Skip to main content

2015 | OriginalPaper | Buchkapitel

3. Rate-independent systems in Banach spaces

verfasst von : Alexander Mielke, Tomàš Roubíček

Erschienen in: Rate-Independent Systems

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the Banach-space setting, we assume that the topologies are given by either the weak or the strong topology. Throughout this chapter, we will assume that the topological spaces \(\mathcal{Y}\) and \(\mathcal{Z}\) of Chapter 2 are given via separable reflexive Banach spaces \(\boldsymbol{Y }\) and \(\boldsymbol{Z}\) equipped with their weak topologies, unless stated otherwise explicitly. Thus \(\mathcal{Y}\subset \boldsymbol{Y }\), \(\mathcal{Z}\subset \boldsymbol{Z}\), and \(\mathcal{Q}:= \mathcal{Y}\times \mathcal{Z}\) from (2.​0.​1) is a subset of
$$\displaystyle\begin{array}{rcl} \boldsymbol{Q} = \boldsymbol{Y } \times \boldsymbol{Z}\quad \mbox{ with separable, reflexive Banach spaces $\boldsymbol{Y }$ and $\boldsymbol{Z}$.}& &{}\end{array}$$
(3.0.1)
In Banach spaces, we have two important additional tools deriving from the linear structure. First, the functionals at hand may have differentials or subdifferentials such that it is possible to formulate force balances, such as
$$\displaystyle{ \partial _{\dot{q}}\mathcal{R}(q(t),\dot{q}(t)) + \partial _{q}\mathcal{E}(t,q(t)) \ni 0\qquad \mbox{ for a.a. }\ t\! \in \! [0,T], }$$
(3.0.2)
and to formulate rate equations rather than compare energies, as in the energetic formulation. Second, we can employ convexity and duality methods such as the Legendre–Fenchel transform, as indicated in Section 1.​3.​4 Here we use the symbol for the Fréchet subdifferential (cf. Section 3.3.1 for the definition), which generalizes the convex subdifferential and the Fréchet derivative, and \(\partial _{a}\mathcal{J} (a,b)\) or \(\partial _{b}\mathcal{J} (a,b)\) denotes the partial Fréchet subdifferentials, where b or a is kept fixed, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1

Premonotonicity of A means that \(\langle \xi,v\rangle \geq 0\) for all \((\xi,v)\) satisfying \(\xi \!\in \! A(v)\).

 
2

The notion of semistability was first presented in [527] and then used also, e.g., in [350, Formula (5)] in a special dynamic fracture problem.

 
3

For z fixed, the property of \(\partial _{y}\mathcal{E}(t,\cdot,z): \boldsymbol{Y } \rightarrow \boldsymbol{Y }^{{\ast}}\) being a mapping of the type (S+) was introduced by Browder [102, p.279].

 
4

See also [532, Remark 8.25] for a general discussion of fractional-step methods.

 
5

In fact, \(\partial _{y}\mathcal{E}(t,y(t),z_{{\ast}}^{}(t)) \ni 0\) does not need to be satisfied at t = 0, because we did not assume the full stability of the initial condition (y 0, z 0) but only (3.4.27h).

 
6

An example of advancing this idea might be a finer split, e.g., for the shape-memory model in Section 4.​2.​2.​1 considering \(\mathcal{E}(y,z) =\int _{\varOmega }W(\nabla y) + \frac{1} {\varepsilon } \vert z-\nabla u\vert ^{2} + \mathbb{H}\nabla ^{2}y\begin{array}{c}. \\. \\.\end{array}\,\nabla ^{2}y\) with W only rank-one convex and \(\mathcal{R}\) from (4.​2.​34).

 
7

It is worth noting that the resulting algorithm shares similar features with the backtracking scheme introduced by Bourdin [89] (see also [91, Sect. 8.3]) in the context of variational theories for fracture and crack propagation but without direct checking of the two-sided energy estimate.

 
8

The original Mosco transformation [440] was designed rather for the optimality conditions as variational inequalities, which works even for nonpotential problems.

 
9

See, e.g., [90, 467] for numerical experiments with AMA in the context of fracture mechanics.

