Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Applications in continuum mechanics and physics of solids

Authors : Alexander Mielke, Tomàš Roubíček

Published in: Rate-Independent Systems

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The theory of rate-independent processes has a large variety of applications in continuum mechanics of solids. Rate-independent effects typically can occur inside the bulk and at the surface or along interfaces. These effects may be unidirectional, as, for example, in damage, or bidirectional. In case of a deformable continuum, one can consider the general concept of large strains or confine oneself to small strains. There might be rate-independent processes on lower-dimensional objects, typically surfaces of codimension 1 or lines (as dislocations) of dimension 1. See Table 4.1 on p. 236 for examples that will be considered in this chapter. Of course, various processes can combine with each other.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In greater detail, temperature variations on the “micro scale” are usually ultimately to be expected, but we consider them phenomenologically incorporated into “macroscopic” dissipation energies \(\mathcal{D}\).
 
2
In some cases, however, there is an alternative understanding of the situation as multiple natural configurations; for this concept, see [499].
 
3
Later, on p. 267, we will, however, play with the higher-gradient contributions, too.
 
4
Minimizers or other critical points do not need a priori to be regular enough and do not need to satisfy the Euler–Lagrange equation of the type (4.1.2); cf. [39, 48]. This still emphasizes the advantages of using the energetic method, which does not rely on Euler–Lagrange equations.
 
5
The definition (4.1.3) was introduced by Ball and Murat [49], called \(\mathrm{W}^{1,p}\)-quasiconvexity and shown to be equivalent to the original \(\mathrm{W}^{1,\infty }\)-quasiconvexity introduced by Morrey [438], provided \(-C \leq W(F) \leq C(1 + \vert F\vert ^{p})\) for some \(C \in \mathbb{R}^{+}\); cf. [49, Proposition 2.​4(i)].
 
6
Note that \(\det \,F =\det \, F^{\mathsf{T}} = \sqrt{\det (F^{\mathsf{T} } F)} = \sqrt{\det \,C}\) actually depends only on C; hence (4.1.5) leads indeed to a frame-indifferent potential.
 
7
Elasticity of single crystals, which are anisotropic, involves more independent elastic moduli, depending on the symmetry system, namely 3 for cubic, 6 for tetragonal, 9 for orthorhombic, 13 for monoclinic, and 21 triclinic; cf., e.g., [478].
 
8
Instead of the Cauchy–Green stretch tensor C, the so-called right stretch tensor U: = C 1∕2 is used and \(R(F,{ \buildrel . \over F}) = R_{0}(U,{ \buildrel . \over U})\) for some function R 0. Yet, \({ \buildrel .\over C} = U{ \buildrel . \over U} +{ \buildrel . \over U}U\), so that \(R_{0}(C,{ \buildrel . \over C}) = R_{0}(U^{2},U{ \buildrel . \over U} +{ \buildrel . \over U}U)\), which reveals the form of R 0.
 
9
Actually, \(\nabla y_{\mathrm{D}}(t,y)\) is to be understand as y y D(t, y).
 
10
See also [378] for a similar approach using currents. In fact, [128] uses strict inequality \(\det (\nabla y) > 0\) a.e. on \(\varOmega\) in (4.1.20), which does not make the set of such y closed in \(\mathrm{W}^{1,p}(\varOmega; \mathbb{R}^{d})\) and which is suitable only in relation to minimizing some integral functionals whose integrand \(F\mapsto W(F)\) explodes to \(\infty \) if \(\det F \searrow 0\); cf. also Remark 4.2.12 below.
 
11
The philosophy behind arriving at (4.1.28) from (4.1.15)–(4.1.16) is to consider \(\tilde{y}(x) = x +\tilde{ u}(x)\) and y D(x) = x + u D(x), to approximate the Green–Lagrange strain \(E = \frac{1} {2}(C - \mathbb{I})\) asymptotically when writing it in terms of these new variables, i.e.,
$$\displaystyle\begin{array}{rcl} E& =& \frac{1} {2}(\mathbb{I} + \nabla \tilde{u})^{\mathsf{T}}(\mathbb{I} + \nabla u_{\mathrm{ D}}^{})^{\mathsf{T}}(\mathbb{I} + \nabla u_{\mathrm{ D}}^{})(\mathbb{I} + \nabla \tilde{u}) -\frac{1} {2}\mathbb{I} {}\\ & =& \frac{1} {2}(\nabla \tilde{u})^{\mathsf{T}} + \frac{1} {2}(\nabla u_{\mathrm{D}}^{})^{\mathsf{T}} + \frac{1} {2}\nabla u_{\mathrm{D}}^{} + \frac{1} {2}\nabla \tilde{u} + \text{h.o.t.} = e(\tilde{u} + u_{\mathrm{D}}^{}) + \text{h.o.t.}, {}\\ \end{array}$$
where “h.o.t.” abbreviates higher-order terms that are eventually neglected in (4.1.28).
 
12
This result dates back to 1906 in [313] for p = 2; see also [269] and the survey [273]. For a generalization for \(\mathrm{L}^{p}\)-spaces, p > 1, see [219, 445]. A generalization of (4.1.30) for p = 1 does not hold, however; cf. a counterexample in [462].
 
13
Cf. [374] for more details.
 
14
Cf. [442, Corollary 3.​4] for more details.
 
15
An early idea in this direction is due to E. Aifantis [6] and O.W. Dillon, and J. Kratochvíl [161]; it has since been used widely in the engineering literature; cf. also [7, 62, 288, 290, 603]. The energetic-solution approach to gradient plasticity has been scrutinized in [243, 318, 374].
 
16
The formula (4.2.17a) uses the matrix identity \(AB:C =\mathop{ \mathrm{tr}}(ABC^{\mathsf{T}}) =\mathop{ \mathrm{tr}}(A(CB^{\mathsf{T}})^{\mathsf{T}}) = A:(CB^{\mathsf{T}})\).
 
17
The formula (4.2.22a) uses the matrix identity \(AB^{\mathsf{T}}:C =\mathop{ \mathrm{tr}}(AB^{\mathsf{T}}C^{\mathsf{T}}) =\mathop{ \mathrm{tr}}(A(CB)^{\mathsf{T}}) = A:(CB)\).
 
18
For many technical detials see [419].
 
19
In particular, some simplifications have been used for these simulations such as Green–Naghdi’s [232] additive decomposition instead of the multiplicative decomposition (4.2.4) and the St. Venant–Kirchhoff material (4.1.6) instead of a polyconvex material.
 
20
As pointed out by Bhattacharya et al. [71], “much remains unknown concerning the nucleation and evolution of microstructure, and the resultant hysteresis.”
 
21
Such a regularization \(\mathcal{S}\) in the dissipation has been considered in [170, Remark 4.3] and [612, Sect.5] in the context of ferromagnetism, and [473, Formulas (2)–(3)] and [474, Formula (4) with (8)] for the case of damage. See also an overview and in particular [288, Formulas 26.12-13] in the context of plasticity.
 
22
This means here that \(\mathcal{E}_{\varepsilon,\kappa }(0,y_{0},\lambda _{0}) \leq \mathcal{E}_{\varepsilon,\kappa }(0,y,\lambda ) + \mathcal{R}(\lambda -\lambda _{0})\) for all \((y,\lambda )\in [\mathrm{H}^{2} \cap \mathrm{W}^{1,p}](\varOmega; \mathbb{R}^{d})\times \mathrm{L}^{2}(\varOmega; \mathbb{R}^{m})\).
 
23
More precisely, the shorthand expression \(\nabla ^{2}y_{\mathrm{D}}(t,y)[F,F] + \nabla y_{\mathrm{D}}(t,y)G\) in (4.2.41) means a tensor \([\sum _{n=1}^{d}\sum _{m=1}^{d}\frac{\partial ^{2}[y_{\mathrm{D}}]_{k}(t,y)} {\partial x_{m}\partial x_{n}} F_{mi}F_{nj} +\sum _{ n=1}^{d}\frac{\partial [y_{\mathrm{D}}]_{k}(t,y)} {\partial x_{n}} G_{nij}]\) indexed by (k, i, j).
 
24
We refer, e.g., to [473, Formula (2) with (9)] or [474, Formula (2) with (16)] for damage models and to [288, Formulas 26.22-23] in the context of plasticity.
 
25
Note that the pair \((y_{0},\lambda _{0})\) is then stable for every \(\kappa \leq \infty \).
 
26
The idea of sharp interfaces has been considered in [372, 373] in terms of \(\lambda\), involving a BV-norm of \(\lambda\) into \(\mathcal{E}_{\varepsilon,\kappa }\).
 
27
Such nonlocal stored energy was advocated, e.g., in [502, 510, 511] as a certain limit from the Ericksen–Timoshenko model.
 
28
We can see this from the argument that terms like \(\frac{1} {2}\vert \nabla y\vert ^{2}\) and \(\frac{\varepsilon }{2}\vert \nabla ^{2}y\vert ^{2}\) in (4.2.43) and (4.2.44) are physically dimensionless (before being multiplied by elastic moduli to get specific energy in J/m3), so that \(\varepsilon\) has, in fact, the physical dimension m2 and thus scales together with scaling the length unit.
 
29
In [416], a similar assertion was proved for the special case \(\mathcal{S}\) = identity and with regularizing gradient term \(\varepsilon \vert \nabla \lambda \vert ^{2}\) in the stored energy under stronger data qualification, e.g., a “nonbuckling” condition for a given specimen and given loading regime, later weakened in [328].
 
30
In particular, the Moore–Smith convergence (2.​1.​23) in Remark 2.​1.​8 uses, in fact, the nonmetrizable convex compactification of a bounded set in \(\mathrm{B}([0,T]; \mathrm{L}^{p}(\varOmega; \mathbb{R}^{d\times d}))\), where deformation gradients of the approximate solutions must live in the sense of \(Y _{H,\rho }^{p}(\varOmega; \mathbb{R}^{d\times d})^{[0,T]}\) with \(\rho < \infty \) large enough; cf. (C.2.10).
 
31
Utilization of Young measures for numerical calculations was first implemented in [456] in a one-dimensional case. Use of (iterated) laminates has been exploited for some evolution of relaxed problems in SMA modeling in [56, 58, 65, 328, 540, 576], or for the static case, also [23, 31, 326, 327, 366] and [520, Chap. 6]. An even more sophisticated and realistic dissipation counting, also for rotation of laminates and not only for volume-fraction changes, was implemented for second-order laminates in small strains in [56].
 
32
In fact, in actual computational simulations in particular problems, if is chosen too small, an extremely slow convergence can be expected, because the oscillations of \(\nabla y\) must be realized through a very fine triangulation of \(\varOmega\) rather than by the laminated Young measure itself. For = 0, we are, in fact, back in the position of Section 4.2.2.1.
 
33
Shape-memory alloys mostly exhibit very regular distributions of their components, as drawn schematically in Figure 4.5(a) and are thus called intermetallics. Moreover, atoms are bonded by chemical bonds, and single crystals are thus giant molecules. Such shape-memory materials are thus very particular alloys, and not only from the purely mechanical viewpoint.
 
34
It concerns atomistic vs. continuum-mechanical models, micro- vs. meso- vs. macro-level models, small vs. large strains, static vs. rate-independent quasistatic vs. fully dynamical, isothermal vs. anisothermal, more vs. less phenomenological, single- vs. poly-crystals, etc.
 
35
Namely, \(V (F):= -k_{\mathrm{B}}\theta \,\mathrm{ln}\big(\sum _{n=1}^{L}\mathrm{e}^{-V _{n}(F)/(k_{\mathrm{B}}\theta )}\big)\), where \(k_{\mathrm{B}}\) is the Boltzmann constant (related per unit volume), and \(\theta\) is temperature (considered here fixed). Comparing to (4.2.70), this formula does not yield the desired elastic moduli and does not keep the wells exactly on the prescribed orbits \(\mathrm{SO}(3)U_{n}\), but the deviation is negligible. Cf. [337, 416, 525, 539].
 
36
See Hormann and Zimmer [274] for a construction exactly keeping the prescribed wells and elastic moduli.
 
37
In fact, V from (4.2.69)–(4.2.70) has 2N+2 minima at the orbits \(\mathrm{O}(d)Q_{n}^{-1}U_{n}\), n = 1, , N, where \(\mathrm{O}(3):=\{\, Q \in \mathbb{R}^{3\times 3}\;\vert \ Q^{\mathsf{T}}Q = \mathbb{I}\,\}\) is the orthogonal group having two connected orbits. The “parasite” orbits with \(\det Q < 0\) are not physical and are (usually) not seen during numerical simulations.
 
38
Considering the duality \(\langle \sigma,e\rangle:=\sigma: e\) that determines \(\boldsymbol{\delta }_{K}^{{\ast}}\) as the conjugate to \(\boldsymbol{\delta }_{K}^{}\) with the physical dimensions Jm−3 and 1, the set K is in the space of dimension Jm−3=Nm−2=Pa.
 
39
Following [522, Formula (33)], this was developed and adopted in [25, 26, 337, 416, 479, 497, 524, 525, 539] and independently also in physics; see [277, 590, 614].
 
40
This phenomenology can still reflect the philosophy that in any case, the stored energy itself influences the dissipation. The common philosophy is that if the orbits \(\mathrm{SO}(3)U_{n_{1}}\) and \(\mathrm{SO}(3)U_{n_{2}}\) are rank-1 connected, then the dissipation within the transformation between these (phase) variants is small, or rather zero; otherwise, it is related to metastability and a stress that the material must inevitably withstand to move out of the bottoms of the wells during the phase transformation. The philosophy that the multiwell landscape of the stored energy is the only source of hysteretic response was advocated essentially in [1, 44, 45, 285, 562, 602, 605].
 
41
In [524], dealing essentially with d = 1 (see also [416] for d ≥ 2), a regularization of \(\mathcal{E}_{\mathrm{rlx},\kappa }(t,y,\nu,\lambda )\) of type \(\int _{\varOmega }V \bullet \nu - f(t) \cdot y +\delta \vert \nabla \lambda \vert ^{2}\,\mathrm{d}x\) with \(\delta > 0\) instead of \(\int _{\varOmega }V \bullet \nu - f(t) \cdot y\,\mathrm{d}x\) in (4.2.60a) was proposed, justified as a certain limit of a so-called Ericksen–Timoshenko beam model as in Ren, Rogers, and Truskinovsky [502, 511].
 
42
To show that \(\mathcal{D} = \mathcal{D}_{\mathcal{R}}\) instead of (3.​2.​9), we use that \(\mathcal{D}_{\mathcal{R}}(z_{1},z_{2}) = \mathcal{R}(z_{2}-z_{1})\), cf. (3.​2.​11) in Example 3.​2.​5, because a direct use of (3.​2.​9) would bring analytic troubles with \({\buildrel .\over z}\) not valued in \(\mathrm{L}^{1}(\varGamma \mathrm{C})\). Then \(\mathcal{D}_{\mathcal{R}}(z_{1},z_{2}) = \mathcal{R}(z_{2}-z_{1}) =\int _{\varGamma \mathrm{C}}\!a(x)\vert z_{2}(x)-z_{1}(x)\vert \,\mathrm{d}S =\int _{\varGamma _{\mathrm{D},2}\setminus \varGamma _{\mathrm{D},1}}\!a(x)\,\mathrm{d}S\).
 
43
In fact, since \(\mathcal{E}(t,y,\cdot )\) is “pointwise” nondecreasing and both \(\mathcal{E}(t,y,\cdot )\) and \(\mathcal{R}\) are local (this argument will be more explicit in the regularized problem; cf. (4.2.93) below) and therefore there cannot be any tendency for “healing” \({\buildrel .\over z} > 0\), we could redefine \(\mathcal{R}\) for \({\buildrel .\over z} > 0\) essentially arbitrarily, e.g., such that \(\mathcal{R}\) will be continuous and coercive on \(\mathrm{L}^{1}(\varGamma \mathrm{C})\) like \(\mathcal{R}({\buildrel .\over z}):=\int _{\varGamma \mathrm{C}}a(x)\vert {\buildrel .\over z}(x)\vert \,\mathrm{d}S\). Yet such \(\mathcal{R}\) would not be weakly continuous, so that there would not be any essential benefit from such a modification.
 
44
In fact, however, considering \(z[[y_{\mathrm{D}}(t,\cdot ) \circ y]] = 0\) in (4.2.77d) would yield a different regularized problem (4.2.85) below.
 
45
Alternatively, the assertion follows also from Proposition 4.2.26 below. Anyhow, the direct proof is of some interest, too.
 
46
Cf. also [418, Formula (4.35)] or [373, Lemma 6.1] or [545, Formula (3.71)].
 
47
To be more specific and referring to Example 2.​4.​5, one can penalize the constraint r = 0 in the constraint set \(A =\{\, q = (y,z,r)\;\vert \ \sqrt{z}[[y]] = r,\ r = 0\,\}\) by considering the \(\mathrm{L}^{2}(\varGamma \mathrm{C})\)-norm and α = 2 in (2.​4.​5).
 
48
Note that k in this \(\varGamma \mathrm{C}\)-term has, in fact, the physical dimension J/m d+1, so that this term has indeed dimensions in Joule. The other k’s have, however, different dimensions; for simplicity, we have used the same letter k for all of them in this purely mathematical exposition.
 
49
Note, however, that the delamination-activation condition \(\frac{1} {2k} \frac{\sigma ^{2}} {z^{2}} (t) + r(t) \leq a\) with \(\sigma (t):= \partial _{F}^{_{}}W(\nabla y(t))\vert _{\varGamma \mathrm{C}}\nu\) in (4.2.93d) exhibits again for \(k \rightarrow \infty \) the previous effect that the differential formulation no longer experiences any driving stress toward delamination. See also the arguments in Remark 4.3.54.
 
50
The linearity of W(F, ⋅ ) in (4.2.102) corresponds to a so-called 1− d model, with d having the meaning of density of microcracks or microvoids, which is very popular in engineering; in this context, we put z: = 1−d, which is occasionally used in the mathematical literature; cf. [82, 205, 206].
 
51
In case d = 3, both κ and a have the physical units Jm−3 = Pa.
 
52
Cf. also [418, Sect.4.2] or [258].
 
53
In contrast to BV-spaces as defined in (4.2.98) used in problems with Neumann boundary condition in Sect. 4.2.4.1, we supported the functions of BD-spaces on the closure of \(\varOmega\) to have good control of traces here.
 
54
Equivalently, (4.3.12c) can also be written as \(\mathcal{R}_{_{\mathrm{PR}}}({\buildrel . \over \pi }) =\int _{\bar{\varOmega }}\boldsymbol{\delta }_{S}^{{\ast}}(\mathrm{d}{\buildrel . \over \pi }/\mathrm{d}\vert {\buildrel . \over \pi }\vert )\,\mathrm{d}\vert {\buildrel . \over \pi }\vert \), where \(\vert {\buildrel . \over \pi }\vert \) is the total variation of \({\buildrel . \over \pi }\), and \(\mathrm{d}{\buildrel . \over \pi }/\mathrm{d}\vert {\buildrel . \over \pi }\vert \) is the Radon–Nikodym derivative of \(\mathrm{d}{\buildrel . \over \pi }\) with respect to \(\vert {\buildrel . \over \pi }\vert \). See [143] for further details about functions on \(\mathcal{M}(\bar{\varOmega }; \mathbb{R}d\times d \mathrm{dev} )\).
 
