sarkanen S (2002) Alkylated Kraft lignin-based thermoplastic blends with aliphatic polyesters. Macromolecules 35(26):9707–9715CrossRef Yan L, Sarkanen S (2002) Alkylated Kraft lignin-based thermoplastic blends with aliphatic polyesters. Macromolecules 35(26):9707–9715CrossRef
93.
go back to reference Sarkanen S, Chen Y, Wang YY (2016) Journey to polymeric materials composed exclusively of simple lignin derivatives. ACS Sustain Chem Eng 4(10):5223–5229CrossRef Sarkanen S, Chen Y, Wang YY (2016) Journey to polymeric materials composed exclusively of simple lignin derivatives. ACS Sustain Chem Eng 4(10):5223–5229CrossRef
94.
go back to reference Bula K, Klapiszewski Ł, Jesionowski T (2015) A novel functional silica/lignin hybrid material as a potential bio-based polypropylene filler. Polym Compos 36(5):913–922CrossRef Bula K, Klapiszewski Ł, Jesionowski T (2015) A novel functional silica/lignin hybrid material as a potential bio-based polypropylene filler. Polym Compos 36(5):913–922CrossRef
95.
go back to reference Chiellini E, Solaro R (2004) Biodegradable polymers and plastics. Chem Int 26(6):28–29 Chiellini E, Solaro R (2004) Biodegradable polymers and plastics. Chem Int 26(6):28–29
96.
go back to reference Chen YR, Sarkanen S (2003) Macromolecular lignin replication: a mechanistic working hypothesis. Phytochem Rev 2(3):235–255CrossRef Chen YR, Sarkanen S (2003) Macromolecular lignin replication: a mechanistic working hypothesis. Phytochem Rev 2(3):235–255CrossRef
97.
go back to reference Wang YY, Chen YR, Sarkanen S (2017) Blend configuration in functional polymeric materials with a high lignin content. Faraday Discuss 202:43–59PubMedCrossRef Wang YY, Chen YR, Sarkanen S (2017) Blend configuration in functional polymeric materials with a high lignin content. Faraday Discuss 202:43–59PubMedCrossRef
98.
go back to reference Li Y, Sarkanen S (2000) Thermoplastics with very high lignin contents. ACS Symp 742:351–366CrossRef Li Y, Sarkanen S (2000) Thermoplastics with very high lignin contents. ACS Symp 742:351–366CrossRef
99.
go back to reference Wang YY, Chen Y, Sarkanen S (2015) Path to plastics composed of ligninsulphonates (lignosulfonates). Green Chem 17(11):5069–5078CrossRef Wang YY, Chen Y, Sarkanen S (2015) Path to plastics composed of ligninsulphonates (lignosulfonates). Green Chem 17(11):5069–5078CrossRef
100.
go back to reference Wang H (2012) Research progress on biodegradable material of modified soy protein isolate. New Chem Mater 40(1):16–18 Wang H (2012) Research progress on biodegradable material of modified soy protein isolate. New Chem Mater 40(1):16–18
101.
102.
go back to reference Mu C, Xue L, Zhu J, Jiang M, Zhou Z (2014) Mechanical and thermal properties of toughened poly(l-lactic) acid and lignin blends. Bioresources 9(3):5557–5566CrossRef Mu C, Xue L, Zhu J, Jiang M, Zhou Z (2014) Mechanical and thermal properties of toughened poly(l-lactic) acid and lignin blends. Bioresources 9(3):5557–5566CrossRef
103.
go back to reference Jamshidian M, Tehrany EA, Imran M, Akhtar MJ, Cleymand F, Desobry S (2012) Structural, mechanical and barrier properties of active pla–antioxidant films. J Food Eng 110(3):380–389CrossRef Jamshidian M, Tehrany EA, Imran M, Akhtar MJ, Cleymand F, Desobry S (2012) Structural, mechanical and barrier properties of active pla–antioxidant films. J Food Eng 110(3):380–389CrossRef
104.