 
10

There is no definite terminological agreement in the literature. Sometimes, “nonassociative” means that there is no unique activation threshold associated to the dissipation mechanism, i.e., \(\mathcal{R}\) depends also on q, while in other works, it means that the dissipative rate-force relation \(\xi \in A(\dot{z})\) is only premonotone but has no potential; see Sections 1.​9 and 3.2.1. For example, [257] refers to situations in which plastic behavior is more accurately modeled by prescribing a yield function, for use in determining when plastic flow takes place, and in addition a flow potential, which is used to determine the plastic strain rates.

 
11

This definition was formulated in [529, 531] for a specific delamination problem.

 
Literatur
  1. L. Adam, J. V. Outrata, and T. Roubíček. Identification of some nonsmooth evolution systems with illustration on adhesive contacts at small strains. Optimization, arXiv:1411.4903.
  2. V. Agostiniani, R. Rossi, and G. Savaré. On the transversality conditions and their genericity. Rendiconti del Circolo Matematico di Palermo, 64:101–116, 2015.View Article
  3. H.-D. Alber. Materials with Memory. Springer-Verlag, Berlin, 1998.MATH
  4. J. Alberty and C. Carstensen. Numerical analysis of time-depending primal elastoplasticity with hardening. SIAM J. Numer. Anal., 37:1271–1294, 2000.MATHMathSciNetView Article
  5. F. Alizadeh and D. Goldfarb. Second-order cone programming. Math. Program., Ser. B, 95:3–51, 2003.
  6. L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, Basel, 2005.MATH
  7. H. Attouch. Variational Convergence of Functions and Operators. Pitman, 1984.
  8. F. Auricchio, A. Mielke, and U. Stefanelli. A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. Math. Models Meth. Appl. Sci., 18:125–164, 2008.MATHMathSciNetView Article
  9. H. T. Banks, A. J. Kurdila, and G. Webb. Identification and hysteretic control influence operators representing smart actuators, Part II: Convergent approximations. J. Int. Mat. Syst. Struct., 8:536–550, 1997.View Article
  10. S. Bartels. Quasi-optimal error estimates for implicit discretizations of rate-independent evolution problems. SIAM J. Numer. Anal., 52:708–716, 2014.MATHMathSciNetView Article
  11. B. Benešová. Global optimization numerical strategies for rate-independent processes. J. Global Optim., 50:197–220, 2011.MATHMathSciNetView Article
  12. G. Bonfanti. A vanishing viscosity approach to a two degree-of-freedom contact problem in linear elasticity with friction. Annali dell’Universita di Ferrara, 42:127–154, 1996.MATHMathSciNet
  13. M. Bounkhel and L. Thibault. On various notions of regularity of sets in nonsmooth analysis. Nonlinear Anal., 48:223–246, 2002.MATHMathSciNetView Article
  14. B. Bourdin. Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound., 9:411–430, 2007.MATHMathSciNetView Article
  15. B. Bourdin, G. A. Francfort, and J.-J. Marigo. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids, 48:797–826, 2000.MATHMathSciNetView Article
  16. B. Bourdin, G. A. Francfort, and J.-J. Marigo. The variational approach to fracture. J. Elasticity, 91:5–148, 2008.MATHMathSciNetView Article
  17. A. Braides. A handbook of Γ-convergence. In M. Chipot and P. Quittner, editors, Handbook of Diff. Eqs. Stationary P. D. E. Vol. 3. Elsevier, 2006.
  18. M. Brokate, P. Krejčí, and H. Schnabel. On uniqueness in evolution quasivariational inequalities. J. Convex Analysis, 11:111–130, 2004.MATH
  19. M. Brokate and J. Sprekels. Hysteresis and Phase Transitions. Springer-Verlag, New York, 1996.MATHView Article
  20. F. Browder. Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces. Proc.Symp.Pure Math. AMS, Providence, 1976.MATHView Article