55
In fact, suitably qualified nonvanishing f = 0 or g = 0 as a “safe load” was admitted in [143, formulas (2.17)–(2.18)].
 
56
This means that \(\mathbb{B}\pi = \mathbb{C}^{-1}(\sum _{i=1}^{n}\mathbb{C}_{i}\pi _{i})\) and \(\mathbb{H}\pi:\pi =\sum _{ i=1}^{n}(\mathbb{H}_{i}+\mathbb{C}_{i})\pi _{i}:\pi _{i} - \mathbb{C}\mathbb{B}\pi: (\mathbb{B}\pi )\).
 
57
In fact, since the driving force \(\partial _{z}W_{\varepsilon }\) for the ansatz like (4.3.74) is always nonnegative, namely a′(z)V 1(x, e) ≥ 0, the tendency for healing can be realized only through the grading-damage term—so up to small length effects, healing is not important.
 
58
For this, one can simply modify (5.​2.​84) on p. 533 straightforwardly by replacing \(\bar{\xi }_{\tau }(t)\) with \(\bar{\xi }_{\tau }(t) +\bar{\zeta } _{\tau }(t)\); note that r > d is not needed now.
 
59
For \(z\neq 0\), we can take constant recovery sequences \(z_{\varepsilon } = z\). For z = 0, the recovery sequences will depend on e: for e > 0, we choose \(z_{\varepsilon } =\varepsilon\) and obtain \(\mathcal{J}_{\varepsilon }(e,z_{\varepsilon }) = \vert e-1\vert \), while for e < 0, let \(z_{\varepsilon } = -\varepsilon\) obtaining \(\mathcal{J}_{\varepsilon }(e,z_{\varepsilon }) = \vert e+1\vert \).
 
60
More specifically, the experiments in Figures 4.164.18 consider Young’s modulus \(E_{_{\mathrm{Young}}} = 27\) GPa, Poisson’s ratio \(\nu = 0.2\), the factor of influence κ = 20 Jm−2, and the activation threshold a = 500 Jm−3. The Lamé constants \(\lambda\) and \(\mu\) in (4.3.100) are determined by (4.1.24)
 
61
In fact, r = 2 = d was used for the calculations depicted in Figure 4.18, so that the condition r > d needed for Proposition 4.3.22 has been satisfied only “up to \(\varepsilon\)-tolerance.”
 
62
As we pull the springs by ever increasing load u D(t), we do not consider a possible Signorini-type constraint u ≥ 0, nor the unidirectional constraint \({\buildrel .\over z} \leq 0\) (as considered in Sections 4.2.3, 4.3.4.2, and 4.3.4.3), which would not be active in this regime anyhow.
 
63
The other solutions take some \(z(t_{_{\mathrm{M}\mathrm{D}}}) = z_{_{\mathrm{M}\mathrm{D}}}\) with \(0 < z_{_{\mathrm{M}\mathrm{D}}} < 1\). To see that such solutions are also maximally dissipative, one can first exploit Example 4.3.40, and for \(z_{_{\mathrm{M}\mathrm{D}}} = 1/2\), consider a 1 = a 2 and the scenario that only one spring breaks at time \(t_{_{\mathrm{M}\mathrm{D}}}\) to see that the second spring becomes supercritical, and its break then does not contribute to a possible positive residuum that would violate (3.3.14). An analogous consideration but with more than two parallel springs clearly applies for every rational number \(z_{_{\mathrm{M}\mathrm{D}}}\) from (0, 1).
 
64
For example, one can take \(\xi (t) = -\partial _{z}\mathcal{E}(t,u(t), 1)\) for \(t \leq t_{_{\mathrm{M}\mathrm{D}}}\) and \(\xi = a\) for \(t > t_{_{\mathrm{M}\mathrm{D}}}\).
 
65
Note that on considering the physical dimensions in this 1-dimensional case as [a] = J, [u] = m, \([\mathbb{K}] = [\mathbb{C}] =\) J/m2, and [v 0] = m/s, the formulas (4.3.107) and (4.3.109) give indeed a correct physical dimension of time, i.e., \([t_{_{\mathrm{E}\mathrm{S}}}] = [t_{_{\mathrm{M}\mathrm{D}}}] = [t_{_{\mathrm{V}\mathrm{V}}}] =\,\) s.
 
66
The maximum-dissipation principle is sometimes used, although rather heuristically, in engineering models of damage with plasticity and hardening; cf. [136].
 
67
More specifically, \(\mathbb{C} = \mathbb{C}(\zeta )\) was affine as a function of \(\zeta\) with \(\mathbb{C}(1)\) as in (4.1.10) with (4.1.24) with Young’s modulus \(E_{_{\mathrm{Young}}} = 27\,\) GPa and Poisson’ ratio \(\nu = 0.2\), \(\mathbb{C}(0) = \mathbb{C}(1)/1000\), the hardening \(\mathbb{H} = \mathbb{C}(1)/4\), the elastic domain \(S:=\{\,\sigma \in \mathbb{R}d\times d \mathrm{dev} \;\vert \ \vert \sigma \vert \leq \sigma _{\mathrm{y}}\,\}\) with the yield stress \(\sigma _{\mathrm{y}} = 2\,\) MPa, the damage energy a = 1 kPa, and the damage length-scale coefficient κ 1 = 10−9 J/m.
 
68
Some shortcuts were taken in comparison with the model (4.3.116), namely κ 2 = 0 and r = 2 instead of κ 2 > 0 and r > 2 were considered, and then, after triangulation of \(\varOmega\), P1-elements were used for u and \(\zeta\), while P0-elements sufficed for \(\pi\) in [552]. Instead of the transformation leading to an alternating recursive quadratic and second-order cone programming, cf. Remark 3.​6.​15 on p. 208, to solve the discretized version of (4.3.119), a quasi-Newton iterative procedure was used; cf. [99] for details.
 
69
As in (4.1.28), we assume the prolongation \(u_{\mathrm{D}}^{}(t) \in \mathrm{H}^{1}(\varOmega; \mathbb{R}^{d})\), so that in particular, \([[u_{\mathrm{D}}^{}]] \equiv 0\).
 
70
In fact, such a regularized problem was devised in [109, 310] in a position of the original problem without ambitions to pass \(k \rightarrow \infty \); cf. also [373, Sect.6.2].
 
71
See [545] for more details.
 
72
More specifically, the hard cylindrical fiber with the Young modulus \(E_{\mathrm{Young}}\doteq70\,\) GPa and Poisson ratio \(\nu \doteq0.2\) of the diameter 15\(\mu\) m in the soft cube matrix with \(E_{\mathrm{Young}}\doteq2.8\,\) GPa and \(\nu \doteq0.3\) of the size 30×30\(\mu\) m glued by the adhesive with \(\kappa _{\mathrm{n}}^{} =\kappa _{ \mathrm{t}}^{}/3 = 675\) TPa/m was used for the calculations presented in Figures 4.30 and 4.31.
 
73
We can use the damage-type construction for \(\zeta\) and the quadratic trick (cf. Lemma 3.​5.​3) for \(\pi\); cf. [542] for details.
 
74
In fact, the classical formulation (4.3.160) assumes \(\varGamma \mathrm{C}\) smooth and uses the Green formula on the possibly curved surface; cf. (B.4.12) on p. 602.
 
75
As in (4.3.160), the surface Green formula (B.4.12) is used to derive the classical formulation (4.3.163).
 
76
The finite interpenetration up the depth, say, \(u_{\mathrm{f}} > 0\) means that \(\lim _{v\nearrow u_{\mathrm{f}}}\gamma (v) = \infty \) and \(\gamma (v) = \infty \) for \(v \geq u_{\mathrm{f}}\). This is a quite realistic replacement of the Signorini contact. In the context of the static friction, see [169].
 
77
We assume \(\mu\) constant. For nonconstant \(\mu\), the “max” in (4.3.191) distinguishes the norm of \(\mu\) as an operator \(v\mapsto \mu v\) on \(\mathrm{H}^{1/2}(\varGamma; \mathbb{R}^{d})\) and a function in \(\mathrm{L}^{\infty }(\varGamma )\), respectively. Unfortunately, the formula (4.3.191) is very implicit, and at the time of writing, there are no explicit results in any nontrivial domain \(\varOmega\) except the half-space.
 
78
A discrete variant of such a maximum-dissipation principle \(\int _{[0,T]\times \varGamma \mathrm{C}}\sigma _{\mathrm{t}}^{}(\bar{u}_{\tau })\sigma _{\mathrm{n}}^{}(u)[[{\buildrel .\over u}_{\tau }]]\mathrm{n}\,\mathrm{d}S\mathrm{d}t\) = \(\int _{[0,T]\times \varGamma \mathrm{C}}\mu \sigma _{\mathrm{n}}^{}(\bar{u}_{\tau })\vert [[{\buildrel .\over u}_{\tau }]]\mathrm{n}\vert \,\mathrm{d}S\mathrm{d}t\) is at our disposal and allows for a passage to the limit by weak (lower semi)continuity.
 
79
At this point, we assume that the temperature in the whole ferromagnet is constant and well below the so-called Curie point. If the temperature approached the Curie point, ferromagnetism would disappear by \(M\mathrm{S} \rightarrow 0\), and the material would become paramagnetic. Moreover, substantial deviations (up to 10–30%) from the constraint (4.4.1) can, in fact, be expected around the Curie point in the outer magnetic field; cf. [68, Figure 5.​4]. This will be considered later, in Sect. 5.​3.​3.​2
 
80
An alternative setting using the magnetic induction \(B =\mu _{ 0}^{}(h_{\mathrm{dem}}^{} + m)\) as another nondissipative variable instead of \(\phi\) while \(\mathcal{Y}\) involves the constraint \(\mathop{\mathrm{div}}\limits B = 0\) was implemented in [394, Sect.4.2].
 
81
Instead of magnetization, one can formulate the problem in terms of magnetic polarization \(j =\mu _{ 0}^{}m\). The physical dimension of j is Tesla, while the physical dimension of the magnetization and m and of magnetic field \(h_{\mathrm{ext}}\) or \(h_{\mathrm{dem}}^{} = \nabla \phi\) is A/m. This also shows that \(\varepsilon\) in (4.4.5) has the physical dimension Jm/A2, so that the term \(\frac{\varepsilon }{2}\vert \nabla m\vert ^{2}\) has the physical dimension J/m3=Pa.
 
82
More impurities or immobile dislocations make movement of domain walls harder, which further needs a bigger activation force, dissipates more energy, and leads to a wider hysteretic loop under cyclical loading by the external magnetic field \(h_{\mathrm{ext}}\). Such dry-friction-type models have been given by Bergqvist [67], Jiles [286], Podio-Guidugli [481], and Visintin [610, 611], and in a nonlocal variant also [612].
 
83
The physical dimension of both \(M\mathrm{S}\) and \(H_{_{\mathrm{C}}}\) is the physical dimension of intensity of a magnetic field, i.e., A/m. Since \(\mu _{0}^{}:= 4\pi \times 10^{-7}\) H/m, the physical dimension of \(\mu _{0}^{}H_{_{\mathrm{C}}}M\mathrm{S}\) is indeed specific energy, i.e., J/m3=Pa.
 
84
If d = 3, counting that the magnetization vector can move only over the sphere \(M\mathrm{S}S^{3}\) from (4.4.7), the energy in J/m3 needed (and thus dissipated) by moving a domain wall of the area 1 m2 by 1 m and thereby reorienting the magnetization from m to − m is just \(\mu _{0}^{}H_{_{\mathrm{C}}}M\mathrm{S}\).
 
85
See [69, Appendix A]. Alternatively, pinning effects were suggested by adding \(h_{\mathrm{eff}}\) in the Landau–Lifshitz equation instead of (4.4.15) in [610], although without any mathematical justification. However, the resulting augmented equations proposed in [50] and [610] are no longer equivalent, although the original Gilbert and Landau–Lifschitz equations are equivalent to each other. The difference between the Gilbert and Landau–Lifschitz formalism has been pointed out and explained in [481].
 
86
In general, the div–curl lemma [443] says that the product of two L 2-weakly convergent sequences \((u_{k})_{k\in \mathbb{N}}^{}\) and \((v_{k})_{k\in \mathbb{N}}^{}\) converges in the sense of distributions, provided that \(\{\mathop{\mathrm{div}}\limits \, u_{k}\}_{k\in \mathbb{N}}^{}\) and \(\{\mathop{\mathrm{curl}}\, v_{k}\}_{k\in \mathbb{N}}^{}\) are bounded in H −1; cf., e.g., [177, Sect. 5.​2]. Here it is used for the case \(\mathop{\mathrm{curl}}\, v_{k} = 0\).
 
87
In fact, some shortcuts in calculations (not fully compatible with the above-presented theory) were used in [335, 537], in particular \(\mathcal{S}\) in (4.4.13) considered simply the identity, and \(\phi\) was evaluated only approximately. The approximation of Young measures was made a more effective adaptive activation using the Weierstrass maximum principle, cf. also [331, 332, 493].
 
88
A virgin magnetization curve arises when magnets without any domain structure begin to be magnetized in an outer field; cf. Figure 4.48.
 