go back to reference Wang S, Li Y, Xiang H, Zhou Z, Chang T, Zhu M (2015) Low cost carbon fibers from bio-renewable lignin/poly(lactic acid) (pla) blends. Compos Sci Technol 119:20–25CrossRef Wang S, Li Y, Xiang H, Zhou Z, Chang T, Zhu M (2015) Low cost carbon fibers from bio-renewable lignin/poly(lactic acid) (pla) blends. Compos Sci Technol 119:20–25CrossRef
105.
go back to reference Zhu J, Xue L, Wei W, Mu C, Jiang M, Zhou Z (2015) Modification of lignin with silane coupling agent to improve the interface of poly(l-lactic) acid/lignin composites. Bioresources 10(3):4315–4325 Zhu J, Xue L, Wei W, Mu C, Jiang M, Zhou Z (2015) Modification of lignin with silane coupling agent to improve the interface of poly(l-lactic) acid/lignin composites. Bioresources 10(3):4315–4325
106.
go back to reference Ren W, Pan X, Wang G, Cheng W, Liu Y (2016) Dodecylated lignin-g-PLA for effective toughening of PLA. Green Chem 18(18):5008–5014CrossRef Ren W, Pan X, Wang G, Cheng W, Liu Y (2016) Dodecylated lignin-g-PLA for effective toughening of PLA. Green Chem 18(18):5008–5014CrossRef
107.
go back to reference Chen R, Abdelwahab MA, Misra M, Mohanty AK (2014) Biobased ternary blends of lignin, poly(lactic acid): and poly(butylene adipate-co-terephthalate): the effect of lignin heterogeneity on blend morphology and compatibility. J Polym Environ 22(4):439–448CrossRef Chen R, Abdelwahab MA, Misra M, Mohanty AK (2014) Biobased ternary blends of lignin, poly(lactic acid): and poly(butylene adipate-co-terephthalate): the effect of lignin heterogeneity on blend morphology and compatibility. J Polym Environ 22(4):439–448CrossRef
108.
go back to reference Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2006) Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin. Polym Eng Sci 300(3):299–311 Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2006) Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin. Polym Eng Sci 300(3):299–311
109.
go back to reference Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab 97(10):1979–1987CrossRef Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab 97(10):1979–1987CrossRef
110.
go back to reference Kim JT, Netravali AN (2010) Mechanical, thermal, and interfacial properties of green composites with ramie fiber and soy resins. J Agric Food Chem 58(9):5400–5407PubMedCrossRef Kim JT, Netravali AN (2010) Mechanical, thermal, and interfacial properties of green composites with ramie fiber and soy resins. J Agric Food Chem 58(9):5400–5407PubMedCrossRef
111.
go back to reference Staswick PE, Hermodson MA, Nielsen NC (1984) The amino acid sequence of the A2B1a subunit of glycinin. J Biol Chem 259(21):13424–13430PubMed Staswick PE, Hermodson MA, Nielsen NC (1984) The amino acid sequence of the A2B1a subunit of glycinin. J Biol Chem 259(21):13424–13430PubMed
112.
go back to reference Sem O, Wagner JR (2002) Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties. Food Res Int 35(6):511–518CrossRef Sem O, Wagner JR (2002) Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties. Food Res Int 35(6):511–518CrossRef
113.
go back to reference Sheard PR, Fellows A, Ledward DA, Mitchell JR (1986) Macromolecular changes associated with the heat treatment of soya isolate. Int J Food Sci Technol 21(1):55–60CrossRef Sheard PR, Fellows A, Ledward DA, Mitchell JR (1986) Macromolecular changes associated with the heat treatment of soya isolate. Int J Food Sci Technol 21(1):55–60CrossRef
114.