  21. F. Cagnetti. A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path. Math. Models Meth. Appl. Sci., 18:1027–1071, 2009.MathSciNetView Article
  22. P. Colli. On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math., 9:181–203, 1992.MATHMathSciNetView Article
  23. P. Colli and A. Visintin. On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations, 15:737–756, 1990.MATHMathSciNetView Article
  24. G. Dal Maso. An Introduction to Γ-Convergence. Birkhäuser Boston Inc., Boston, MA, 1993.View Article
  25. G. Dal Maso, A. DeSimone, and M. G. Mora. Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Rational Mech. Anal., 180:237–291, 2006.MATHMathSciNetView Article
  26. G. Dal Maso, A. DeSimone, M. G. Mora, and M. Morini. A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Rational Mech. Anal., 189:469–544, 2008.MATHMathSciNetView Article
  27. G. Dal Maso, A. DeSimone, and F. Solombrino. Quasistatic evolution for cam-clay plasticity: a weak formulation via viscoplastic regularization and time parametrization. Calc. Var. Part. Diff. Eqns., 40(2):125–181, 2011.MATHMathSciNetView Article
  28. Z. Dostál. Optimal Quadratic Programming Algorithms. Springer, Berlin, 2009.MATH
  29. M. Efendiev and A. Mielke. On the rate–independent limit of systems with dry friction and small viscosity. J. Convex Anal., 13:151–167, 2006.MATHMathSciNet
  30. R. A. Eve, B. D. Reddy, and R. T. Rockafellar. An internal variable theory of elastoplasticity based on the maximum plastic work inequality. Quarterly Appl. Math., 48:59–83, 1990.MATHMathSciNet
  31. A. Fiaschi. A Young measures approach to quasistatic evolution for a class of material models with nonconvex elastic energies. ESAIM Control Optim. Calc. Var., 15:245–278, 2009.MATHMathSciNetView Article
  32. G. Francfort and A. Mielke. Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Math., 595:55–91, 2006.MATHMathSciNet
  33. J. Franc˚u and P. Krejčí. Homogenization of scalar wave equation with hysteresis operator. In Int. Conf. on Differential Equations, pages 363–368. World Sci. Publishing, River Edge, NJ, 2000.
  34. M. Frémond. Non-Smooth Thermomechanics. Springer-Verlag, Berlin, 2002.MATHView Article
  35. F. Gastaldi, M. D. P. M. Marques, and J. A. C. Martins. Mathematical analysis of a two degree-of-freedom frictional contact problem with discontinuous solutions. Math. Comput. Modelling, 28:247–261, 1998.MATHMathSciNetView Article
  36. A. Giacomini and A. Musesti. Two-scale homogenization for a model in strain gradient plasticity. ESAIM Control Optim. Calc. Var., 17:1035–1065, 2011.MATHMathSciNetView Article
  37. N. Gould, D. Orban, and P. Toint. Numerical methods for large-scale nonlinear optimization. Acta Numerica, 14:299–361, 2005.MATHMathSciNetView Article
  38. K. Gröger. Zur Lösung einer Klasse von Gleichungen mit einem monotonen Potentialoperator. Math. Nachr., 81:7–24, 1978.MATHMathSciNetView Article
  39. R. B. Guenther, P. Krejčí, and J. Sprekels. Small strain oscillations of an elastoplastic Kirchhoff plate. Zeitschrift angew. Math. Mech., 88:199–217, 2008.MATHView Article
  40. W. Han and B. D. Reddy. Plasticity (Mathematical Theory and Numerical Analysis). Springer-Verlag, New York, 1999.MATH
  41. H. Hanke. Homogenization in gradient plasticity. Math. Models Meth. Appl. Sci., 21:1651–1684, 2011.MATHMathSciNetView Article
  42. K.-H. Hoffmann and G. H. Meyer. A least squares method for finding the Preisach hysteresis operator from measurements. Numer. Math., 55:695–710, 1989.MATHMathSciNetView Article
  43. K.-H. Hoffmann, J. Sprekels, and A. Visintin. Identification of hysteretic loops. J. Comp. Physics, 78:215–230, 1988.MATHMathSciNetView Article