Literature
1.
go back to reference R. Abeyaratne and J. K. Knowles. On the propagation of maximally dissipative phase boundaries in solids. Q. Appl. Math., 50:149–172, 1992.MathSciNetMATH R. Abeyaratne and J. K. Knowles. On the propagation of maximally dissipative phase boundaries in solids. Q. Appl. Math., 50:149–172, 1992.MathSciNetMATH
2.
6.
go back to reference E. C. Aifantis. On the microstructural origin of certain inelastic models. ASME J. Eng. Mater. Technol., 106:326–330, 1984.CrossRef E. C. Aifantis. On the microstructural origin of certain inelastic models. ASME J. Eng. Mater. Technol., 106:326–330, 1984.CrossRef
7.
8.
go back to reference H.-D. Alber. Materials with Memory. Springer-Verlag, Berlin, 1998.MATH H.-D. Alber. Materials with Memory. Springer-Verlag, Berlin, 1998.MATH
10.
go back to reference J. Alberty and C. Carstensen. Numerical analysis of time-depending primal elastoplasticity with hardening. SIAM J. Numer. Anal., 37:1271–1294, 2000.MathSciNetMATHCrossRef J. Alberty and C. Carstensen. Numerical analysis of time-depending primal elastoplasticity with hardening. SIAM J. Numer. Anal., 37:1271–1294, 2000.MathSciNetMATHCrossRef
13.
go back to reference L. Ambrosio and E. De Giorgi. Un nuovo tipo di funzionale del calcolo delle variazioni. Atti della Accademia Nazionale dei Lincei, Rend. Classe di Sci. Fisiche, Mat. e Natur., 82:199–210, 1988. L. Ambrosio and E. De Giorgi. Un nuovo tipo di funzionale del calcolo delle variazioni. Atti della Accademia Nazionale dei Lincei, Rend. Classe di Sci. Fisiche, Mat. e Natur., 82:199–210, 1988.
14.
go back to reference L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford, New York, 2000.MATH L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford, New York, 2000.MATH
16.
go back to reference L. Ambrosio and V. M. Tortorelli. Approximation of functional depending on jumps via by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math., 43:999–1036, 1990.MathSciNetMATHCrossRef L. Ambrosio and V. M. Tortorelli. Approximation of functional depending on jumps via by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math., 43:999–1036, 1990.MathSciNetMATHCrossRef
17.
go back to reference L. Ambrosio and V. M. Tortorelli. Approximation of frre discontinuity problems. Boll. Unione Mat. Italiana, 6-B:105–123, 1992.MathSciNetMATH L. Ambrosio and V. M. Tortorelli. Approximation of frre discontinuity problems. Boll. Unione Mat. Italiana, 6-B:105–123, 1992.MathSciNetMATH
18.
19.
go back to reference L.-E. Andersson and A. Klarbring. A review of the theory of static and quasi-static frictional contact problems in elasticity. Phil. Trans. Roy. Soc. London Ser. A, 359:2519–2539, 2001.MathSciNetMATHCrossRef L.-E. Andersson and A. Klarbring. A review of the theory of static and quasi-static frictional contact problems in elasticity. Phil. Trans. Roy. Soc. London Ser. A, 359:2519–2539, 2001.MathSciNetMATHCrossRef
21.
23.
go back to reference E. Aranda and P. Pedregal. On the computation of the rank-one convex hull of a function. SIAM J. Sci. Comput., 22:1772–1790 (electronic), 2000. E. Aranda and P. Pedregal. On the computation of the rank-one convex hull of a function. SIAM J. Sci. Comput., 22:1772–1790 (electronic), 2000.
25.
go back to reference M. Arndt. Modelling and numerical simulation of martensitic transformation. In W. Wendland and M. Efendiev, editors, Anal. and Simul. of Multifield Probl., L. N. Appl. Comput. Mech., pages 59–66. Springer, 2003. M. Arndt. Modelling and numerical simulation of martensitic transformation. In W. Wendland and M. Efendiev, editors, Anal. and Simul. of Multifield Probl., L. N. Appl. Comput. Mech., pages 59–66. Springer, 2003.
26.
go back to reference M. Arndt, M. Griebel, and T. Roubíček. Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mech. Thermodyn., 15:463–485, 2003.MATHCrossRefMathSciNet M. Arndt, M. Griebel, and T. Roubíček. Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mech. Thermodyn., 15:463–485, 2003.MATHCrossRefMathSciNet
31.
go back to reference S. Aubry, M. Fago, and M. Ortiz. A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. Comput. Methods Appl. Mech. Engrg., 192:2823–2843, 2003.MathSciNetMATHCrossRef S. Aubry, M. Fago, and M. Ortiz. A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. Comput. Methods Appl. Mech. Engrg., 192:2823–2843, 2003.MathSciNetMATHCrossRef
32.
go back to reference F. Auricchio, A. Mielke, and U. Stefanelli. A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. Math. Models Meth. Appl. Sci., 18:125–164, 2008.MathSciNetMATHCrossRef F. Auricchio, A. Mielke, and U. Stefanelli. A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. Math. Models Meth. Appl. Sci., 18:125–164, 2008.MathSciNetMATHCrossRef
33.
go back to reference F. Auricchio and L. Petrini. A three-dimensional model describing stress-temperature induced solid phase transformations. Int. J. Numer. Meth. Engrg., 61:716–737 and 807–836, 2004. F. Auricchio and L. Petrini. A three-dimensional model describing stress-temperature induced solid phase transformations. Int. J. Numer. Meth. Engrg., 61:716–737 and 807–836, 2004.
34.
go back to reference F. Auricchio, A. Reali, and U. Stefanelli. A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int. J. Plasticity, 23:207–226, 2007.MATHCrossRef F. Auricchio, A. Reali, and U. Stefanelli. A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int. J. Plasticity, 23:207–226, 2007.MATHCrossRef
35.
go back to reference F. Auricchio and E. Sacco. Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching-bending loadings. Int. J. Solids Structures, 38:6123–6145, 2001.MATHCrossRef F. Auricchio and E. Sacco. Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching-bending loadings. Int. J. Solids Structures, 38:6123–6145, 2001.MATHCrossRef
36.
go back to reference F. Auricchio, R. L. Taylor, and J. Lubliner. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behaviour. Comp. Meth. Appl. Mech. Engr., 146:281–312, 1997.MATHCrossRef F. Auricchio, R. L. Taylor, and J. Lubliner. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behaviour. Comp. Meth. Appl. Mech. Engr., 146:281–312, 1997.MATHCrossRef
37.
go back to reference Y. Bai and Z.-P. Li. A truncation method for detecting singular minimizers involving the Lavrentiev phenomenon. Math. Models Meth. Appl. Sci., 16:847–867, 2006.MathSciNetMATHCrossRef Y. Bai and Z.-P. Li. A truncation method for detecting singular minimizers involving the Lavrentiev phenomenon. Math. Models Meth. Appl. Sci., 16:847–867, 2006.MathSciNetMATHCrossRef
38.
39.
go back to reference J. M. Ball. Minimizers and the Euler-Lagrange equations. In Trends and applications of pure mathematics to mechanics (Palaiseau, 1983), volume 195 of Lecture Notes in Physics, pages 1–4. Springer, Berlin, 1984. J. M. Ball. Minimizers and the Euler-Lagrange equations. In Trends and applications of pure mathematics to mechanics (Palaiseau, 1983), volume 195 of Lecture Notes in Physics, pages 1–4. Springer, Berlin, 1984.
40.
go back to reference J. M. Ball. Singular mimimizers and their significance in elasticity. In Directions in partial differential equations, pages 1–15. Acad. Press, 1987. J. M. Ball. Singular mimimizers and their significance in elasticity. In Directions in partial differential equations, pages 1–15. Acad. Press, 1987.
43.
go back to reference J. M. Ball. Some open problems in elasticity. In P. Newton, P. Holmes, and A. Weinstein, editors, Geometry, Mechanics, and Dynamics, pages 3–59. Springer, New York, 2002. J. M. Ball. Some open problems in elasticity. In P. Newton, P. Holmes, and A. Weinstein, editors, Geometry, Mechanics, and Dynamics, pages 3–59. Springer, New York, 2002.
44.
go back to reference J. M. Ball, C. Chu, and R. D. James. Hysteresis during stress-induced variant rearrangement. J. de Physique IV (C8), 5:245–251, 1995. J. M. Ball, C. Chu, and R. D. James. Hysteresis during stress-induced variant rearrangement. J. de Physique IV (C8), 5:245–251, 1995.
45.
go back to reference J. M. Ball, P. J. Holmes, R. D. James, R. L. Pego, and P. J. Swart. On the dynamics of fine structure. J. Nonlinear Sci., 1:17–70, 1991.MathSciNetMATHCrossRef J. M. Ball, P. J. Holmes, R. D. James, R. L. Pego, and P. J. Swart. On the dynamics of fine structure. J. Nonlinear Sci., 1:17–70, 1991.MathSciNetMATHCrossRef
46.
47.
go back to reference J. M. Ball and R. D. James. Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. Roy. Soc. London Ser. A, 338:389–450, 1992.MATHCrossRef J. M. Ball and R. D. James. Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. Roy. Soc. London Ser. A, 338:389–450, 1992.MATHCrossRef
48.
go back to reference J. M. Ball and V. J. Mizel. One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Rational Mech. Anal., 90:325–388, 1985.MathSciNetMATHCrossRef J. M. Ball and V. J. Mizel. One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Rational Mech. Anal., 90:325–388, 1985.MathSciNetMATHCrossRef
49.
go back to reference J. M. Ball and F. Murat. W 1, p -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal., 58:225–253, 1984.MathSciNetMATHCrossRef J. M. Ball and F. Murat. W 1, p -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal., 58:225–253, 1984.MathSciNetMATHCrossRef
50.
go back to reference W. Baltensperger and J. S. Helman. Dry friction in micromagnetics. IEEE Tran. Mag., 27:4772–4774, 1991.CrossRef W. Baltensperger and J. S. Helman. Dry friction in micromagnetics. IEEE Tran. Mag., 27:4772–4774, 1991.CrossRef
54.
go back to reference L. Banks-Sills and D. Askenazi. A note on fracture criteria for interface fracture. Int. J. Fracture, 103:177–188, 2000.CrossRef L. Banks-Sills and D. Askenazi. A note on fracture criteria for interface fracture. Int. J. Fracture, 103:177–188, 2000.CrossRef
56.
go back to reference T. Bartel and K. Hackl. A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. Zeitschrift angew. Math. Mech., 89:792–809, 2009.MATHCrossRef T. Bartel and K. Hackl. A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. Zeitschrift angew. Math. Mech., 89:792–809, 2009.MATHCrossRef
58.
go back to reference S. Bartels, C. Carstensen, K. Hackl, and U. Hoppe. Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Engrg., 93:5143–5175, 2004.MathSciNetCrossRefMATH S. Bartels, C. Carstensen, K. Hackl, and U. Hoppe. Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Engrg., 93:5143–5175, 2004.MathSciNetCrossRefMATH
59.
go back to reference S. Bartels, A. Mielke, and T. Roubíček. Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal., 50:951–976, 2012.MathSciNetMATHCrossRef S. Bartels, A. Mielke, and T. Roubíček. Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal., 50:951–976, 2012.MathSciNetMATHCrossRef
62.
go back to reference Z. P. Bažant and M. Jirásek. Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Engrg. Mech., 128:1119–1149, 2002.CrossRef Z. P. Bažant and M. Jirásek. Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Engrg. Mech., 128:1119–1149, 2002.CrossRef
65.
go back to reference B. Benešová. Models of specific shape-memory materials. Master’s thesis, Math.-Phys. Faculty, Charles Univ., Prague, 2008. B. Benešová. Models of specific shape-memory materials. Master’s thesis, Math.-Phys. Faculty, Charles Univ., Prague, 2008.
67.
go back to reference A. Bergqvist. Magnetic vector hysteresis model with dry friction-like pinning. Physica B, 233:342–347, 1997.CrossRef A. Bergqvist. Magnetic vector hysteresis model with dry friction-like pinning. Physica B, 233:342–347, 1997.CrossRef
68.
go back to reference G. Bertotti. Hysteresis in Magnetism. Acad. Press, San Diego, 1998. G. Bertotti. Hysteresis in Magnetism. Acad. Press, San Diego, 1998.
69.
go back to reference M. Bertsch, P. Podio Guidugli, and V. Valente. On the dynamics of deformable ferromagnets i. global weak solutions for soft ferromanets at rest. Annali Mat. Pura Appl., 179:331–360, 2001. M. Bertsch, P. Podio Guidugli, and V. Valente. On the dynamics of deformable ferromagnets i. global weak solutions for soft ferromanets at rest. Annali Mat. Pura Appl., 179:331–360, 2001.
70.
go back to reference K. Bhattacharya. Microstructure of Martensite. Why it Forms and How it Gives Rise to the Shape-Memory Effect. Oxford Univ. Press, New York, 2003. K. Bhattacharya. Microstructure of Martensite. Why it Forms and How it Gives Rise to the Shape-Memory Effect. Oxford Univ. Press, New York, 2003.
71.
go back to reference K. Bhattacharya, P. Purohit, and B. Craciun. Mobility of twin and phase boundaries. Journal de Physique IV, 112:163–166, 2003.CrossRef K. Bhattacharya, P. Purohit, and B. Craciun. Mobility of twin and phase boundaries. Journal de Physique IV, 112:163–166, 2003.CrossRef
82.
go back to reference E. Bonnetti and G. Schimperna. Local existence for Frémond model of damage in elastic materials. Continuum Mech. Thermodyn., 16:319–335, 2004.CrossRef E. Bonnetti and G. Schimperna. Local existence for Frémond model of damage in elastic materials. Continuum Mech. Thermodyn., 16:319–335, 2004.CrossRef
83.
go back to reference R. De Borst, A. Benallal, and O.M. Heeres. A gradient-enhanced damage approach to fracture. J. de Physique IV, 6:491–509, 1996. R. De Borst, A. Benallal, and O.M. Heeres. A gradient-enhanced damage approach to fracture. J. de Physique IV, 6:491–509, 1996.
86.
go back to reference G. Bouchitté, A. Mielke, and T. Roubíček. A complete-damage problem at small strains. Zeitschrift angew. Math. Physik, 60:205–236, 2009.MATHCrossRefMathSciNet G. Bouchitté, A. Mielke, and T. Roubíček. A complete-damage problem at small strains. Zeitschrift angew. Math. Physik, 60:205–236, 2009.MATHCrossRefMathSciNet
87.
go back to reference G. Bouchitté and M. Valadier. Integral representation of convex functional on a space of measures. J. Funct. Anal., 80:398–420, 1988.MathSciNetMATHCrossRef G. Bouchitté and M. Valadier. Integral representation of convex functional on a space of measures. J. Funct. Anal., 80:398–420, 1988.MathSciNetMATHCrossRef
89.
go back to reference B. Bourdin. Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound., 9:411–430, 2007.MathSciNetMATHCrossRef B. Bourdin. Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound., 9:411–430, 2007.MathSciNetMATHCrossRef
90.
go back to reference B. Bourdin, G. A. Francfort, and J.-J. Marigo. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids, 48:797–826, 2000.MathSciNetMATHCrossRef B. Bourdin, G. A. Francfort, and J.-J. Marigo. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids, 48:797–826, 2000.MathSciNetMATHCrossRef
93.
go back to reference F. Bourquin, P. G. Ciarlet, G. Geymonat, and A. Raoult. Γ-convergence and asymptotic analysis of thin plates. C. R. Acad. Sci., Paris, Sér. I, 315(9):1017–1024, 1992. F. Bourquin, P. G. Ciarlet, G. Geymonat, and A. Raoult. Γ-convergence and asymptotic analysis of thin plates. C. R. Acad. Sci., Paris, Sér. I, 315(9):1017–1024, 1992.
94.
go back to reference A. Braides. Γ-Convergence for Beginners. Oxford University Press, 2002. A. Braides. Γ-Convergence for Beginners. Oxford University Press, 2002.
95.
go back to reference A. Braides. A handbook of Γ-convergence. In M. Chipot and P. Quittner, editors, Handbook of Diff. Eqs. Stationary P. D. E. Vol. 3. Elsevier, 2006. A. Braides. A handbook of Γ-convergence. In M. Chipot and P. Quittner, editors, Handbook of Diff. Eqs. Stationary P. D. E. Vol. 3. Elsevier, 2006.
97.
go back to reference P. W. Bridgman. The Nature of Thermodynamics. Harward Univ. Press, Cambridge (MA), 1943. P. W. Bridgman. The Nature of Thermodynamics. Harward Univ. Press, Cambridge (MA), 1943.
98.
go back to reference M. Brokate, C. Carstensen, and J. Valdman. A quasi-static boundary value problem in multi-surface elastoplasticity: part I - analysis. Math. Meth. Appl. Sci., 27:1697–1710, 2004.MathSciNetMATHCrossRef M. Brokate, C. Carstensen, and J. Valdman. A quasi-static boundary value problem in multi-surface elastoplasticity: part I - analysis. Math. Meth. Appl. Sci., 27:1697–1710, 2004.MathSciNetMATHCrossRef
99.
go back to reference M. Brokate, C. Carstensen, and J. Valdman. A quasi-static boundary value problem in multi-surface elastoplasticity: part II - numerical solution. Math. Meth. Appl. Sci., 28:881–901, 2005.MathSciNetMATHCrossRef M. Brokate, C. Carstensen, and J. Valdman. A quasi-static boundary value problem in multi-surface elastoplasticity: part II - numerical solution. Math. Meth. Appl. Sci., 28:881–901, 2005.MathSciNetMATHCrossRef
103.
go back to reference W. F. Brown, Jr. Magnetostatic Interactions. North-Holland, Amsterdam, 1962. W. F. Brown, Jr. Magnetostatic Interactions. North-Holland, Amsterdam, 1962.
105.
go back to reference W. F. Brown, Jr. Magnetostatic Principles in Ferromagnetism. Springer, New York, 1966.MATH W. F. Brown, Jr. Magnetostatic Principles in Ferromagnetism. Springer, New York, 1966.MATH
108.
go back to reference F. Cagnetti. A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path. Math. Models Meth. Appl. Sci., 18:1027–1071, 2009.MathSciNetCrossRefMATH F. Cagnetti. A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path. Math. Models Meth. Appl. Sci., 18:1027–1071, 2009.MathSciNetCrossRefMATH
109.
go back to reference F. Cagnetti and R. Toader. Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach. ESAIM Control Optim. Calc. Var., 17:1–27, 2011.MathSciNetMATHCrossRef F. Cagnetti and R. Toader. Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach. ESAIM Control Optim. Calc. Var., 17:1–27, 2011.MathSciNetMATHCrossRef
110.
go back to reference C. Carstensen, S. Heinz, and A. Mielke. Analysis and numerics of a phase-transformation model. In preparation, 2015. C. Carstensen, S. Heinz, and A. Mielke. Analysis and numerics of a phase-transformation model. In preparation, 2015.
111.
go back to reference C. Carstensen and C. Ortner. Analysis of a class of penalty methods for computing singular minimizers. Comp. Meth. Appl. Math., 10:137–163, 2010.MathSciNetMATH C. Carstensen and C. Ortner. Analysis of a class of penalty methods for computing singular minimizers. Comp. Meth. Appl. Math., 10:137–163, 2010.MathSciNetMATH
112.
go back to reference C. Carstensen and P. Plecháč. Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. Math. Model. Numer. Anal., 35:865–878, 2001.MATHCrossRefMathSciNet C. Carstensen and P. Plecháč. Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. Math. Model. Numer. Anal., 35:865–878, 2001.MATHCrossRefMathSciNet
113.
go back to reference A. Chambolle. A density result in two-dimensional linearized elasticity and applications. Arch. Rational Mech. Anal., 167:211–233, 2003.MathSciNetMATHCrossRef A. Chambolle. A density result in two-dimensional linearized elasticity and applications. Arch. Rational Mech. Anal., 167:211–233, 2003.MathSciNetMATHCrossRef
114.