go back to reference Kato A, Tanimoto S, Muraki Y, Oda Y, Inoue Y, Kobayashi K (1994) Relationships between conformational stabilities and surface functional properties of mutant hen egg-white lysozymes constructed by genetic engineering. J Agric Food Chem 42(1):227–230CrossRef Kato A, Tanimoto S, Muraki Y, Oda Y, Inoue Y, Kobayashi K (1994) Relationships between conformational stabilities and surface functional properties of mutant hen egg-white lysozymes constructed by genetic engineering. J Agric Food Chem 42(1):227–230CrossRef
115.
go back to reference Lee M, Lee S, Song KB (2005) Effect of γ-irradiation on the physicochemical properties of soy protein isolate films. Radiat Phys Chem 72(1):35–40CrossRef Lee M, Lee S, Song KB (2005) Effect of γ-irradiation on the physicochemical properties of soy protein isolate films. Radiat Phys Chem 72(1):35–40CrossRef
116.
go back to reference Brandenburg AH, Weller CL, Testin RF (2010) Edible films and coatings from soy protein. J Food Sci 58(5):1086–1089CrossRef Brandenburg AH, Weller CL, Testin RF (2010) Edible films and coatings from soy protein. J Food Sci 58(5):1086–1089CrossRef
117.
go back to reference Zhu D, Damodaran S (2014) Chemical phosphorylation improves the moisture resistance of soy flour-based wood adhesive. J Appl Polym Sci 131(13):378–387CrossRef Zhu D, Damodaran S (2014) Chemical phosphorylation improves the moisture resistance of soy flour-based wood adhesive. J Appl Polym Sci 131(13):378–387CrossRef
118.
go back to reference Park SK, Bae DH, Rhee KC (2000) Soy protein biopolymers cross-linked with glutaraldehyde. J Am Oil Chem Soc 77(8):879–884CrossRef Park SK, Bae DH, Rhee KC (2000) Soy protein biopolymers cross-linked with glutaraldehyde. J Am Oil Chem Soc 77(8):879–884CrossRef
119.
go back to reference Matsumura Y, Kang IJ, Sakamoto H, Motoki M, Mori T (1993) Filler effects of oil droplets on the viscoelastic properties of emulsion gels. Food Hydrocoll 7(3):227–240CrossRef Matsumura Y, Kang IJ, Sakamoto H, Motoki M, Mori T (1993) Filler effects of oil droplets on the viscoelastic properties of emulsion gels. Food Hydrocoll 7(3):227–240CrossRef
120.
go back to reference Zhang J, Mungara P, Jane J (2001) Mechanical and thermal properties of extruded soy protein sheets. Polymer 42(6):2569–2578CrossRef Zhang J, Mungara P, Jane J (2001) Mechanical and thermal properties of extruded soy protein sheets. Polymer 42(6):2569–2578CrossRef
121.
go back to reference Huang J, Zhang L, Chen F (2003) Effects of lignin as a filler on properties of soy protein plastics. I. Lignosulfonate. J Appl Polym Sci 88(14):3284–3290CrossRef Huang J, Zhang L, Chen F (2003) Effects of lignin as a filler on properties of soy protein plastics. I. Lignosulfonate. J Appl Polym Sci 88(14):3284–3290CrossRef
122.
go back to reference Huang J, Zhang L, Wei H, Cao X (2010) Soy protein isolate/Kraft lignin composites compatibilized with methylene diphenyl diisocyanate. J Appl Polym Sci 93(2):624–629CrossRef Huang J, Zhang L, Wei H, Cao X (2010) Soy protein isolate/Kraft lignin composites compatibilized with methylene diphenyl diisocyanate. J Appl Polym Sci 93(2):624–629CrossRef
123.
go back to reference Wei M, Fan L, Huang J, Chen Y (2016) Role of star-like hydroxylpropyl lignin in soy-protein plastics. Macromol Mater Eng 291(5):524–530CrossRef Wei M, Fan L, Huang J, Chen Y (2016) Role of star-like hydroxylpropyl lignin in soy-protein plastics. Macromol Mater Eng 291(5):524–530CrossRef
124.