  44. A. Y. Ishlinskiĭ. Some applications of statistical methods to describing deformations of bodies. Izv. A.N. S.S.S.R. Techn. Ser., 9:580–590, 1944. (Russian).
  45. M. Jirásek and Z. P. Bažant. Inelastic Analysis of Structures. J.Wiley, Chichester, 2002.
  46. D. Knees, A. Mielke, and C. Zanini. On the inviscid limit of a model for crack propagation. Math. Models Meth. Appl. Sci., 18:1529–1569, 2008.MATHMathSciNetView Article
  47. D. Knees, C. Zanini, and A. Mielke. Crack growth in polyconvex materials. Physica D, 239:1470–1484, 2010.MATHMathSciNetView Article
  48. M. Kočvara, M. Kružík, and J. V. Outrata. On the control of an evolutionary equilibrium in micromagnetics. In Optimization with multivalued mappings, pages 143–168. Springer, New York, 2006.
  49. J. Koutný, M. Kružík, A. Kurdila, and T. Roubíček. Identification of preisach-type hysteresis operators. Numer. Funct. Anal. Optim., 29:149–160, 2008.MATHMathSciNetView Article
  50. M. A. Krasnosel’skiĭ and A. V. Pokrovskiĭ. Systems with Hysteresis. Springer-Verlag, Berlin, 1989.MATHView Article
  51. P. Krejčí. Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo, 1996.MATH
  52. P. Krejčí. Evolution variational inequalities and multidimensional hysteresis operators. In P. Drábek, P. Krejčí, and P. Takáč, editors, Nonlinear differential equations, pages 47–110. Chapman & Hall/CRC, Boca Raton, FL, 1999.
  53. P. Krejčí and M. Liero. Rate independent Kurzweil processes. Appl. Math., 54:117–145, 2009.MATHMathSciNetView Article
  54. P. Krejčí and A. Vladimirov. Lipschitz continuity of polyhedral Skorokhod maps. Zeitschrift Anal. Anwend., 20:817–844, 2001.MATHView Article
  55. P. Krejčí and A. Vladimirov. Polyhedral sweeping processes with oblique reflection in the space of regulated functions. Set-Valued Anal., 11:91–110, 2003.MATHMathSciNetView Article
  56. M. Kružík, A. Mielke, and T. Roubíček. Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica, 40:389–418, 2005.MATHMathSciNetView Article
  57. M. Kunze and M. D. P. Monteiro Marques. Existence of solutions for degenerate sweeping processes. J. Convex Anal., 4:165–176, 1997.MATHMathSciNet
  58. M. Kunze and M. D. P. Monteiro Marques. On parabolic quasi-variational inequalities and state-dependent sweeping processes. Topol. Methods Nonlinear Anal., 12:179–191, 1998.MATHMathSciNet
  59. C. J. Larsen. Epsilon-stable quasi-static brittle fracture evolution. Comm. Pure Appl. Math., 63:630–654, 2010.MATHMathSciNet
  60. C. J. Larsen, C. Ortner, and E. Suli. Existence of solution to a regularized model of dynamic fracture. Math. Models Meth. Appl. Sci., 20:1021–1048, 2010.MATHMathSciNetView Article
  61. M. Liero and A. Mielke. An evolutionary elastoplastic plate model derived via Γ-convergence. Math. Models Meth. Appl. Sci., 21:1961–1986, 2011.MATHMathSciNetView Article
  62. J. A. C. Martins, M. D. P. Monteiro Marques, and F. Gastaldi. On an example of nonexistence of solution to a quasistatic frictional contact problem. European J. Mech. A Solids, 13:113–133, 1994.MATHMathSciNet
  63. J. A. C. Martins, F. M. F. Simões, F. Gastaldi, and M. D. P. Monteiro Marques. Dissipative graph solutions for a 2 degree-of-freedom quasistatic frictional contact problem. Int. J. Engrg. Sci., 33:1959–1986, 1995.MATHView Article
  64. I.D. Mayergoyz. Mathematical models of hysteresis. New York etc.: Springer-Verlag, 1991.MATHView Article
  65. A. Mielke. Evolution in rate-independent systems (Ch. 6). In C.M. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations, vol. 2, pages 461–559. Elsevier B.V., Amsterdam, 2005.
  66. A. Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discr. Cont. Dynam. Systems Ser. A, 20:53–79, 2008.MATHMathSciNetView Article