go back to reference A. Chambolle, A. Giacomini, and M. Ponsiglione. Crack initiation in brittle materials. Arch. Rational Mech. Anal., 188:309–349, 2008.MathSciNetMATHCrossRef A. Chambolle, A. Giacomini, and M. Ponsiglione. Crack initiation in brittle materials. Arch. Rational Mech. Anal., 188:309–349, 2008.MathSciNetMATHCrossRef
116.
go back to reference K. Chełmiński. Coercive approximation of viscoplasticity and plasticity. Asymptot. Anal., 26:105–133, 2001.MathSciNetMATH K. Chełmiński. Coercive approximation of viscoplasticity and plasticity. Asymptot. Anal., 26:105–133, 2001.MathSciNetMATH
117.
go back to reference K. Chełmiński. Perfect plasticity as a zero relaxation limit of plasticity with isotropic hardening. Math. Methods Appl. Sci., 24:117–136, 2001.MathSciNetMATHCrossRef K. Chełmiński. Perfect plasticity as a zero relaxation limit of plasticity with isotropic hardening. Math. Methods Appl. Sci., 24:117–136, 2001.MathSciNetMATHCrossRef
123.
go back to reference R. Choksi and R. V. Kohn. Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math., 55:259–289, 1998.MathSciNetCrossRefMATH R. Choksi and R. V. Kohn. Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math., 55:259–289, 1998.MathSciNetCrossRefMATH
124.
go back to reference L. C. Chow and J. Wang. An anisotropic theory of elasticity for continuum damage mechanics. Int. J. Fracture, 33:3–16, 1987.CrossRef L. C. Chow and J. Wang. An anisotropic theory of elasticity for continuum damage mechanics. Int. J. Fracture, 33:3–16, 1987.CrossRef
126.
go back to reference P. G. Ciarlet. Mathematical Elasticity. Vol. II Theory of Plates. North-Holland, Amsterdam, 1997. P. G. Ciarlet. Mathematical Elasticity. Vol. II Theory of Plates. North-Holland, Amsterdam, 1997.
127.
go back to reference P. G. Ciarlet and P. Destuynder. A justification of the two-dimensional linear plate model. J. Mécanique, 18:315–344, 1979.MathSciNetMATH P. G. Ciarlet and P. Destuynder. A justification of the two-dimensional linear plate model. J. Mécanique, 18:315–344, 1979.MathSciNetMATH
128.
129.
go back to reference E. Clapeyron. Mémoire sur le travail des forces élastiques dans un corps solide élastique déformé par l’action de forces extérieures. Compt. Rendus Paris, XLVI:208–212, 1858. E. Clapeyron. Mémoire sur le travail des forces élastiques dans un corps solide élastique déformé par l’action de forces extérieures. Compt. Rendus Paris, XLVI:208–212, 1858.
134.
go back to reference S. Conti and M. Ortiz. Dislocation microstructures and the effective behavior of single crystals. Arch. Rational Mech. Anal., 176:103–147, 2005.MathSciNetMATHCrossRef S. Conti and M. Ortiz. Dislocation microstructures and the effective behavior of single crystals. Arch. Rational Mech. Anal., 176:103–147, 2005.MathSciNetMATHCrossRef
136.
go back to reference L. Contrafatto and M. Cuomo. A new thermodynamically consistent continuum model for hardening plasticity coupled with damage. Intl. J. Solids Structures, 39:6241–6271, 2002.MATHCrossRef L. Contrafatto and M. Cuomo. A new thermodynamically consistent continuum model for hardening plasticity coupled with damage. Intl. J. Solids Structures, 39:6241–6271, 2002.MATHCrossRef
137.
go back to reference E. Cosserat and E. Cosserat. Thèorie des corps déformables. In Librairie Scientique. A. Hermann et Fils, Paris, 1909. E. Cosserat and E. Cosserat. Thèorie des corps déformables. In Librairie Scientique. A. Hermann et Fils, Paris, 1909.
139.
go back to reference B. Dacorogna. Weak continuity and weak lower semicontinuity of nonlinear functionals. Springer-Verlag, Berlin, 1982. Lecture Notes in Math. Vol. 922. B. Dacorogna. Weak continuity and weak lower semicontinuity of nonlinear functionals. Springer-Verlag, Berlin, 1982. Lecture Notes in Math. Vol. 922.
141.
143.
go back to reference G. Dal Maso, A. DeSimone, and M. G. Mora. Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Rational Mech. Anal., 180:237–291, 2006.MathSciNetMATHCrossRef G. Dal Maso, A. DeSimone, and M. G. Mora. Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Rational Mech. Anal., 180:237–291, 2006.MathSciNetMATHCrossRef
144.
go back to reference G. Dal Maso, A. DeSimone, M. G. Mora, and M. Morini. Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media, 3:567–614, 2008.MathSciNetMATHCrossRef G. Dal Maso, A. DeSimone, M. G. Mora, and M. Morini. Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media, 3:567–614, 2008.MathSciNetMATHCrossRef
145.
go back to reference G. Dal Maso, A. DeSimone, M. G. Mora, and M. Morini. A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Rational Mech. Anal., 189:469–544, 2008.MathSciNetMATHCrossRef G. Dal Maso, A. DeSimone, M. G. Mora, and M. Morini. A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Rational Mech. Anal., 189:469–544, 2008.MathSciNetMATHCrossRef
149.
go back to reference G. Dal Maso, G. A. Francfort, and R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal., 176:165–225, 2005.MathSciNetMATHCrossRef G. Dal Maso, G. A. Francfort, and R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal., 176:165–225, 2005.MathSciNetMATHCrossRef
150.
go back to reference G. Dal Maso and C. J. Larsen. Existence for wave equations on domains with arbitrary growing cracks. Rend. Lincei Mat. Appl., 22:387–408, 2011.MathSciNetMATH G. Dal Maso and C. J. Larsen. Existence for wave equations on domains with arbitrary growing cracks. Rend. Lincei Mat. Appl., 22:387–408, 2011.MathSciNetMATH
151.
go back to reference G. Dal Maso and G. Lazzaroni. Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poinc. Anal. Non Lin., 27:257–290, 2010.MathSciNetMATHCrossRef G. Dal Maso and G. Lazzaroni. Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poinc. Anal. Non Lin., 27:257–290, 2010.MathSciNetMATHCrossRef
152.
go back to reference G. Dal Maso and R. Toader. A model for quasi–static growth of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal., 162:101–135, 2002.MathSciNetMATHCrossRef G. Dal Maso and R. Toader. A model for quasi–static growth of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal., 162:101–135, 2002.MathSciNetMATHCrossRef
153.
go back to reference G. Dal Maso and R. Toader. Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Rational Mech. Anal., 196:867–906, 2010.MathSciNetMATHCrossRef G. Dal Maso and R. Toader. Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Rational Mech. Anal., 196:867–906, 2010.MathSciNetMATHCrossRef
154.
go back to reference G. Dal Maso and C. Zanini. Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. R. Soc. Edinb., Sect. A, Math., 137(2):253–279, 2007. G. Dal Maso and C. Zanini. Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. R. Soc. Edinb., Sect. A, Math., 137(2):253–279, 2007.
157.
go back to reference E. A. De Souza Neto, D. Peric, and D. R. J. Owen. A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation and computational aspects. J. Mech. Phys. Solids, 42:1533–1550, 1994.MATHCrossRef E. A. De Souza Neto, D. Peric, and D. R. J. Owen. A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation and computational aspects. J. Mech. Phys. Solids, 42:1533–1550, 1994.MATHCrossRef
158.
159.
160.
go back to reference A. DeSimone, J.-J. Marigo, and L. Teresi. A damage mechanics approach to stress softening and its application to rubber. Eur. J. Mech. A Solids, 20:873–892, 2001.MathSciNetMATHCrossRef A. DeSimone, J.-J. Marigo, and L. Teresi. A damage mechanics approach to stress softening and its application to rubber. Eur. J. Mech. A Solids, 20:873–892, 2001.MathSciNetMATHCrossRef
161.
go back to reference O. W. Dillon and J. Kratochvíl. A strain gradient theory of plasticity. Int. J. Solids Structures, 6:1513–1533, 1970.MATHCrossRef O. W. Dillon and J. Kratochvíl. A strain gradient theory of plasticity. Int. J. Solids Structures, 6:1513–1533, 1970.MATHCrossRef
163.
go back to reference B. J. Dmitrijevic and K. Hackl. A variational coupled damage-plasticity model via gradient enhancement of the free energy function. PAMM, 9:199–200, 2009.CrossRef B. J. Dmitrijevic and K. Hackl. A variational coupled damage-plasticity model via gradient enhancement of the free energy function. PAMM, 9:199–200, 2009.CrossRef
164.
167.
go back to reference F. Ebobisse and B. D. Reddy. Some mathematical problems in perfect plasticity. Comput. Methods Appl. Mech. Engrg., 193:5071–5094, 2004.MathSciNetMATHCrossRef F. Ebobisse and B. D. Reddy. Some mathematical problems in perfect plasticity. Comput. Methods Appl. Mech. Engrg., 193:5071–5094, 2004.MathSciNetMATHCrossRef
168.
go back to reference C. Eck, J. Jarušek, and M. Krbec. Unilateral Contact Problems, volume 270. Chapman & Hall/CRC, Boca Raton, FL, 2005.CrossRefMATH C. Eck, J. Jarušek, and M. Krbec. Unilateral Contact Problems, volume 270. Chapman & Hall/CRC, Boca Raton, FL, 2005.CrossRefMATH
169.
go back to reference C. Eck, J. Jarušek, and J. Stará. Normal compliance contact models with finite interpenetration. Arch. Rational Mech. Anal., 208:25–57, 2013.MATHCrossRefMathSciNet C. Eck, J. Jarušek, and J. Stará. Normal compliance contact models with finite interpenetration. Arch. Rational Mech. Anal., 208:25–57, 2013.MATHCrossRefMathSciNet
170.
go back to reference M. Efendiev. On the compactness of the stable set for rate–independent processes. Comm. Pure Applied Analysis, 2:495–509, 2003.MathSciNetMATHCrossRef M. Efendiev. On the compactness of the stable set for rate–independent processes. Comm. Pure Applied Analysis, 2:495–509, 2003.MathSciNetMATHCrossRef
172.
go back to reference G. Eisen. A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals. Manuscripta Math., 27:73–79, 1979.MathSciNetMATHCrossRef G. Eisen. A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals. Manuscripta Math., 27:73–79, 1979.MathSciNetMATHCrossRef
174.
go back to reference M. Eleuteri, L. Lussardi, and U. Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Netw. Heterog. Media, 6:145–165, 2011.MathSciNetMATHCrossRef M. Eleuteri, L. Lussardi, and U. Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Netw. Heterog. Media, 6:145–165, 2011.MathSciNetMATHCrossRef
176.
go back to reference A. G. Evans, M. Rühle, B. J. Dalgleish, and P. G. Charalambides. The fracture energy of bimaterial interfaces. Matallurgical Transactions A, 21A:2419–2429, 1990.CrossRef A. G. Evans, M. Rühle, B. J. Dalgleish, and P. G. Charalambides. The fracture energy of bimaterial interfaces. Matallurgical Transactions A, 21A:2419–2429, 1990.CrossRef
177.
go back to reference L. C. Evans. Weak Convergence Methods for Nonlinear Partial Differential Equations. Amer. Math. Soc., 1990. L. C. Evans. Weak Convergence Methods for Nonlinear Partial Differential Equations. Amer. Math. Soc., 1990.
181.
go back to reference F. Falk. Model free energy, mechanics and thermodynamics of shape memory alloys. Acta Metall., 28:1773–1780, 1980.CrossRef F. Falk. Model free energy, mechanics and thermodynamics of shape memory alloys. Acta Metall., 28:1773–1780, 1980.CrossRef
189.
go back to reference I. Fonseca, D. Kinderlehrer, and P. Pedregal. Energy functionals depending on elastic strain and chemical composition. Calc. Var. PDEs, 2:283–313, 1994.MathSciNetMATHCrossRef I. Fonseca, D. Kinderlehrer, and P. Pedregal. Energy functionals depending on elastic strain and chemical composition. Calc. Var. PDEs, 2:283–313, 1994.MathSciNetMATHCrossRef
190.
go back to reference I. Fonseca and S. Müller. \(\mathcal{A}\)-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal., 30:1355–1390 (electronic), 1999. I. Fonseca and S. Müller. \(\mathcal{A}\)-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal., 30:1355–1390 (electronic), 1999.
192.
go back to reference R. Fosdick and L Truskinovsky. About Clapeyron’s theorem in linear elasticity. J. Elasticity, 72:145–172, 2003. R. Fosdick and L Truskinovsky. About Clapeyron’s theorem in linear elasticity. J. Elasticity, 72:145–172, 2003.
193.
go back to reference M. Foss, W. J. Hrusa, and V. J. Mizel. The Lavrentiev gap phenomenon in nonlinear elasticity. Archive Rat. Mech. Anal., 167:337–365, 2003.MathSciNetMATHCrossRef M. Foss, W. J. Hrusa, and V. J. Mizel. The Lavrentiev gap phenomenon in nonlinear elasticity. Archive Rat. Mech. Anal., 167:337–365, 2003.MathSciNetMATHCrossRef
194.
go back to reference G. Francfort and A. Garroni. A variational view of partial brittle damage evolution. Arch. Rational Mech. Anal., 182:125–152, 2006.MathSciNetMATHCrossRef G. Francfort and A. Garroni. A variational view of partial brittle damage evolution. Arch. Rational Mech. Anal., 182:125–152, 2006.MathSciNetMATHCrossRef
195.
go back to reference G. Francfort and A. Mielke. Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Math., 595:55–91, 2006.MathSciNetMATH G. Francfort and A. Mielke. Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Math., 595:55–91, 2006.MathSciNetMATH
196.
go back to reference G. A. Francfort and C. J. Larsen. Existence and convergence for quasi-static evolution of brittle fracture. Comm. Pure Applied Math., 56:1495–1500, 2003.MathSciNetCrossRefMATH G. A. Francfort and C. J. Larsen. Existence and convergence for quasi-static evolution of brittle fracture. Comm. Pure Applied Math., 56:1495–1500, 2003.MathSciNetCrossRefMATH
197.
go back to reference G. A. Francfort and J.-J. Marigo. Stable damage evolution in a brittle continuous medium. European J. Mech. A Solids, 12:149–189, 1993.MathSciNetMATH G. A. Francfort and J.-J. Marigo. Stable damage evolution in a brittle continuous medium. European J. Mech. A Solids, 12:149–189, 1993.MathSciNetMATH
198.
go back to reference G. A. Francfort and J.-J. Marigo. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 46:1319–1342, 1998.MathSciNetMATHCrossRef G. A. Francfort and J.-J. Marigo. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 46:1319–1342, 1998.MathSciNetMATHCrossRef
201.
go back to reference L. Freddi, R. Paroni, T. Roubíček, and C. Zanini. Quasistatic delamination models for kirchhoff-love plates. Zeitschrift angew. Math. Mech., 91:845–865, 2011.MATHCrossRefMathSciNet L. Freddi, R. Paroni, T. Roubíček, and C. Zanini. Quasistatic delamination models for kirchhoff-love plates. Zeitschrift angew. Math. Mech., 91:845–865, 2011.MATHCrossRefMathSciNet
202.
go back to reference L. Freddi, T. Roubíček, and C. Zanini. Quasistatic delamination of sandwich-like kirchhoff-love plates. J. Elasticity, 113:219–250, 2013.MathSciNetMATHCrossRef L. Freddi, T. Roubíček, and C. Zanini. Quasistatic delamination of sandwich-like kirchhoff-love plates. J. Elasticity, 113:219–250, 2013.MathSciNetMATHCrossRef
203.
go back to reference M. Frémond. Matériaux à mémoire de forme. C. R. Acad. Sci. Paris, Série II, 304:239–244, 1987. M. Frémond. Matériaux à mémoire de forme. C. R. Acad. Sci. Paris, Série II, 304:239–244, 1987.
205.
go back to reference M. Frémond, K. L. Kuttler, B. Nedjar, and M. Shillor. One-dimensional models of damage. Adv. Math. Sci. Appl., 8:541–570, 1998.MathSciNetMATH M. Frémond, K. L. Kuttler, B. Nedjar, and M. Shillor. One-dimensional models of damage. Adv. Math. Sci. Appl., 8:541–570, 1998.MathSciNetMATH
206.
go back to reference M. Frémond, K.L. Kuttler, and M. Shillor. Existence and uniqueness of solutions for a dynamic one-dimensional damage model. J. Math. Anal. Appl., 229:271–294, 1999.MathSciNetMATHCrossRef M. Frémond, K.L. Kuttler, and M. Shillor. Existence and uniqueness of solutions for a dynamic one-dimensional damage model. J. Math. Anal. Appl., 229:271–294, 1999.MathSciNetMATHCrossRef
207.
go back to reference M. Frémond and S. Miyazaki. Shape Memory Alloys. Springer-Verlag, Wien, 1996.CrossRef M. Frémond and S. Miyazaki. Shape Memory Alloys. Springer-Verlag, Wien, 1996.CrossRef
208.
go back to reference M. Frémond and B. Nedjar. Damage in concrete: the unilateral phenomenon. Nucl. Eng. Des., 156:323–335, 1995.CrossRef M. Frémond and B. Nedjar. Damage in concrete: the unilateral phenomenon. Nucl. Eng. Des., 156:323–335, 1995.CrossRef
209.
go back to reference M. Frémond and B. Nedjar. Damage, gradient of damage and principle of virtual power. Int. J. Solids Structures, 33:1083–1103, 1996.MATHCrossRefMathSciNet M. Frémond and B. Nedjar. Damage, gradient of damage and principle of virtual power. Int. J. Solids Structures, 33:1083–1103, 1996.MATHCrossRefMathSciNet
210.
go back to reference E. Fried and M. E. Gurtin. Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-lenght scales. Arch. Rational Mech. Anal., 182:513–554, 2006.MathSciNetMATHCrossRef E. Fried and M. E. Gurtin. Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-lenght scales. Arch. Rational Mech. Anal., 182:513–554, 2006.MathSciNetMATHCrossRef
211.
go back to reference M. Frost, B. Benešová, and P. Sedlák. A microscopically motivated constitutive model for shape memory alloys: formulation, analysis and computations. Math. Mech. of Solids, 2014. doi:10.1177/1081286514522474. M. Frost, B. Benešová, and P. Sedlák. A microscopically motivated constitutive model for shape memory alloys: formulation, analysis and computations. Math. Mech. of Solids, 2014. doi:10.1177/1081286514522474.
212.
go back to reference M. Frost, P. Sedlák, A. Kruisová, and M. Landa. Simulations of self-expanding braided stent using macroscopic model of NiTi shape memory alloys covering R-phase. J. Mater. Engr. Performance, 23:2584–2590, 2014.CrossRef M. Frost, P. Sedlák, A. Kruisová, and M. Landa. Simulations of self-expanding braided stent using macroscopic model of NiTi shape memory alloys covering R-phase. J. Mater. Engr. Performance, 23:2584–2590, 2014.CrossRef
213.
go back to reference D. Gabriel, J. Plešek, and M. Ulbin. Symmetry preserving algorithm for large displacement frictionless contact by the pre-discretisation penalty method. Int. J. Numer. Meth. Engr., 61:2615–2638, 2004.MATHCrossRef D. Gabriel, J. Plešek, and M. Ulbin. Symmetry preserving algorithm for large displacement frictionless contact by the pre-discretisation penalty method. Int. J. Numer. Meth. Engr., 61:2615–2638, 2004.MATHCrossRef
214.
go back to reference F. Gastaldi, M. D. P. M. Marques, and J. A. C. Martins. Mathematical analysis of a two degree-of-freedom frictional contact problem with discontinuous solutions. Math. Comput. Modelling, 28:247–261, 1998.MathSciNetMATHCrossRef F. Gastaldi, M. D. P. M. Marques, and J. A. C. Martins. Mathematical analysis of a two degree-of-freedom frictional contact problem with discontinuous solutions. Math. Comput. Modelling, 28:247–261, 1998.MathSciNetMATHCrossRef
220.
go back to reference A. Giacomini and L. Lussardi. Quasistatic evolution for a model in strain gradient plasticity. SIAM J. Math. Anal., 40:1201–1245, 2008.MathSciNetMATHCrossRef A. Giacomini and L. Lussardi. Quasistatic evolution for a model in strain gradient plasticity. SIAM J. Math. Anal., 40:1201–1245, 2008.MathSciNetMATHCrossRef
221.