go back to reference Kalambur S, Rizvi SSH (2006) An overview of starch-based plastic blends from reactive extrusion. J Plast Film Sheeting 22(1):39–58CrossRef Kalambur S, Rizvi SSH (2006) An overview of starch-based plastic blends from reactive extrusion. J Plast Film Sheeting 22(1):39–58CrossRef
125.
go back to reference Spiridon I, Teaca CA, Bodirlau R (2011) Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. J Mater Sci 46(10):3241–3251CrossRef Spiridon I, Teaca CA, Bodirlau R (2011) Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. J Mater Sci 46(10):3241–3251CrossRef
126.
go back to reference Bodirlau R, Teaca CA, Spiridon I (2013) Influence of natural fillers on the properties of starch-based biocomposite films. Compos Part B-Eng 44(1):575–583CrossRef Bodirlau R, Teaca CA, Spiridon I (2013) Influence of natural fillers on the properties of starch-based biocomposite films. Compos Part B-Eng 44(1):575–583CrossRef
127.
go back to reference Shi R, Li B (2016) Synthesis and characterization of cross-linked starch/lignin film. Starch-Starke 68(11–12):1224–1232CrossRef Shi R, Li B (2016) Synthesis and characterization of cross-linked starch/lignin film. Starch-Starke 68(11–12):1224–1232CrossRef
128.
go back to reference Kaewtatip K, Thongmee J (2013) Effect of Kraft lignin and esterified lignin on the properties of thermoplastic starch. Mater Des 49:701–704CrossRef Kaewtatip K, Thongmee J (2013) Effect of Kraft lignin and esterified lignin on the properties of thermoplastic starch. Mater Des 49:701–704CrossRef
129.
go back to reference Heitner C, Dimmel DR, Schmidt JA (2010) Lignin and lignans: advances in chemistry. Lignin and Lignans Adv Chem 397(24):521–555 Heitner C, Dimmel DR, Schmidt JA (2010) Lignin and lignans: advances in chemistry. Lignin and Lignans Adv Chem 397(24):521–555
130.
go back to reference Fernández-Rodríguez J, García A, Coz A, Labidi J (2015) Spent sulphite liquor fractionation into lignosulphonates and fermentable sugars by ultrafiltration. Sep Purif Technol 152(4):172–179CrossRef Fernández-Rodríguez J, García A, Coz A, Labidi J (2015) Spent sulphite liquor fractionation into lignosulphonates and fermentable sugars by ultrafiltration. Sep Purif Technol 152(4):172–179CrossRef
131.
go back to reference El Mansouri NE, Salvado J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, Kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24(1):8–16CrossRef El Mansouri NE, Salvado J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, Kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24(1):8–16CrossRef
132.
go back to reference Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93(1):618–641CrossRef Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93(1):618–641CrossRef
1.
go back to reference Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96CrossRef Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96CrossRef
2.
go back to reference Hu TQ (2002) Chemical modification, properties, and usage of lignin. Kluwer, New YorkCrossRef Hu TQ (2002) Chemical modification, properties, and usage of lignin. Kluwer, New YorkCrossRef
3.
go back to reference Liu WJ, Hong J, Yu HQ, Bruijnincx PCA, Rinaldi R, Weckhuysen B (2015) Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem 17(11):4888–4907CrossRef Liu WJ, Hong J, Yu HQ, Bruijnincx PCA, Rinaldi R, Weckhuysen B (2015) Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem 17(11):4888–4907CrossRef
4.
go back to reference Upton BM, Kasko AM (2015) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116(4):2275–2306PubMedCrossRef Upton BM, Kasko AM (2015) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116(4):2275–2306PubMedCrossRef
Metadata
Title
Application of Lignin in Thermoplastic Materials
Authors
Sen Yang
Tong-Qi Yuan
Quentin Shi
Run-Cang Sun
Copyright Year
2019
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9060-3_1015