  67. A. Mielke. Differential, energetic, and metric formulations for rate-independent processes. In L. Ambrosio and G. Savaré, editors, Nonlinear PDE’s and Applications, pages 87–170. Springer, 2011. (C.I.M.E. Summer School, Cetraro, Italy 2008, Lect. Notes Math. Vol. 2028).
  68. A. Mielke. Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction. Physica B, 407:1330–1335, 2012.MathSciNetView Article
  69. A. Mielke. On evolutionary Γ-convergence for gradient systems. WIAS Preprint 1915, 2014. To appear in Proc. Summer School in Twente University June 2012.
  70. A. Mielke, L. Paoli, and A. Petrov. Existence and approximation for a 3D model of thermally-induced phase transformations in shape-memory alloys. Proc. Appl. Math. Mech., 8:10395–10396, 2008.View Article
  71. A. Mielke, L. Paoli, A. Petrov, and U. Stefanelli. Error estimates for space-time discretizations of a rate-independent variational inequality. SIAM J. Numer. Anal., 48:1625–1646, 2010.MATHMathSciNetView Article
  72. A. Mielke and R. Rossi. Existence and uniqueness results for a class of rate-independent hysteresis problems. Math. Models Meth. Appl. Sci., 17:81–123, 2007.MATHMathSciNetView Article
  73. A. Mielke, R. Rossi, and G. Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discr. Cont. Dynam. Systems Ser. A, 25:585–615, 2009.MATHView Article
  74. A. Mielke, R. Rossi, and G. Savaré. A vanishing viscosity approach to rate-independent modelling in metric spaces. In T. Roubíček and U. Stefanelli, editors, Rate-Independent Evol. and Mater. Modeling, pages 33–38, 2010. Pubblicazione IMATI-CNR 29PV10/27/0 (Special Section of Equadiff 2007).
  75. A. Mielke, R. Rossi, and G. Savaré. BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var., 18:36–80, 2012.MATHMathSciNetView Article
  76. A. Mielke, R. Rossi, and G. Savaré. Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Part. Diff. Eqns., 46:253–310, 2013.MATHView Article
  77. A. Mielke, R. Rossi, and G. Savaré. Balanced-viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Europ. Math. Soc., 2014. To appear. (WIAS preprint 1845. http://​arxiv.​org/​abs/​1309.​6291).
  78. A. Mielke, R. Rossi, and G. Savaré. Balanced-Viscosity solutions for multi-rate systems. J. Physics, Conf. Series, 2014. WIAS Preprint no. 2001. Submitted.
  79. A. Mielke and T. Roubíček. Numerical approaches to rate-independent processes and applications in inelasticity. Math. Model. Numer. Anal., 43:399–428, 2009.MATHView Article
  80. A. Mielke, T. Roubíček, and U. Stefanelli. Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Part. Diff. Eqns., 31:387–416, 2008.MATHView Article
  81. A. Mielke, T. Roubíček, and J. Zeman. Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Engrg., 199:1242–1253, 2010.MATHMathSciNetView Article
  82. A. Mielke and F. Theil. On rate–independent hysteresis models. Nonl. Diff. Eqns. Appl., 11:151–189, 2004. (Accepted July 2001).
  83. A. Mielke and A. M. Timofte. Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal., 39:642–668, 2007.MATHMathSciNetView Article
  84. A. Mielke and S. Zelik. On the vanishing viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), XIII:67–135, 2014.
  85. M. D. P. Monteiro Marques. Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction. Birkhäuser Verlag, Basel, 1993.
  86. J.-J. Moreau. Problème d’évolution associé à un convexe mobile d’un espace hilbertien. C. R. Acad. Sci. Paris Sér. A-B, 276:A791–A794, 1973.MathSciNet
  87. J.-J. Moreau. Application of convex analysis to the treatment of elastoplastic systems. In P. Germain and B. Nayroles, editors, Appl. of Meth. of Funct. Anal. to Problems in Mech., pages 56–89. Springer-Verlag, 1976. Lecture Notes in Mathematics, 503.
  88. U. Mosco. A remark on a theorem of F. E. Browder. J. Math. Anal. Appl., 20:90–93, 1967.