go back to reference A. Giacomini and A. Musesti. Two-scale homogenization for a model in strain gradient plasticity. ESAIM Control Optim. Calc. Var., 17:1035–1065, 2011.MathSciNetMATHCrossRef A. Giacomini and A. Musesti. Two-scale homogenization for a model in strain gradient plasticity. ESAIM Control Optim. Calc. Var., 17:1035–1065, 2011.MathSciNetMATHCrossRef
222.
go back to reference A. Giacomini and M. Ponsiglione. Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Math. Models Meth. Appl. Sci., 16:77–118, 2006.MathSciNetMATHCrossRef A. Giacomini and M. Ponsiglione. Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Math. Models Meth. Appl. Sci., 16:77–118, 2006.MathSciNetMATHCrossRef
223.
go back to reference A. Giacomini and M. Ponsiglione. A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Rational Mech. Anal., 180:399–447, 2006.MathSciNetMATHCrossRef A. Giacomini and M. Ponsiglione. A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Rational Mech. Anal., 180:399–447, 2006.MathSciNetMATHCrossRef
224.
go back to reference T. L. Gilbert. A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev., 100:1243, 1955. T. L. Gilbert. A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev., 100:1243, 1955.
226.
go back to reference S. Govindjee, K. Hackl, and R. Heinen. An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Continuum Mech. Thermodyn., 18:443–453, 2007.MathSciNetMATHCrossRef S. Govindjee, K. Hackl, and R. Heinen. An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Continuum Mech. Thermodyn., 18:443–453, 2007.MathSciNetMATHCrossRef
227.
go back to reference S. Govindjee and C. Miehe. A multi–variant martensitic phase transformation model: Formulation and numerical implementation. Computer Meth. Applied Mech. Eng., 191:215–238, 2001.MATHCrossRef S. Govindjee and C. Miehe. A multi–variant martensitic phase transformation model: Formulation and numerical implementation. Computer Meth. Applied Mech. Eng., 191:215–238, 2001.MATHCrossRef
228.
go back to reference S. Govindjee, A. Mielke, and G. J. Hall. The free–energy of mixing for n–variant martensitic phase transformations using quasi–convex analysis. J. Mech. Phys. Solids, 50:1897–1922, 2002. Erratum and Correct Reprinting: 51(4) 2003, pp. 763 & I-XXVI. S. Govindjee, A. Mielke, and G. J. Hall. The free–energy of mixing for n–variant martensitic phase transformations using quasi–convex analysis. J. Mech. Phys. Solids, 50:1897–1922, 2002. Erratum and Correct Reprinting: 51(4) 2003, pp. 763 & I-XXVI.
229.
go back to reference S. Govindjee, A. Mielke, G. J. Hall, and C. Miehe. Application of notions of quasi-convexity to the modeling and simulation of martensitic and shape memory phase transformations. In H.A. Mang, F.G. Rammerstorfer, and J. Eberhardsteiner, editors, Proc. Fifth World Cong. on Comput. Mech. (WCCM V), July 2002, Vienna, Austria, 2002. S. Govindjee, A. Mielke, G. J. Hall, and C. Miehe. Application of notions of quasi-convexity to the modeling and simulation of martensitic and shape memory phase transformations. In H.A. Mang, F.G. Rammerstorfer, and J. Eberhardsteiner, editors, Proc. Fifth World Cong. on Comput. Mech. (WCCM V), July 2002, Vienna, Austria, 2002.
230.
go back to reference S. Govindjee and J. C. Simo. A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J. Mech. Phys. Solids, 39:87–112, 1991.MathSciNetMATHCrossRef S. Govindjee and J. C. Simo. A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J. Mech. Phys. Solids, 39:87–112, 1991.MathSciNetMATHCrossRef
231.
go back to reference D. Grandi and U. Stefanelli. A phenomenological model for microstructure-dependent inelasticity in shape-memory alloys. Meccanica, 49:2265–2283, 2014.MathSciNetMATHCrossRef D. Grandi and U. Stefanelli. A phenomenological model for microstructure-dependent inelasticity in shape-memory alloys. Meccanica, 49:2265–2283, 2014.MathSciNetMATHCrossRef
232.
234.
go back to reference A. A. Griffith. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Eng. Sci., 221:163–198, 1921. A. A. Griffith. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Eng. Sci., 221:163–198, 1921.
235.
go back to reference K. Gröger. Evolution equations in the theory of plasticity. In Theory of nonlinear operators (Proc. 5th Int. Summer School, Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977), volume 6 of Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1978, pages 97–107. Akademie-Verlag, Berlin, 1978. K. Gröger. Evolution equations in the theory of plasticity. In Theory of nonlinear operators (Proc. 5th Int. Summer School, Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977), volume 6 of Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1978, pages 97–107. Akademie-Verlag, Berlin, 1978.
238.
go back to reference K. Gröger. Zur Theorie des quasi-statischen Verhaltens von elastisch-plastischen Körpern. Zeitschrift angew. Math. Mech., 58:81–88, 1978.MATHCrossRef K. Gröger. Zur Theorie des quasi-statischen Verhaltens von elastisch-plastischen Körpern. Zeitschrift angew. Math. Mech., 58:81–88, 1978.MATHCrossRef
241.
go back to reference P. G. Gruber and J. Valdman. Solution of one-time-step problems in elastoplasticity by a slant Newton method. SIAM J. Sci. Comput., 31:1558–1580, 2008/09. P. G. Gruber and J. Valdman. Solution of one-time-step problems in elastoplasticity by a slant Newton method. SIAM J. Sci. Comput., 31:1558–1580, 2008/09.
243.
go back to reference E. Gürses, A. Mainik, C. Miehe, and A. Mielke. Analytical and numerical methods for finite-strain elastoplasticity. In R. Helmig, A. Mielke, and B.I. Wohlmuth, editors, Multifield Probl. in Solid and Fluid Mech., pages 443–481. Springer-Verlag, Berlin, 2006. E. Gürses, A. Mainik, C. Miehe, and A. Mielke. Analytical and numerical methods for finite-strain elastoplasticity. In R. Helmig, A. Mielke, and B.I. Wohlmuth, editors, Multifield Probl. in Solid and Fluid Mech., pages 443–481. Springer-Verlag, Berlin, 2006.
244.
go back to reference M. E. Gurtin. On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids, 48:989–1036, 2000.MathSciNetMATHCrossRef M. E. Gurtin. On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids, 48:989–1036, 2000.MathSciNetMATHCrossRef
245.
go back to reference M. E. Gurtin and L. Anand. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations. J. Mech. Phys. Solids, 53:1624–1649, 2005. M. E. Gurtin and L. Anand. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations. J. Mech. Phys. Solids, 53:1624–1649, 2005.
247.
249.
go back to reference K. Hackl and U. Hoppe. On the calculation of microstructures for inelastic materials using relaxed energies. In C. Miehe, editor, IUTAM Symp. on Comput. Mech. of Solids at Large Strains, pages 77–86. Kluwer, 2003. K. Hackl and U. Hoppe. On the calculation of microstructures for inelastic materials using relaxed energies. In C. Miehe, editor, IUTAM Symp. on Comput. Mech. of Solids at Large Strains, pages 77–86. Kluwer, 2003.
250.
go back to reference K. Hackl, A. Mielke, and D. Mittenhuber. Dissipation distances in multiplicative elastoplasticity. In W.L. Wendland and M. Efendiev, editors, Anal. and Simul. of Multifield Probl., pages 87–100. Springer-Verlag, 2003. K. Hackl, A. Mielke, and D. Mittenhuber. Dissipation distances in multiplicative elastoplasticity. In W.L. Wendland and M. Efendiev, editors, Anal. and Simul. of Multifield Probl., pages 87–100. Springer-Verlag, 2003.
251.
go back to reference K. Hackl and H. Stumpf. Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-static brittle fracture. Int. J. Solids Structures, 30:1567–1584, 2003.MATH K. Hackl and H. Stumpf. Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-static brittle fracture. Int. J. Solids Structures, 30:1567–1584, 2003.MATH
253.
go back to reference G. J. Hall and S. Govindjee. Application of the relaxed free energy of mixing to problems in shape memory alloy simulation. J. Intelligent Material Systems Structures, 13:773–782, 2002.CrossRef G. J. Hall and S. Govindjee. Application of the relaxed free energy of mixing to problems in shape memory alloy simulation. J. Intelligent Material Systems Structures, 13:773–782, 2002.CrossRef
254.
go back to reference B. Halphen and Q. S. Nguyen. Sur les matériaux standards généralisés. J. Mécanique, 14:39–63, 1975.MATH B. Halphen and Q. S. Nguyen. Sur les matériaux standards généralisés. J. Mécanique, 14:39–63, 1975.MATH
256.
go back to reference W. Han and B. D. Reddy. Convergence analysis of discrete approximations of problems in hardening plasticity. Comput. Methods Appl. Mech. Engrg., 171:327–340, 1999.MathSciNetMATHCrossRef W. Han and B. D. Reddy. Convergence analysis of discrete approximations of problems in hardening plasticity. Comput. Methods Appl. Mech. Engrg., 171:327–340, 1999.MathSciNetMATHCrossRef
257.
go back to reference W. Han and B. D. Reddy. Plasticity (Mathematical Theory and Numerical Analysis). Springer-Verlag, New York, 1999.MATH W. Han and B. D. Reddy. Plasticity (Mathematical Theory and Numerical Analysis). Springer-Verlag, New York, 1999.MATH
258.
go back to reference W. Han and B. D. Reddy. Convergence of approximations to the primal problem in plasticity under conditions of minimal regularity. Numer. Math., 87:283–315, 2000.MathSciNetMATHCrossRef W. Han and B. D. Reddy. Convergence of approximations to the primal problem in plasticity under conditions of minimal regularity. Numer. Math., 87:283–315, 2000.MathSciNetMATHCrossRef
262.
go back to reference O. Heczko, N. Scheerbaum, and O. Gutfleisch. Magnetic shape memory phenomena. In J.P. Liu et al., editor, Nanoscale Magnetic Materials and Applications, chapter 14, pages 399–439. Springer, 2009. O. Heczko, N. Scheerbaum, and O. Gutfleisch. Magnetic shape memory phenomena. In J.P. Liu et al., editor, Nanoscale Magnetic Materials and Applications, chapter 14, pages 399–439. Springer, 2009.
263.
go back to reference R. Heinen and A. Schlömerkemper. A comparative study of lamination upper and convexification lower bound on the free energy of monocrystalline shape memory alloys. Preprint, 2013. R. Heinen and A. Schlömerkemper. A comparative study of lamination upper and convexification lower bound on the free energy of monocrystalline shape memory alloys. Preprint, 2013.
268.
go back to reference M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth newton method. SIAM J. Optim., 13:865–888, 2003.MATHCrossRefMathSciNet M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth newton method. SIAM J. Optim., 13:865–888, 2003.MATHCrossRefMathSciNet
269.
go back to reference I. Hlaváček and J. Nečas. On inequalities of Korn’s type. Arch. Rational Mech. Anal., 36:305–311,312–334, 1970. I. Hlaváček and J. Nečas. On inequalities of Korn’s type. Arch. Rational Mech. Anal., 36:305–311,312–334, 1970.
274.
go back to reference K. Hormann and J. Zimmer. On Landau theory and symmetric energy landscapes for phase transitions. J. Mech. Phys. Solids, 55:1385–1409, 2007.MathSciNetMATHCrossRef K. Hormann and J. Zimmer. On Landau theory and symmetric energy landscapes for phase transitions. J. Mech. Phys. Solids, 55:1385–1409, 2007.MathSciNetMATHCrossRef
275.
go back to reference A. Hubert and R. Schäfer. Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin, 1998. A. Hubert and R. Schäfer. Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin, 1998.
277.
278.
go back to reference J. W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. Advances in Applied Mechanics, 29:63–191, 1992.MATHCrossRef J. W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. Advances in Applied Mechanics, 29:63–191, 1992.MATHCrossRef
281.
go back to reference R. D. James. Configurational forces in magnetism with application to the dynamics of a small-scale ferromagnetic shape memory cantilever. Continuum Mech. Thermodyn., 14:55–86, 2002.MATHCrossRefMathSciNet R. D. James. Configurational forces in magnetism with application to the dynamics of a small-scale ferromagnetic shape memory cantilever. Continuum Mech. Thermodyn., 14:55–86, 2002.MATHCrossRefMathSciNet
282.
go back to reference R. D. James and K. F. Hane. Martensitic transformations and shape-memory materials. Acta Mater., 48:197–222, 2000.CrossRef R. D. James and K. F. Hane. Martensitic transformations and shape-memory materials. Acta Mater., 48:197–222, 2000.CrossRef
283.
go back to reference R. D. James and D. Kinderlehrer. Frustration in ferromagnetic materials. Continuum Mech. Thermodyn., 2:215–239, 1990.MathSciNetCrossRef R. D. James and D. Kinderlehrer. Frustration in ferromagnetic materials. Continuum Mech. Thermodyn., 2:215–239, 1990.MathSciNetCrossRef
284.
go back to reference R. D. James and S. Müller. Internal variables and fine scale oscillations in micromagnetics. Continuum Mech. Thermodyn., 6:291–336, 1994.MATHCrossRefMathSciNet R. D. James and S. Müller. Internal variables and fine scale oscillations in micromagnetics. Continuum Mech. Thermodyn., 6:291–336, 1994.MATHCrossRefMathSciNet
285.
go back to reference R. D. James and Z. Zhang. A way to search for multiferroic materials with “unlikely” combination of physical properties. In L. Manoza et al., editor, Interplay of Magnetism and Structure in Functional Materials. Springer, 2004. R. D. James and Z. Zhang. A way to search for multiferroic materials with “unlikely” combination of physical properties. In L. Manoza et al., editor, Interplay of Magnetism and Structure in Functional Materials. Springer, 2004.
286.
go back to reference D. Jiles. A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis. IEEE Trans. Mag., 28:2603, 1992. D. Jiles. A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis. IEEE Trans. Mag., 28:2603, 1992.
287.
go back to reference M. Jirásek. Nonlocal damage mechanics with application to concrete. Failure, Degradation and Instabilities, 8:683–707, 2004. M. Jirásek. Nonlocal damage mechanics with application to concrete. Failure, Degradation and Instabilities, 8:683–707, 2004.
288.
go back to reference M. Jirásek and Z. P. Bažant. Inelastic Analysis of Structures. J.Wiley, Chichester, 2002. M. Jirásek and Z. P. Bažant. Inelastic Analysis of Structures. J.Wiley, Chichester, 2002.
289.
go back to reference M. Jirásek and J. Zeman. Localization study of regularized variational damage model. Intl. J. Solid Structures, 2015, DOI:10.1016/j.ijsolstr.2015.06.001. M. Jirásek and J. Zeman. Localization study of regularized variational damage model. Intl. J. Solid Structures, 2015, DOI:10.1016/j.ijsolstr.2015.06.001.
290.
go back to reference M. Jirásek, J. Zeman, and J. Vondřejc. Softening gradient plasticity: Analytical study of localization under nonuniform stress. Int. J. Multiscale Computational Engr., 8:37–60, 2010.CrossRef M. Jirásek, J. Zeman, and J. Vondřejc. Softening gradient plasticity: Analytical study of localization under nonuniform stress. Int. J. Multiscale Computational Engr., 8:37–60, 2010.CrossRef
291.
go back to reference C. Johnson. Existence theorems for plasticity problems. J. Math. Pures Appl. (9), 55:431–444, 1976. C. Johnson. Existence theorems for plasticity problems. J. Math. Pures Appl. (9), 55:431–444, 1976.
293.
go back to reference C. Johnson and R. Scott. A finite element method for problems in perfect plasticity using discontinuous trial functions. In W. Wunderlich, E. Stein, and K.-J. Bathe, editors, Nonlin. Finite Element Anal. in Structural Mech., pages 307–324, Berlin, 1981. Springer. C. Johnson and R. Scott. A finite element method for problems in perfect plasticity using discontinuous trial functions. In W. Wunderlich, E. Stein, and K.-J. Bathe, editors, Nonlin. Finite Element Anal. in Structural Mech., pages 307–324, Berlin, 1981. Springer.
294.
go back to reference L. M. Kachanov. Time of rupture process under Deep conditions. Izv. Akad. Nauk SSSR, 8:26, 1958. L. M. Kachanov. Time of rupture process under Deep conditions. Izv. Akad. Nauk SSSR, 8:26, 1958.
295.
go back to reference L. M. Kachanov. Introduction to Continuum Damage Mechanics. Kluwer, second edition, 1990. L. M. Kachanov. Introduction to Continuum Damage Mechanics. Kluwer, second edition, 1990.
296.
go back to reference M. Kamlah. Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena. Continuum Mech. Thermodyn., 13:219–268, 2001.MATHCrossRef M. Kamlah. Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena. Continuum Mech. Thermodyn., 13:219–268, 2001.MATHCrossRef
297.
go back to reference M. Kamlah and Z. Wang. A thermodynamically and microscopically motivated constitutive model for piezoceramics. Comput. Materials Science, 28:409–418, 2003.CrossRef M. Kamlah and Z. Wang. A thermodynamically and microscopically motivated constitutive model for piezoceramics. Comput. Materials Science, 28:409–418, 2003.CrossRef
298.
go back to reference D. Kinderlehrer and P. Pedregal. Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal., 4:59–90, 1994.MathSciNetMATHCrossRef D. Kinderlehrer and P. Pedregal. Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal., 4:59–90, 1994.MathSciNetMATHCrossRef
299.
go back to reference D. Knees. Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains. Boundary, transmission and crack problems. PhD thesis, Universität Stuttgart, 2005. D. Knees. Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains. Boundary, transmission and crack problems. PhD thesis, Universität Stuttgart, 2005.
300.
go back to reference D. Knees. On global spatial regularity in elasto-plasticity with linear hardening. Calc. Var. Part. Diff. Eqns., 36:611–625, 2009.MathSciNetMATHCrossRef D. Knees. On global spatial regularity in elasto-plasticity with linear hardening. Calc. Var. Part. Diff. Eqns., 36:611–625, 2009.MathSciNetMATHCrossRef
301.
302.
go back to reference D. Knees, A. Mielke, and C. Zanini. On the inviscid limit of a model for crack propagation. Math. Models Meth. Appl. Sci., 18:1529–1569, 2008.MathSciNetMATHCrossRef D. Knees, A. Mielke, and C. Zanini. On the inviscid limit of a model for crack propagation. Math. Models Meth. Appl. Sci., 18:1529–1569, 2008.MathSciNetMATHCrossRef
304.
go back to reference D. Knees and A. Schröder. Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints. Math. Methods Appl. Sci., 35:1859, 2012.MathSciNetMATHCrossRef D. Knees and A. Schröder. Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints. Math. Methods Appl. Sci., 35:1859, 2012.MathSciNetMATHCrossRef
305.
go back to reference D. Knees and A. Schröder. Computational aspects of quasi-static crack propagation. Discr. Cont. Dynam. Systems Ser. S, 6:63–99, 2013.MATHCrossRefMathSciNet D. Knees and A. Schröder. Computational aspects of quasi-static crack propagation. Discr. Cont. Dynam. Systems Ser. S, 6:63–99, 2013.MATHCrossRefMathSciNet
306.
go back to reference D. Knees and A. Schröder. Computational aspects of quasi-static crack propagation. Discr. Cont. Dynam. Systems Ser. S, 6:63–99, 2013.MATHCrossRefMathSciNet D. Knees and A. Schröder. Computational aspects of quasi-static crack propagation. Discr. Cont. Dynam. Systems Ser. S, 6:63–99, 2013.MATHCrossRefMathSciNet
308.
go back to reference D. Knees. On global spatial regularity and convergence rates for time dependent elasto-plasticity. Math. Models Methods Appl. Sci., 20:1823–1858, 2010.MathSciNetMATHCrossRef D. Knees. On global spatial regularity and convergence rates for time dependent elasto-plasticity. Math. Models Methods Appl. Sci., 20:1823–1858, 2010.MathSciNetMATHCrossRef
310.
go back to reference M. Kočvara, A. Mielke, and T. Roubíček. A rate–independent approach to the delamination problem. Math. Mechanics Solids, 11:423–447, 2006.MATHCrossRefMathSciNet M. Kočvara, A. Mielke, and T. Roubíček. A rate–independent approach to the delamination problem. Math. Mechanics Solids, 11:423–447, 2006.MATHCrossRefMathSciNet
313.
go back to reference A. Korn. Die Eigenschwingungen eines elastischen Korpers mit ruhender Oberflache. Akad. der Wissensch., München, Math.-phys.Kl,, 36:351–401, 1906. A. Korn. Die Eigenschwingungen eines elastischen Korpers mit ruhender Oberflache. Akad. der Wissensch., München, Math.-phys.Kl,, 36:351–401, 1906.
318.
go back to reference J. Kratochvíl, M. Kružík, and R. Sedláček. Energetic approach to gradient plasticity. Zeitschift angew. Math. Mech., 90:122–135, 2010.MATHCrossRefMathSciNet J. Kratochvíl, M. Kružík, and R. Sedláček. Energetic approach to gradient plasticity. Zeitschift angew. Math. Mech., 90:122–135, 2010.MATHCrossRefMathSciNet
320.
go back to reference P. Krejčí. Evolution variational inequalities and multidimensional hysteresis operators. In P. Drábek, P. Krejčí, and P. Takáč, editors, Nonlinear differential equations, pages 47–110. Chapman & Hall/CRC, Boca Raton, FL, 1999. P. Krejčí. Evolution variational inequalities and multidimensional hysteresis operators. In P. Drábek, P. Krejčí, and P. Takáč, editors, Nonlinear differential equations, pages 47–110. Chapman & Hall/CRC, Boca Raton, FL, 1999.
326.
go back to reference M. Kružík. Numerical approach to double well problems. SIAM J. Numer. Anal., 35:1833–1849 (electronic), 1998. M. Kružík. Numerical approach to double well problems. SIAM J. Numer. Anal., 35:1833–1849 (electronic), 1998.
327.
go back to reference M. Kružík and M. Luskin. The computation of martensitic microstructure with piecewise laminates. J. Sci. Comp., 19:293–308, 2003.MATHCrossRef M. Kružík and M. Luskin. The computation of martensitic microstructure with piecewise laminates. J. Sci. Comp., 19:293–308, 2003.MATHCrossRef
328.
go back to reference M. Kružík, A. Mielke, and T. Roubíček. Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica, 40:389–418, 2005.MathSciNetMATHCrossRef M. Kružík, A. Mielke, and T. Roubíček. Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica, 40:389–418, 2005.MathSciNetMATHCrossRef
329.
go back to reference M. Kružík and F. Otto. A phenomenological model for hysteresis in polycrystalline shape memory alloys. Zeitschrift angew. Math. Mech., 84:835–842, 2004.MATHCrossRefMathSciNet M. Kružík and F. Otto. A phenomenological model for hysteresis in polycrystalline shape memory alloys. Zeitschrift angew. Math. Mech., 84:835–842, 2004.MATHCrossRefMathSciNet
330.
go back to reference M. Kružík, C. G. Panagiotopoulos, and T. Roubíček. Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment. Math. Mech. of Solids, 2014. in print. DOI: 10.1177/1081286513507942. M. Kružík, C. G. Panagiotopoulos, and T. Roubíček. Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment. Math. Mech. of Solids, 2014. in print. DOI: 10.1177/1081286513507942.
332.
go back to reference M. Kružík and A. Prohl. Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev., 48:439–483, 2006.MathSciNetMATHCrossRef M. Kružík and A. Prohl. Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev., 48:439–483, 2006.MathSciNetMATHCrossRef
334.
go back to reference M. Kružík and T. Roubíček. Weierstrass-type maximum principle for microstructure in micromagnetics. Zeitschrift Anal. Anwend., 19:415–428, 2000.MATHCrossRefMathSciNet M. Kružík and T. Roubíček. Weierstrass-type maximum principle for microstructure in micromagnetics. Zeitschrift Anal. Anwend., 19:415–428, 2000.MATHCrossRefMathSciNet
335.
go back to reference M. Kružík and T. Roubíček. Specimen shape influence on hysteretic response of bulk ferromagnets. J. Magnetism Magn. Mater., 256:158–167, 2003.CrossRef M. Kružík and T. Roubíček. Specimen shape influence on hysteretic response of bulk ferromagnets. J. Magnetism Magn. Mater., 256:158–167, 2003.CrossRef
336.
go back to reference M. Kružík and T. Roubíček. Interactions between demagnetizing field and minor-loop development in bulk ferromagnets. J. Magnetism Magn. Mater., 277:192–200, 2004.CrossRef M. Kružík and T. Roubíček. Interactions between demagnetizing field and minor-loop development in bulk ferromagnets. J. Magnetism Magn. Mater., 277:192–200, 2004.CrossRef
337.
go back to reference M. Kružík and T. Roubíček. Mesoscopic model of microstructure evolution in shape memory alloys with applications to NiMaGa. Technical report, IMA Minneapolis, 2004.MATH M. Kružík and T. Roubíček. Mesoscopic model of microstructure evolution in shape memory alloys with applications to NiMaGa. Technical report, IMA Minneapolis, 2004.MATH
338.
345.
go back to reference L. D. Landau and E. M. Lifshitz. On the theory of the dispersion of magnetic permeability of ferromagnetic bodies. Physik Z. Sowjetunion, 8:153–169, 1935.MATH L. D. Landau and E. M. Lifshitz. On the theory of the dispersion of magnetic permeability of ferromagnetic bodies. Physik Z. Sowjetunion, 8:153–169, 1935.MATH
346.
go back to reference L. D. Landau and E. M. Lifshitz. Course of Theoretical Physics, volume 8. Pergamon Press, Oxford, 1960.MATH L. D. Landau and E. M. Lifshitz. Course of Theoretical Physics, volume 8. Pergamon Press, Oxford, 1960.MATH
347.
go back to reference C. J. Larsen. Epsilon-stable quasi-static brittle fracture evolution. Comm. Pure Appl. Math., 63:630–654, 2010.MathSciNetMATH C. J. Larsen. Epsilon-stable quasi-static brittle fracture evolution. Comm. Pure Appl. Math., 63:630–654, 2010.MathSciNetMATH
349.
go back to reference C. J. Larsen, M. Ortiz, and C. L. Richardson. Fracture paths from front kinetics: relaxation and rate-independence. Arch. Rational Mech. Anal., 193:539–583, 2007.MathSciNetCrossRefMATH C. J. Larsen, M. Ortiz, and C. L. Richardson. Fracture paths from front kinetics: relaxation and rate-independence. Arch. Rational Mech. Anal., 193:539–583, 2007.MathSciNetCrossRefMATH
350.
go back to reference C. J. Larsen, C. Ortner, and E. Suli. Existence of solution to a regularized model of dynamic fracture. Math. Models Meth. Appl. Sci., 20:1021–1048, 2010.MathSciNetMATHCrossRef C. J. Larsen, C. Ortner, and E. Suli. Existence of solution to a regularized model of dynamic fracture. Math. Models Meth. Appl. Sci., 20:1021–1048, 2010.MathSciNetMATHCrossRef
351.
go back to reference A. Lavrentiev. Sur quelques problémes du calcul des variations. Ann. Mat. Pura Appl., 41:107–124, 1926. A. Lavrentiev. Sur quelques problémes du calcul des variations. Ann. Mat. Pura Appl., 41:107–124, 1926.
352.
go back to reference H. Le Dret and A. Raoult. Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Rational Mech. Anal., 154:101–134, 2000.MATHCrossRefMathSciNet H. Le Dret and A. Raoult. Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Rational Mech. Anal., 154:101–134, 2000.MATHCrossRefMathSciNet
354.
go back to reference E. H. Lee and D. T. Liu. Finite-strain elastic-plastic theory with application to plain-wave analysis. J. Applied Phys., 38:19–27, 1967.CrossRef E. H. Lee and D. T. Liu. Finite-strain elastic-plastic theory with application to plain-wave analysis. J. Applied Phys., 38:19–27, 1967.CrossRef
355.
go back to reference D. Leguillon. Strength or toughness? A criterion for crack onset at a notch. European J. of Mechanics A/Solids, 21:61–72, 2002.MATHCrossRef D. Leguillon. Strength or toughness? A criterion for crack onset at a notch. European J. of Mechanics A/Solids, 21:61–72, 2002.MATHCrossRef
356.
go back to reference S. Lenci. Analysis of a crack at a weak interface. Int. J. Fracture, 108:275–290, 2001.CrossRef S. Lenci. Analysis of a crack at a weak interface. Int. J. Fracture, 108:275–290, 2001.CrossRef
357.
go back to reference C. Lexcellent, S. Moyne, A. Ishida, and S. Miyazaki. Deformation behaviour associated with the stress-induced martensitic transformation in ti-ni thin films and their thermodynamical modelling. Thin Solid Films, 324:184–189, 1998.CrossRef C. Lexcellent, S. Moyne, A. Ishida, and S. Miyazaki. Deformation behaviour associated with the stress-induced martensitic transformation in ti-ni thin films and their thermodynamical modelling. Thin Solid Films, 324:184–189, 1998.CrossRef
358.
go back to reference Z. Li. Numerical methods for mimizers and microstructures in nonlinear elasticity. Math. Models Meth. Appl. Sci., 6:957–975, 1996.MATHCrossRef Z. Li. Numerical methods for mimizers and microstructures in nonlinear elasticity. Math. Models Meth. Appl. Sci., 6:957–975, 1996.MATHCrossRef
359.
go back to reference K. M. Liechti and Y. S. Chai. Asymmetric shielding in interfacial fracture under in-plane shear. J. Appl. Mech., 59:295–304, 1992.CrossRef K. M. Liechti and Y. S. Chai. Asymmetric shielding in interfacial fracture under in-plane shear. J. Appl. Mech., 59:295–304, 1992.CrossRef
360.
go back to reference M. Liero and A. Mielke. An evolutionary elastoplastic plate model derived via Γ-convergence. Math. Models Meth. Appl. Sci., 21:1961–1986, 2011.MathSciNetMATHCrossRef M. Liero and A. Mielke. An evolutionary elastoplastic plate model derived via Γ-convergence. Math. Models Meth. Appl. Sci., 21:1961–1986, 2011.MathSciNetMATHCrossRef
362.
go back to reference E. Lorentz and S. Andrieux. A variational formulation for nonlocal damage models. Int. J. Plasticity, 15:119–138, 1999.MATHCrossRef E. Lorentz and S. Andrieux. A variational formulation for nonlocal damage models. Int. J. Plasticity, 15:119–138, 1999.MATHCrossRef
367.
go back to reference F. Luterotti, G. Schmiperna, and U. Stefanelli. Global solution to a phase field model with irreversible and constrained phase evolution. Quart. Appl. Math., 60:301–316, 2002.MathSciNetMATH F. Luterotti, G. Schmiperna, and U. Stefanelli. Global solution to a phase field model with irreversible and constrained phase evolution. Quart. Appl. Math., 60:301–316, 2002.MathSciNetMATH
373.
go back to reference A. Mainik and A. Mielke. Existence results for energetic models for rate–independent systems. Calc. Var. Part. Diff. Eqns., 22:73–99, 2005.MathSciNetMATHCrossRef A. Mainik and A. Mielke. Existence results for energetic models for rate–independent systems. Calc. Var. Part. Diff. Eqns., 22:73–99, 2005.MathSciNetMATHCrossRef
374.
go back to reference A. Mainik and A. Mielke. Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci., 19:221–248, 2009.MathSciNetMATHCrossRef A. Mainik and A. Mielke. Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci., 19:221–248, 2009.MathSciNetMATHCrossRef
375.
go back to reference V. Mantič. Discussion “on the reference length and mode mixity for a bimaterial interface”. J. Engr. Mater. Technology, 130:045501–1–2, 2008. V. Mantič. Discussion “on the reference length and mode mixity for a bimaterial interface”. J. Engr. Mater. Technology, 130:045501–1–2, 2008.
376.
go back to reference V. Mantič. Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. application of a coupled stress and energy criterion. Int. J. Solids Structures, 46:1287–1304, 2009. V. Mantič. Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. application of a coupled stress and energy criterion. Int. J. Solids Structures, 46:1287–1304, 2009.
377.
380.
go back to reference J. A. C. Martins and J. T. Oden. Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal., 11:407–428, 1987. Corrigendum: 12 (1988) p. 747. J. A. C. Martins and J. T. Oden. Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal., 11:407–428, 1987. Corrigendum: 12 (1988) p. 747.
382.
go back to reference G. A. Maugin. The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge, 1992.MATHCrossRef G. A. Maugin. The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge, 1992.MATHCrossRef
385.
go back to reference A. Menzel and P. Steinmann. A theoretical and computational framework for anisotropic continuum damage mechanics at large strains. Int. J. Solids Structures, 38:9505–9523, 2001.MATHCrossRef A. Menzel and P. Steinmann. A theoretical and computational framework for anisotropic continuum damage mechanics at large strains. Int. J. Solids Structures, 38:9505–9523, 2001.MATHCrossRef
386.
go back to reference C. Miehe. Discontinuous and continuous damage evolution in ogden-type large-strain elastic materials. Eur. J. Mech., A, 14:697–720, 1995.MATH C. Miehe. Discontinuous and continuous damage evolution in ogden-type large-strain elastic materials. Eur. J. Mech., A, 14:697–720, 1995.MATH
387.
go back to reference C. Miehe and J. Keck. Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. J. Mech. Phys. Solids, 48:323–365, 2000.MATHCrossRef C. Miehe and J. Keck. Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. J. Mech. Phys. Solids, 48:323–365, 2000.MATHCrossRef
389.
go back to reference A. Mielke. Estimates on the mixture function for multiphase problems in elasticity. In A.-M. Sändig, W. Schiehlen, and W. Wendland, editors, Multifield Problems, pages 96–103, Berlin, 2000. Springer–Verlag. A. Mielke. Estimates on the mixture function for multiphase problems in elasticity. In A.-M. Sändig, W. Schiehlen, and W. Wendland, editors, Multifield Problems, pages 96–103, Berlin, 2000. Springer–Verlag.
390.
go back to reference A. Mielke. Finite elastoplasticity, Lie groups and geodesics on SL(d). In P. Newton, A. Weinstein, and P. J. Holmes, editors, Geometry, Mechanics, and Dynamics, pages 61–90. Springer–Verlag, New York, 2002. A. Mielke. Finite elastoplasticity, Lie groups and geodesics on SL(d). In P. Newton, A. Weinstein, and P. J. Holmes, editors, Geometry, Mechanics, and Dynamics, pages 61–90. Springer–Verlag, New York, 2002.
391.
go back to reference A. Mielke. Energetic formulation of multiplicative elasto–plasticity using dissipation distances. Continuum Mech. Thermodyn., 15:351–382, 2003.MathSciNetMATHCrossRef A. Mielke. Energetic formulation of multiplicative elasto–plasticity using dissipation distances. Continuum Mech. Thermodyn., 15:351–382, 2003.MathSciNetMATHCrossRef
393.
go back to reference A. Mielke. Evolution in rate-independent systems (Ch. 6). In C.M. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations, vol. 2, pages 461–559. Elsevier B.V., Amsterdam, 2005. A. Mielke. Evolution in rate-independent systems (Ch. 6). In C.M. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations, vol. 2, pages 461–559. Elsevier B.V., Amsterdam, 2005.
394.
go back to reference A. Mielke. Lipschitz Lectures: Modeling and analysis of rate-independent processes. Universität Bonn (Lecture Notes, 42 pp.), January 2007. A. Mielke. Lipschitz Lectures: Modeling and analysis of rate-independent processes. Universität Bonn (Lecture Notes, 42 pp.), January 2007.
396.
go back to reference A. Mielke. Existence theory for finite-strain crystal plasticity with gradient regularization. In K. Hackl, editor, IUTAM Symp. on Variational Concepts with Appl. to the Mech. of Mater., pages 171–183. Springer, 2010. A. Mielke. Existence theory for finite-strain crystal plasticity with gradient regularization. In K. Hackl, editor, IUTAM Symp. on Variational Concepts with Appl. to the Mech. of Mater., pages 171–183. Springer, 2010.
400.
go back to reference A. Mielke. Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction. Physica B, 407:1330–1335, 2012.MathSciNetCrossRef A. Mielke. Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction. Physica B, 407:1330–1335, 2012.MathSciNetCrossRef
402.
go back to reference A. Mielke and S. Müller. Lower semicontinuity and existence of minimizers for a functional in elastoplasticity. Zeitschrift angew. Math. Mech., 86:233–250, 2006.MATHCrossRef A. Mielke and S. Müller. Lower semicontinuity and existence of minimizers for a functional in elastoplasticity. Zeitschrift angew. Math. Mech., 86:233–250, 2006.MATHCrossRef
405.
go back to reference A. Mielke, L. Paoli, A. Petrov, and U. Stefanelli. Error estimates for space-time discretizations of a rate-independent variational inequality. SIAM J. Numer. Anal., 48:1625–1646, 2010.MathSciNetMATHCrossRef A. Mielke, L. Paoli, A. Petrov, and U. Stefanelli. Error estimates for space-time discretizations of a rate-independent variational inequality. SIAM J. Numer. Anal., 48:1625–1646, 2010.MathSciNetMATHCrossRef
406.
go back to reference A. Mielke and A. Petrov. Thermally driven phase transformation in shape-memory alloys. Adv. Math. Sci. Appl., 17:667–685, 2007.MathSciNetMATH A. Mielke and A. Petrov. Thermally driven phase transformation in shape-memory alloys. Adv. Math. Sci. Appl., 17:667–685, 2007.MathSciNetMATH
416.
go back to reference A. Mielke and T. Roubíček. A rate–independent model for inelastic behavior of shape–memory alloys. Multiscale Model. Simul., 1:571–597, 2003.MathSciNetMATHCrossRef A. Mielke and T. Roubíček. A rate–independent model for inelastic behavior of shape–memory alloys. Multiscale Model. Simul., 1:571–597, 2003.MathSciNetMATHCrossRef
417.
go back to reference A. Mielke and T. Roubíček. Rate-independent damage processes in nonlinear elasticity. Math. Models Meth. Appl. Sci., 16:177–209, 2006.MATHCrossRefMathSciNet A. Mielke and T. Roubíček. Rate-independent damage processes in nonlinear elasticity. Math. Models Meth. Appl. Sci., 16:177–209, 2006.MATHCrossRefMathSciNet
418.
go back to reference A. Mielke and T. Roubíček. Numerical approaches to rate-independent processes and applications in inelasticity. Math. Model. Numer. Anal., 43:399–428, 2009.MATHCrossRefMathSciNet A. Mielke and T. Roubíček. Numerical approaches to rate-independent processes and applications in inelasticity. Math. Model. Numer. Anal., 43:399–428, 2009.MATHCrossRefMathSciNet
419.
go back to reference A. Mielke, and T. Roubíček. Rate-independent elastoplasticity at finite strains and its numerical approximation. In preparation, 2015. A. Mielke, and T. Roubíček. Rate-independent elastoplasticity at finite strains and its numerical approximation. In preparation, 2015.
421.
go back to reference A. Mielke, T. Roubíček, and M. Thomas. From damage to delamination in nonlinearly elastic materials at small strains. J. Elasticity, 109:235–273, 2012.MathSciNetMATHCrossRef A. Mielke, T. Roubíček, and M. Thomas. From damage to delamination in nonlinearly elastic materials at small strains. J. Elasticity, 109:235–273, 2012.MathSciNetMATHCrossRef
422.
go back to reference A. Mielke, T. Roubíček, and J. Zeman. Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Engrg., 199:1242–1253, 2010.MathSciNetMATHCrossRef A. Mielke, T. Roubíček, and J. Zeman. Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Engrg., 199:1242–1253, 2010.MathSciNetMATHCrossRef
424.
go back to reference A. Mielke and F. Theil. A mathematical model for rate-independent phase transformations with hysteresis. In H.-D. Alber, R.M. Balean, and R. Farwig, editors, Proc. Workshop on “Models of Continuum Mechanics in Analysis and Engineering”, pages 117–129, Aachen, 1999. Shaker-Verlag. A. Mielke and F. Theil. A mathematical model for rate-independent phase transformations with hysteresis. In H.-D. Alber, R.M. Balean, and R. Farwig, editors, Proc. Workshop on “Models of Continuum Mechanics in Analysis and Engineering”, pages 117–129, Aachen, 1999. Shaker-Verlag.
425.
go back to reference A. Mielke and F. Theil. On rate–independent hysteresis models. Nonl. Diff. Eqns. Appl., 11:151–189, 2004. (Accepted July 2001). A. Mielke and F. Theil. On rate–independent hysteresis models. Nonl. Diff. Eqns. Appl., 11:151–189, 2004. (Accepted July 2001).
426.
go back to reference A. Mielke, F. Theil, and V. I. Levitas. A variational formulation of rate–independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162:137–177, 2002.MathSciNetMATHCrossRef A. Mielke, F. Theil, and V. I. Levitas. A variational formulation of rate–independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162:137–177, 2002.MathSciNetMATHCrossRef
427.
go back to reference A. Mielke, F. Theil, and V. I. Levitas. Mathematical formulation of quasistatic phase transformations with friction using an extremum principle. Preprint A8, Hannover, Sept. 1998. A. Mielke, F. Theil, and V. I. Levitas. Mathematical formulation of quasistatic phase transformations with friction using an extremum principle. Preprint A8, Hannover, Sept. 1998.
428.
go back to reference A. Mielke and A. Timofte. An energetic material model for time-dependent ferroelectric behavior: existence and uniqueness. Math. Methods Appl. Sci., 29:1393–1410, 2006.MathSciNetMATHCrossRef A. Mielke and A. Timofte. An energetic material model for time-dependent ferroelectric behavior: existence and uniqueness. Math. Methods Appl. Sci., 29:1393–1410, 2006.MathSciNetMATHCrossRef
429.
go back to reference A. Mielke and A. M. Timofte. Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal., 39:642–668, 2007.MathSciNetMATHCrossRef A. Mielke and A. M. Timofte. Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal., 39:642–668, 2007.MathSciNetMATHCrossRef
432.
go back to reference M. D. P. Monteiro Marques. Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction. Birkhäuser Verlag, Basel, 1993. M. D. P. Monteiro Marques. Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction. Birkhäuser Verlag, Basel, 1993.
436.
go back to reference J.-J. Moreau. Application of convex analysis to the treatment of elastoplastic systems. In P. Germain and B. Nayroles, editors, Appl. of Meth. of Funct. Anal. to Problems in Mech., pages 56–89. Springer-Verlag, 1976. Lecture Notes in Mathematics, 503. J.-J. Moreau. Application of convex analysis to the treatment of elastoplastic systems. In P. Germain and B. Nayroles, editors, Appl. of Meth. of Funct. Anal. to Problems in Mech., pages 56–89. Springer-Verlag, 1976. Lecture Notes in Mathematics, 503.
437.
go back to reference J.-J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations, 26:347–374, 1977.MathSciNetMATHCrossRef J.-J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations, 26:347–374, 1977.MathSciNetMATHCrossRef
438.
439.
go back to reference U. Mosco. Approximation of the solutions of some variational inequalities. Ann. Scuola Norm. Sup. Pisa, 21:373–394, 1967. Erratum, ibid. (3) 765. U. Mosco. Approximation of the solutions of some variational inequalities. Ann. Scuola Norm. Sup. Pisa, 21:373–394, 1967. Erratum, ibid. (3) 765.
442.
go back to reference S. Müller. Variational models for microstructure and phase transitions. In Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), pages 85–210. Springer, Berlin, 1999. S. Müller. Variational models for microstructure and phase transitions. In Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), pages 85–210. Springer, Berlin, 1999.
443.
go back to reference F. Murat. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:489–507, 1978. F. Murat. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:489–507, 1978.
445.
go back to reference J. Nečas. Sur les normes équivalentes dans W p k (Ω) et sur la coercivité des formes formellement positives, pages 102–128. Séminaire de Mathématiques Supérieures. 19. Les Presses de l’Université de Montréal, Montréal, 1966. J. Nečas. Sur les normes équivalentes dans W p k (Ω) et sur la coercivité des formes formellement positives, pages 102–128. Séminaire de Mathématiques Supérieures. 19. Les Presses de l’Université de Montréal, Montréal, 1966.
449.
go back to reference P. Neff and D. Knees. Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal., 40:21–43, 2008.MathSciNetMATHCrossRef P. Neff and D. Knees. Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal., 40:21–43, 2008.MathSciNetMATHCrossRef
451.
go back to reference M. Negri. Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics. ESAIM Control Optim. Calc. Var., 2014. To appear. M. Negri. Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics. ESAIM Control Optim. Calc. Var., 2014. To appear.
452.
go back to reference M. Negri and C. Ortner. Quasi-static crack propagation by Griffith’s criterion. Math. Models Methods Appl. Sci., 18:1895–1925, 2008.MathSciNetMATHCrossRef M. Negri and C. Ortner. Quasi-static crack propagation by Griffith’s criterion. Math. Models Methods Appl. Sci., 18:1895–1925, 2008.MathSciNetMATHCrossRef
454.
go back to reference E. A. De Souza Neto, D. Peric, and D. R. J. Owen. A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers. J. Mech. Phys. Solids, 42:1533–1550, 1994.MATHCrossRef E. A. De Souza Neto, D. Peric, and D. R. J. Owen. A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers. J. Mech. Phys. Solids, 42:1533–1550, 1994.MATHCrossRef
456.
go back to reference R. A. Nicolaides and N. J. Walkington. Computation of microstructure utilizing Young measure representations. In C.A. Rogers and R.A. Rogers, editors, Rec. Adv. in Adaptive and Sensory Mater. and their Appl., pages 131–141. Technomic Publ., 1992. R. A. Nicolaides and N. J. Walkington. Computation of microstructure utilizing Young measure representations. In C.A. Rogers and R.A. Rogers, editors, Rec. Adv. in Adaptive and Sensory Mater. and their Appl., pages 131–141. Technomic Publ., 1992.
459.
go back to reference W. Noll. A mathematical theory of the mechanical behaviour of continuous media. Archive Rat. Mech. Anal., 2:197–226, 1958.MATHCrossRef W. Noll. A mathematical theory of the mechanical behaviour of continuous media. Archive Rat. Mech. Anal., 2:197–226, 1958.MATHCrossRef
460.
go back to reference J. T. Oden. Exterior penalty methods for contact problems in elasticity. In W. Wunderlich, E. Stein, and K.J. Bathe, editors, Nonlinear Finite Element Analysis in Structural Mechanics, pages 655–665, Berlin, 1981. Springer. J. T. Oden. Exterior penalty methods for contact problems in elasticity. In W. Wunderlich, E. Stein, and K.J. Bathe, editors, Nonlinear Finite Element Analysis in Structural Mechanics, pages 655–665, Berlin, 1981. Springer.
463.
go back to reference M. Ortiz. A constitutive theory for the inelastic behavior of concrete. Mech. Materials, 4:67–93, 1985.CrossRef M. Ortiz. A constitutive theory for the inelastic behavior of concrete. Mech. Materials, 4:67–93, 1985.CrossRef
464.
go back to reference M. Ortiz. An analytical study of the localized failure modes of concrete. Mech. Mater., 6:159–174, 1987.CrossRef M. Ortiz. An analytical study of the localized failure modes of concrete. Mech. Mater., 6:159–174, 1987.CrossRef
465.
go back to reference M. Ortiz and E. A. Repetto. Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids, 47:397–462, 1999.MathSciNetMATHCrossRef M. Ortiz and E. A. Repetto. Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids, 47:397–462, 1999.MathSciNetMATHCrossRef
467.
go back to reference C. G. Panagiotopoulos and V. Mantič. Symmetric and non-symmetric debonds at fiber-matrix interface under transverse loads. an application of energetic approaches using collocation BEM. Anales de Mecánica de la Fractura, 30:125–130, 2013. C. G. Panagiotopoulos and V. Mantič. Symmetric and non-symmetric debonds at fiber-matrix interface under transverse loads. an application of energetic approaches using collocation BEM. Anales de Mecánica de la Fractura, 30:125–130, 2013.
468.
go back to reference C. G. Panagiotopoulos, V. Mantič, and T. Roubíček. BEM implementation of energetic solutions for quasistatic delamination problems. In M.H. Aliabadi E.L. Albuquerque, editor, Int. Conf. on Boundary Element and Meshless Techniques (BETEQ 2011), pages 261–268, Eastleigh, 2011. Engineering Conferences Ltd. C. G. Panagiotopoulos, V. Mantič, and T. Roubíček. BEM implementation of energetic solutions for quasistatic delamination problems. In M.H. Aliabadi E.L. Albuquerque, editor, Int. Conf. on Boundary Element and Meshless Techniques (BETEQ 2011), pages 261–268, Eastleigh, 2011. Engineering Conferences Ltd.
472.
go back to reference P. Pedregal. Parametrized Measures and Variational Principles. Birkhäuser Verlag, Basel, 1997.MATHCrossRef P. Pedregal. Parametrized Measures and Variational Principles. Birkhäuser Verlag, Basel, 1997.MATHCrossRef
473.
go back to reference R. H. J. Peerlings, R. de Borst, W. A. M. Brekelmans, and J. H. P. de Vree. Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Meth. Engr., 39:3391–3403, 1996.MATHCrossRef R. H. J. Peerlings, R. de Borst, W. A. M. Brekelmans, and J. H. P. de Vree. Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Meth. Engr., 39:3391–3403, 1996.MATHCrossRef
474.
go back to reference R. H. J. Peerlings, M. G. D. Geers, R. de Borst, and W. A. M. Brekelmans. Critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Structures, 38:7723–7746, 2001.MATHCrossRef R. H. J. Peerlings, M. G. D. Geers, R. de Borst, and W. A. M. Brekelmans. Critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Structures, 38:7723–7746, 2001.MATHCrossRef
477.
go back to reference G. Pijaudier-Cabot and Z. P. Bažant. Nonlocal damage theory. J. Engr. Mech., 113:1512–1533, 1987.CrossRefMATH G. Pijaudier-Cabot and Z. P. Bažant. Nonlocal damage theory. J. Engr. Mech., 113:1512–1533, 1987.CrossRefMATH
478.
go back to reference M. Pitteri and G. Zanzotto. Continuum Models for Phase Transitions and Twinning in Crystals. Chapman & Hall, Boca Raton, 2003.MATH M. Pitteri and G. Zanzotto. Continuum Models for Phase Transitions and Twinning in Crystals. Chapman & Hall, Boca Raton, 2003.MATH
479.
go back to reference P. Plecháč and T. Roubíček. Visco-elasto-plastic model for martensitic phase transformation in shape-memory alloys. Math. Methods Appl. Sci., 25:1281–1298, 2002.MathSciNetMATHCrossRef P. Plecháč and T. Roubíček. Visco-elasto-plastic model for martensitic phase transformation in shape-memory alloys. Math. Methods Appl. Sci., 25:1281–1298, 2002.MathSciNetMATHCrossRef
480.
go back to reference J. Plešek and D. Gabriel. PMD example manual. Inst. of Thermomechanics, Prague, 2000. J. Plešek and D. Gabriel. PMD example manual. Inst. of Thermomechanics, Prague, 2000.
481.
go back to reference P. Podio-Guidugli. On dissipation mechanism in micromagnetics. Eur. Physical J. B, 19:417–424, 2001.CrossRef P. Podio-Guidugli. On dissipation mechanism in micromagnetics. Eur. Physical J. B, 19:417–424, 2001.CrossRef
482.
go back to reference P. Podio-Guidugli. Contact interactions, stress, and material symmetry, for nonsimple elastic materials. Theor. Appl. Mech., 28–29:261–276, 2002.MathSciNetCrossRefMATH P. Podio-Guidugli. Contact interactions, stress, and material symmetry, for nonsimple elastic materials. Theor. Appl. Mech., 28–29:261–276, 2002.MathSciNetCrossRefMATH
484.
go back to reference P. Podio-Guidugli and M. Vianello. Hypertractions and hyperstresses convey the same mechanical information. Continuum Mech. Thermodynam., 22:163–176, 2010.MathSciNetMATHCrossRef P. Podio-Guidugli and M. Vianello. Hypertractions and hyperstresses convey the same mechanical information. Continuum Mech. Thermodynam., 22:163–176, 2010.MathSciNetMATHCrossRef
487.
489.
go back to reference W. Prager. A new method of analyzing stress and strains in work hardening solids. ASME J. Appl. Mech., 23:493–496, 1956.MathSciNetMATH W. Prager. A new method of analyzing stress and strains in work hardening solids. ASME J. Appl. Mech., 23:493–496, 1956.MathSciNetMATH
493.
go back to reference A. Prohl. Computational Micromagnetism. Teubner, Stuttgart, 2002.MATH A. Prohl. Computational Micromagnetism. Teubner, Stuttgart, 2002.MATH
497.
go back to reference K. R. Rajagopal and T. Roubíček. On the effect of dissipation in shape-memory alloys. Nonlinear Anal., Real World Appl., 4:581–597, 2003. K. R. Rajagopal and T. Roubíček. On the effect of dissipation in shape-memory alloys. Nonlinear Anal., Real World Appl., 4:581–597, 2003.
498.
go back to reference K. R. Rajagopal and A. R. Srinivasa. On the inelastic behavior of solids - Part I: Twinning. Int. J. Plasticity, 11:653–678, 1995.MATHCrossRef K. R. Rajagopal and A. R. Srinivasa. On the inelastic behavior of solids - Part I: Twinning. Int. J. Plasticity, 11:653–678, 1995.MATHCrossRef
499.
go back to reference K. R. Rajagopal and A. R. Srinivasa. On the thermomechanics of materials that have multiple natural configurations. Part I: Viscoelasticity and classical plasticity. Zeitschrift angew. Math. Physik, 55:861–893, 2004. K. R. Rajagopal and A. R. Srinivasa. On the thermomechanics of materials that have multiple natural configurations. Part I: Viscoelasticity and classical plasticity. Zeitschrift angew. Math. Physik, 55:861–893, 2004.
503.
go back to reference S. I. Repin. Errors of finite element method for perfectly elasto-plastic problems. Math. Models Methods Appl. Sci., 6:587–607, 1996.MathSciNetMATHCrossRef S. I. Repin. Errors of finite element method for perfectly elasto-plastic problems. Math. Models Methods Appl. Sci., 6:587–607, 1996.MathSciNetMATHCrossRef
504.
go back to reference S. I. Repin and J. Valdman. Functional a posteriori error estimates for incremental models in elasto-plasticity. Central Euro. J. Math., 7:506–519, 2009.MathSciNetMATHCrossRef S. I. Repin and J. Valdman. Functional a posteriori error estimates for incremental models in elasto-plasticity. Central Euro. J. Math., 7:506–519, 2009.MathSciNetMATHCrossRef
505.
go back to reference Y. G. Reshetnyak. On the stability of conformal maps in multidimensional spaces. Siberian Math. J., 8:69–85, 1967.CrossRefMATH Y. G. Reshetnyak. On the stability of conformal maps in multidimensional spaces. Siberian Math. J., 8:69–85, 1967.CrossRefMATH
509.
510.
go back to reference R. C. Rogers. Some remarks on nonlocal interactions and hysteresis in phase transitions. Continuum Mech. Thermodyn., 8:65–73, 1994.CrossRefMathSciNetMATH R. C. Rogers. Some remarks on nonlocal interactions and hysteresis in phase transitions. Continuum Mech. Thermodyn., 8:65–73, 1994.CrossRefMathSciNetMATH
511.
go back to reference R. C. Rogers and L. Truskinovsky. Discretization and hysteresis. Physica B, 233:370–375, 1997.CrossRef R. C. Rogers and L. Truskinovsky. Discretization and hysteresis. Physica B, 233:370–375, 1997.CrossRef
512.
go back to reference H. Romanowski and J. Schröder. Coordinate invariant modelling of the ferroelectric hysteresis within a thermodynamically consistent framework. A mesoscopic approach. In Y. Wang and K. Hutter, editors, Trends in Applications of Mathematics to Mechanics, pages 419–428. Shaker Verlag, 2005. H. Romanowski and J. Schröder. Coordinate invariant modelling of the ferroelectric hysteresis within a thermodynamically consistent framework. A mesoscopic approach. In Y. Wang and K. Hutter, editors, Trends in Applications of Mathematics to Mechanics, pages 419–428. Shaker Verlag, 2005.
520.
go back to reference T. Roubíček. Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin, 1997.MATHCrossRef T. Roubíček. Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin, 1997.MATHCrossRef
522.
go back to reference T. Roubíček. Dissipative evolution of microstructure in shape memory alloys. In C. Zenger J. Bungartz, R. H. W. Hoppe, editor, Lectures on Applied Mathematics, pages 45–63. Springer, Berlin, 2000.CrossRef T. Roubíček. Dissipative evolution of microstructure in shape memory alloys. In C. Zenger J. Bungartz, R. H. W. Hoppe, editor, Lectures on Applied Mathematics, pages 45–63. Springer, Berlin, 2000.CrossRef
523.
go back to reference T. Roubíček. Optimization of fine structure in micromagnetism. In N. Kenmochi, editor, Free Boundary Problems II, pages 398–408. Gakkotosho, 2000. T. Roubíček. Optimization of fine structure in micromagnetism. In N. Kenmochi, editor, Free Boundary Problems II, pages 398–408. Gakkotosho, 2000.
524.
go back to reference T. Roubíček. Evolution model for martensitic phase transformation in shape–memory alloys. Interfaces Free Bound., 4:111–136, 2002.MathSciNetMATHCrossRef T. Roubíček. Evolution model for martensitic phase transformation in shape–memory alloys. Interfaces Free Bound., 4:111–136, 2002.MathSciNetMATHCrossRef
525.
go back to reference T. Roubíček. Models of microstructure evolution in shape memory alloys. In P. Ponte Castaneda, J.J. Telega, and B. Gambin, editors, Nonlin. Homogenization and its Appl. to Composites, Polycrystals and Smart Mater., pages 269–304, Dordrecht, 2004. Kluwer Acad. Publ. NATO Sci. Series II/170. T. Roubíček. Models of microstructure evolution in shape memory alloys. In P. Ponte Castaneda, J.J. Telega, and B. Gambin, editors, Nonlin. Homogenization and its Appl. to Composites, Polycrystals and Smart Mater., pages 269–304, Dordrecht, 2004. Kluwer Acad. Publ. NATO Sci. Series II/170.
530.
go back to reference T. Roubíček. On certain convex compatifications for relaxation in evolution problems. Discr. Cont. Dynam. Systems Ser. S, 4:467–482, 2011.MATHCrossRef T. Roubíček. On certain convex compatifications for relaxation in evolution problems. Discr. Cont. Dynam. Systems Ser. S, 4:467–482, 2011.MATHCrossRef
531.
go back to reference T. Roubíček. Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal., 45:101–126, 2013.MathSciNetMATHCrossRef T. Roubíček. Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal., 45:101–126, 2013.MathSciNetMATHCrossRef
532.
go back to reference T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.CrossRefMATH T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.CrossRefMATH
537.
go back to reference T. Roubíček and M. Kružík. Microstructure evolution model in micromagnetics. Zeitschrift angew. Math. Physik, 55:159–182, 2004.MATHCrossRefMathSciNet T. Roubíček and M. Kružík. Microstructure evolution model in micromagnetics. Zeitschrift angew. Math. Physik, 55:159–182, 2004.MATHCrossRefMathSciNet
538.
go back to reference T. Roubíček and M. Kružík. Mesoscopic model for ferromagnets with isotropic hardening. Zeitschrift angew. Math. Physik, 56:107–135, 2005.MATHCrossRefMathSciNet T. Roubíček and M. Kružík. Mesoscopic model for ferromagnets with isotropic hardening. Zeitschrift angew. Math. Physik, 56:107–135, 2005.MATHCrossRefMathSciNet
539.
go back to reference T. Roubíček and M. Kružík. Mesoscopic model of microstructure evolution in shape memory alloys, its numerical analysis and computer implementation. GAMM Mitteilungen, 29:192–214, 2006.MathSciNetMATHCrossRef T. Roubíček and M. Kružík. Mesoscopic model of microstructure evolution in shape memory alloys, its numerical analysis and computer implementation. GAMM Mitteilungen, 29:192–214, 2006.MathSciNetMATHCrossRef
540.
go back to reference T. Roubíček, M. Kružík, and J. Koutný. A mesoscopical model of shape-memory alloys. Proc. Estonian Acad. Sci. Phys. Math., 56:146–154, 2007.MathSciNetMATH T. Roubíček, M. Kružík, and J. Koutný. A mesoscopical model of shape-memory alloys. Proc. Estonian Acad. Sci. Phys. Math., 56:146–154, 2007.MathSciNetMATH
541.
go back to reference T. Roubíček, M. Kružík, and J. Zeman. Delamination and adhesive contact models and their mathematical analysis and numerical treatment. In V. Mantič, editor, Math. Methods & Models in Composites, chapter 9, pages 349–400. Imperial College Press, 2013. T. Roubíček, M. Kružík, and J. Zeman. Delamination and adhesive contact models and their mathematical analysis and numerical treatment. In V. Mantič, editor, Math. Methods & Models in Composites, chapter 9, pages 349–400. Imperial College Press, 2013.
542.
go back to reference T. Roubíček, V. Mantič, and C. G. Panagiotopoulos. Quasistatic mixed-mode delamination model. Discr. Cont. Dynam. Systems Ser. S, 6:591–610, 2013.MATHMathSciNet T. Roubíček, V. Mantič, and C. G. Panagiotopoulos. Quasistatic mixed-mode delamination model. Discr. Cont. Dynam. Systems Ser. S, 6:591–610, 2013.MATHMathSciNet
543.
go back to reference T. Roubíček, C. G. Panagiotopoulos, and V. Mantič. Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. Zeitschrift angew. Math. Mech., 93:823–840, 2013.MATHCrossRefMathSciNet T. Roubíček, C. G. Panagiotopoulos, and V. Mantič. Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. Zeitschrift angew. Math. Mech., 93:823–840, 2013.MATHCrossRefMathSciNet
544.
go back to reference T. Roubíček, C. G. Panagiotopoulos, and V. Mantič. Local-solution approach to quasistatic rate-independent mixed-mode delamination. Math. Models Meth. Appl. Sci., 25:1337–1364, 2015.CrossRefMathSciNetMATH T. Roubíček, C. G. Panagiotopoulos, and V. Mantič. Local-solution approach to quasistatic rate-independent mixed-mode delamination. Math. Models Meth. Appl. Sci., 25:1337–1364, 2015.CrossRefMathSciNetMATH
545.
547.
go back to reference T. Roubíček and U. Stefanelli. Magnetic shape-memory alloys: thermomechanical modeling and analysis. Continuum Mech. Thermodyn., 26:783–810, 2014.CrossRef T. Roubíček and U. Stefanelli. Magnetic shape-memory alloys: thermomechanical modeling and analysis. Continuum Mech. Thermodyn., 26:783–810, 2014.CrossRef
548.
go back to reference T. Roubíček, M. Thomas, and C. G. Panagiotopoulos. Stress-driven local-solution approach to quasistatic brittle delamination. Nonlin. Anal, Real Worl Appl., 22:645–663, 2015. T. Roubíček, M. Thomas, and C. G. Panagiotopoulos. Stress-driven local-solution approach to quasistatic brittle delamination. Nonlin. Anal, Real Worl Appl., 22:645–663, 2015.
550.
go back to reference T. Roubíček, G. Tomassetti, and C. Zanini. The Gilbert equation with dry-friction-type damping. J. Math. Anal. Appl., 355:453–468, 2009.MathSciNetMATHCrossRef T. Roubíček, G. Tomassetti, and C. Zanini. The Gilbert equation with dry-friction-type damping. J. Math. Anal. Appl., 355:453–468, 2009.MathSciNetMATHCrossRef
551.
go back to reference T. Roubíček and J. Valdman. Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation. (Preprint arXiv 1505.01018), submitted, 2015. T. Roubíček and J. Valdman. Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation. (Preprint arXiv 1505.01018), submitted, 2015.
552.
go back to reference T. Roubíček and J. Valdman. Stress-driven solution to rate-independent damage with plasticity at small strains and its computer implementation. (Preprint arXiv no. 1506.01421), submitted, 2015. T. Roubíček and J. Valdman. Stress-driven solution to rate-independent damage with plasticity at small strains and its computer implementation. (Preprint arXiv no. 1506.01421), submitted, 2015.
555.
556.
go back to reference A. Sadjadpour and K. Bhattacharya. A micromechanics inspired constitutive model for shape-memory alloys. Smart Mater. Structures, 16:1751–1765, 2007.CrossRef A. Sadjadpour and K. Bhattacharya. A micromechanics inspired constitutive model for shape-memory alloys. Smart Mater. Structures, 16:1751–1765, 2007.CrossRef
557.
go back to reference F. Schmid and A. Mielke. Vortex pinning in super-conductivity as a rate-independent process. Europ. J. Appl. Math., 16:799–808, 2005.MathSciNetMATHCrossRef F. Schmid and A. Mielke. Vortex pinning in super-conductivity as a rate-independent process. Europ. J. Appl. Math., 16:799–808, 2005.MathSciNetMATHCrossRef
559.
go back to reference P. Sedlák, M. Frost, B. Benešová, T. Ben Zineb, and P. Šittner. Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int. J. Plasticity, 39:132–151, 2012.CrossRef P. Sedlák, M. Frost, B. Benešová, T. Ben Zineb, and P. Šittner. Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int. J. Plasticity, 39:132–151, 2012.CrossRef
560.
go back to reference M. Shillor, M. Sofonea, and J. J. Telega. Models and Analysis of Quasistatic Contact. Springer, Berlin, 2004.MATHCrossRef M. Shillor, M. Sofonea, and J. J. Telega. Models and Analysis of Quasistatic Contact. Springer, Berlin, 2004.MATHCrossRef
562.
go back to reference M. Šilhavý. On the hysteresis in martensitic transformations. In P. Podio-Guidugli and M. Brokate, editors, Rational Continua, Classical and New, pages 151–168, Berlin, 2003. Springer.CrossRef M. Šilhavý. On the hysteresis in martensitic transformations. In P. Podio-Guidugli and M. Brokate, editors, Rational Continua, Classical and New, pages 151–168, Berlin, 2003. Springer.CrossRef
563.
go back to reference M. Šilhavý. Zeroes of the polyconvex hull of powers of the distance and s–polyconvexity. J. of Convex Analysis, 14:319–344, 2007.MATH M. Šilhavý. Zeroes of the polyconvex hull of powers of the distance and s–polyconvexity. J. of Convex Analysis, 14:319–344, 2007.MATH
564.
go back to reference J. C. Simo. Numerical analysis and simulation of plasticity. In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, Vol. VI, pages 183–499. North-Holland, Amsterdam, 1998. J. C. Simo. Numerical analysis and simulation of plasticity. In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, Vol. VI, pages 183–499. North-Holland, Amsterdam, 1998.
565.
go back to reference J. C. Simo and J. R. Hughes. Computational Inelasticity. Springer, Berlin, 1998.MATH J. C. Simo and J. R. Hughes. Computational Inelasticity. Springer, Berlin, 1998.MATH
567.
go back to reference M. Sofonea, W. Han, and M. Shillor. Analysis and approximation of contact problems with adhesion or damage. Chapman & Hall/CRC, Boca Raton, FL, 2006.MATH M. Sofonea, W. Han, and M. Shillor. Analysis and approximation of contact problems with adhesion or damage. Chapman & Hall/CRC, Boca Raton, FL, 2006.MATH
568.
go back to reference A. Souza, E. Mamiya, and N. Zouain. Three-dimensional model for solids undergoing stress-induced phase transformations. Europ. J. Mech., A/Solids, 17:789–806, 1998. A. Souza, E. Mamiya, and N. Zouain. Three-dimensional model for solids undergoing stress-induced phase transformations. Europ. J. Mech., A/Solids, 17:789–806, 1998.
573.
go back to reference M. Struwe. Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag, Berlin, 1990. M. Struwe. Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag, Berlin, 1990.
574.
go back to reference S. Stupkiewicz. Extension of the node-to-segment contact element for surface-expansion-dependent contact laws. Int. J. Numer. Meth. Engr., 50:739–759, 2001.MATHCrossRef S. Stupkiewicz. Extension of the node-to-segment contact element for surface-expansion-dependent contact laws. Int. J. Numer. Meth. Engr., 50:739–759, 2001.MATHCrossRef
575.
go back to reference S. Stupkiewicz, J. Lengiewicz, and J. Korelc. Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation. Comp. Meth. Appl. Mech. Eng., 199:2165–2176, 2010.MathSciNetMATHCrossRef S. Stupkiewicz, J. Lengiewicz, and J. Korelc. Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation. Comp. Meth. Appl. Mech. Eng., 199:2165–2176, 2010.MathSciNetMATHCrossRef
576.
go back to reference S. Stupkiewicz and H. Petryk. Modelling of laminated microstructures in stress-induced martensitic transformations. J. Mech. Phys. Solids, 50:2303–2331, 2002.MathSciNetMATHCrossRef S. Stupkiewicz and H. Petryk. Modelling of laminated microstructures in stress-induced martensitic transformations. J. Mech. Phys. Solids, 50:2303–2331, 2002.MathSciNetMATHCrossRef
578.
go back to reference P.-M. Suquet. Existence et régularité des solutions des équations de la plasticité parfaite. C. R. Acad. Sci. Paris Sér.A, 286:1201–1204, 1978. P.-M. Suquet. Existence et régularité des solutions des équations de la plasticité parfaite. C. R. Acad. Sci. Paris Sér.A, 286:1201–1204, 1978.
579.
go back to reference P.-M. Suquet. Sur les équations de la plasticité: existence et régularité des solutions. J. Mécanique, 20:3–39, 1981.MathSciNetMATH P.-M. Suquet. Sur les équations de la plasticité: existence et régularité des solutions. J. Mécanique, 20:3–39, 1981.MathSciNetMATH
580.
go back to reference B. Svendsen. Continuum thermodynamic models for crystal plasticity including the effects of geometrically necessary dislocations. J. Mech. Physics Solids, 50:1297–1329, 2002.MathSciNetMATHCrossRef B. Svendsen. Continuum thermodynamic models for crystal plasticity including the effects of geometrically necessary dislocations. J. Mech. Physics Solids, 50:1297–1329, 2002.MathSciNetMATHCrossRef
581.
583.
go back to reference J. G. Swadener, K. M. Liechti, and A. L. deLozanne. The intrinsic toughness and adhesion mechanism of a glass/epoxy interface. J. Mech. Phys. Solids, 47:223–258, 1999. J. G. Swadener, K. M. Liechti, and A. L. deLozanne. The intrinsic toughness and adhesion mechanism of a glass/epoxy interface. J. Mech. Phys. Solids, 47:223–258, 1999.
584.
go back to reference L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A, 115:193–230, 1990.MathSciNetMATHCrossRef L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A, 115:193–230, 1990.MathSciNetMATHCrossRef
586.
go back to reference L. Távara, V. Mantič, E. Graciani, J. Canas, and F. París. Analysis of a crack in a thin adhesive layer between orthotropic materials: an application to composite interlaminar fracture toughness test. Computer Modeling in Engr. Sci., 58:247–270, 2010.MATH L. Távara, V. Mantič, E. Graciani, J. Canas, and F. París. Analysis of a crack in a thin adhesive layer between orthotropic materials: an application to composite interlaminar fracture toughness test. Computer Modeling in Engr. Sci., 58:247–270, 2010.MATH
587.
go back to reference L. Távara, V. Mantič, E. Graciani, and F. París. BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model. Engr. Anal. with Boundary Elements, 35:207–222, 2011.MATHCrossRefMathSciNet L. Távara, V. Mantič, E. Graciani, and F. París. BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model. Engr. Anal. with Boundary Elements, 35:207–222, 2011.MATHCrossRefMathSciNet
588.
go back to reference R. Temam. Navier-Stokes equations. North-Holland, Amsterdam, 3rd edition, 1984.MATH R. Temam. Navier-Stokes equations. North-Holland, Amsterdam, 3rd edition, 1984.MATH
589.
go back to reference R. Temam. Mathematical Problems in Plasticity. Gauthier-Villars, Paris, 1985. (French original in 1983).MATH R. Temam. Mathematical Problems in Plasticity. Gauthier-Villars, Paris, 1985. (French original in 1983).MATH
590.
go back to reference P. Thamburaja and L. Anand. Thermomechanically coupled superelastic response of initially-textured tini sheet. Acta Mater., 51:325–338, 2003.CrossRef P. Thamburaja and L. Anand. Thermomechanically coupled superelastic response of initially-textured tini sheet. Acta Mater., 51:325–338, 2003.CrossRef
593.
go back to reference M. Thomas. Rate-independent damage processes in nonlinearly elastic materials. PhD thesis, Institut für Mathematik, Humboldt-Universität zu Berlin, February 2010. M. Thomas. Rate-independent damage processes in nonlinearly elastic materials. PhD thesis, Institut für Mathematik, Humboldt-Universität zu Berlin, February 2010.
594.
go back to reference M. Thomas. Quasistatic damage evolution with spatial BV-regularization. Discr. Cont. Dynam. Systems, Ser. S, 6:235–255, 2013. Preprint no. 1638, WIAS, Berlin, 2011. M. Thomas. Quasistatic damage evolution with spatial BV-regularization. Discr. Cont. Dynam. Systems, Ser. S, 6:235–255, 2013. Preprint no. 1638, WIAS, Berlin, 2011.
595.
go back to reference M. Thomas and A. Mielke. Damage of nonlinearly elastic materials at small strain – Existence and regularity results –. Zeitschrift angew. Math. Mech., 90:88–112, 2010.MathSciNetMATHCrossRef M. Thomas and A. Mielke. Damage of nonlinearly elastic materials at small strain – Existence and regularity results –. Zeitschrift angew. Math. Mech., 90:88–112, 2010.MathSciNetMATHCrossRef
596.
go back to reference M. Thomas and A.-M. Sändig. Energy-release rate for interface-crack in compounds for p-Laplacian type-Griffith formula and j-integral. Technical report, Bericht 2006/13, SFB 4040, Univ. Stuttgart., 2006. M. Thomas and A.-M. Sändig. Energy-release rate for interface-crack in compounds for p-Laplacian type-Griffith formula and j-integral. Technical report, Bericht 2006/13, SFB 4040, Univ. Stuttgart., 2006.
597.
go back to reference A. Timofte. Homogenization for a nonlinear ferroelectric model. Asymptot. Anal., 61:177–194, 2009.MathSciNetMATH A. Timofte. Homogenization for a nonlinear ferroelectric model. Asymptot. Anal., 61:177–194, 2009.MathSciNetMATH
598.
go back to reference R. Toader and C. Zanini. An artificial viscosity approach to quasistatic crack growth. Boll. Unione Matem. Ital., 2:1–36, 2009.MathSciNetMATH R. Toader and C. Zanini. An artificial viscosity approach to quasistatic crack growth. Boll. Unione Matem. Ital., 2:1–36, 2009.MathSciNetMATH
603.
go back to reference I. Tsagrakis and E. C. Aifantis. Recent developments in gradient plasticity. Part I: Formulation and size effects. J. Eng. Mater. Tech., 124:352–357, 2002. I. Tsagrakis and E. C. Aifantis. Recent developments in gradient plasticity. Part I: Formulation and size effects. J. Eng. Mater. Tech., 124:352–357, 2002.
605.
go back to reference A. Vainchtein and P. Rosakis. Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions. J. Nonlin. Sci., 9:697–719, 1999.MathSciNetMATHCrossRef A. Vainchtein and P. Rosakis. Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions. J. Nonlin. Sci., 9:697–719, 1999.MathSciNetMATHCrossRef
606.
go back to reference J. Valdman. Mathematical and numerical analysis of elasto-plastic material with multi-surface stress-strain relation. PhD thesis, Christian-Albrechts-Univ. Kiel, 2002. J. Valdman. Mathematical and numerical analysis of elasto-plastic material with multi-surface stress-strain relation. PhD thesis, Christian-Albrechts-Univ. Kiel, 2002.
611.
go back to reference A. Visintin. On some models of ferromagnetism. In N. Kenmochi, editor, Free Boundary Problems I, pages 411–428. Gakkotosho, 2000. A. Visintin. On some models of ferromagnetism. In N. Kenmochi, editor, Free Boundary Problems I, pages 411–428. Gakkotosho, 2000.
612.
go back to reference A. Visintin. A Weiss model of ferromagnetism. Physica B, 275:87–91, 2000.CrossRef A. Visintin. A Weiss model of ferromagnetism. Physica B, 275:87–91, 2000.CrossRef
614.
go back to reference A. Vivet and C. Lexcellent. Micromechanical modelling for tension-compression pseudoelastic behaviour of aucd single crystals. Euro Phys. J. A.P., 4:125–132, 1998. A. Vivet and C. Lexcellent. Micromechanical modelling for tension-compression pseudoelastic behaviour of aucd single crystals. Euro Phys. J. A.P., 4:125–132, 1998.
615.
go back to reference R. Vodička, V. Mantič, and T. Roubíček. Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model. Meccanica, 49:2933–2963, 2014.MathSciNetMATHCrossRef R. Vodička, V. Mantič, and T. Roubíček. Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model. Meccanica, 49:2933–2963, 2014.MathSciNetMATHCrossRef
620.
go back to reference J. Würschmidt. Theorie des Entmagnetisierungsfaktors und der Scherung von Magnetisierungskurven. Vieweg & Sohn, Braunschweig, 1925.CrossRef J. Würschmidt. Theorie des Entmagnetisierungsfaktors und der Scherung von Magnetisierungskurven. Vieweg & Sohn, Braunschweig, 1925.CrossRef
624.
go back to reference C. Zălinescu. Convex Analysis in General Vector Spaces. World Scientific Publ. Co. Inc., River Edge, NJ, 2002.MATHCrossRef C. Zălinescu. Convex Analysis in General Vector Spaces. World Scientific Publ. Co. Inc., River Edge, NJ, 2002.MATHCrossRef
625.
go back to reference A. T. Zayak, V. D. Buchelnikov, and P. Entel. A Ginzburg-Landau theory for Ni-Mn-Ga. Phase Transit., 75:243–256, 2002.CrossRef A. T. Zayak, V. D. Buchelnikov, and P. Entel. A Ginzburg-Landau theory for Ni-Mn-Ga. Phase Transit., 75:243–256, 2002.CrossRef
632.
go back to reference P. K. Zysset and A. Curnier. An implicit projection algorithm for simultaneous flow of plasticity and damage in standard generalized materials. Int. J. Numer. Meth. Engr., 39:3065–3082, 1996.MATHCrossRef P. K. Zysset and A. Curnier. An implicit projection algorithm for simultaneous flow of plasticity and damage in standard generalized materials. Int. J. Numer. Meth. Engr., 39:3065–3082, 1996.MATHCrossRef
Metadata
Title
Applications in continuum mechanics and physics of solids
Authors
Alexander Mielke
Tomàš Roubíček
Copyright Year
2015
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2706-7_4

Premium Partners