  89. U. Mosco. Convergence of convex sets and of solutions of variational inequalities. Adv. in Math., 3:510–585, 1969.MATHMathSciNetView Article
  90. R. H. Nochetto, G. Savaré, and C. Verdi. A posteriori error estimates for variable-time step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math., 53(5):525–589, 2000.MATHMathSciNetView Article
  91. C. G. Panagiotopoulos and V. Mantič. Symmetric and non-symmetric debonds at fiber-matrix interface under transverse loads. an application of energetic approaches using collocation BEM. Anales de Mecánica de la Fractura, 30:125–130, 2013.
  92. H. Petryk. Incremental energy minimization in dissipative solids. C. R. Mecanique, 331:469–474, 2003.MATHView Article
  93. N. Point. Unilateral contact with adherence. Math. Methods Appl. Sci., 10:367–381, 1988.MATHMathSciNetView Article
  94. N. Point and E. Sacco. Mathematical properties of a delamination model. Math. Comput. Modelling, 28:359–371, 1998.MATHMathSciNetView Article
  95. F. Preisach. über die magnetische nachwirkung. Zeitschrift f. Physik, 94:277–302, 1935.
  96. F. Rindler. Optimal control for nonconvex rate-independent evolution processes. SIAM J. Control Optim., 47:2773–2794, 2008.MATHMathSciNetView Article
  97. F. Rindler. Approximation of rate-independent optimal control problems. SIAM J. Numer. Anal., 47:3884–3909, 2009.MATHMathSciNetView Article
  98. R. Rossi, A. Mielke, and G. Savaré. A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), VII:97–169, 2008.
  99. T. Roubíček. A note on an interaction between penalization and discretization. In A. Kurzhanski and I. Lasiecka, editors, Proc. IFIP-IIASA Conf. Modelling and Inverse Problems of Control for Dist. Param. Syst., volume 154 of L.N. in Control and Inf. Sci., pages 145–150, Berlin, 1991. Springer.
  100. T. Roubíček. Evolution model for martensitic phase transformation in shape–memory alloys. Interfaces Free Bound., 4:111–136, 2002.MATHMathSciNetView Article
  101. T. Roubíček. Rate independent processes in viscous solids. In T. Roubíček and U. Stefannelli, editors, Rate-independent evolutions and material modeling (EQUADIFF 2007), pages 45–50. IMATI, Pavia, 2010.
  102. T. Roubíček. Inviscid limit of viscoelasticity with delamination. In A. Mielke, F. Otto, G. Savaré, and U. Stefanelli, editors, Variat. Meth. for Evol., Oberwolfach Rep. No.55/2011. Math. Forschungsinst. Oberwolfach, 2011.
  103. T. Roubíček. Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal., 45:101–126, 2013.MATHMathSciNetView Article
  104. T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.View Article
  105. T. Roubíček. Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problems. Nonlin. Anal, Th. Meth. Appl., 113:33–50, 2015.
  106. T. Roubíček and M. Kružík. Microstructure evolution model in micromagnetics. Zeitschrift angew. Math. Physik, 55:159–182, 2004.MATHView Article
  107. T. Roubíček, M. Kružík, and J. Zeman. Delamination and adhesive contact models and their mathematical analysis and numerical treatment. In V. Mantič, editor, Math. Methods & Models in Composites, chapter 9, pages 349–400. Imperial College Press, 2013.
  108. T. Roubíček, V. Mantič, and C. G. Panagiotopoulos. Quasistatic mixed-mode delamination model. Discr. Cont. Dynam. Systems Ser. S, 6:591–610, 2013.MATH
  109. T. Roubíček, C. G. Panagiotopoulos, and V. Mantič. Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. Zeitschrift angew. Math. Mech., 93:823–840, 2013.MATHView Article
  110. F. Schmid and A. Mielke. Existence results for a contact problem with varying friction coefficient and nonlinear forces. Zeitschrift angew. Math. Mech., 87:616–631, 2007.MATHMathSciNetView Article
  111. U. Stefanelli. A variational characterization of rate-independent evolution. Mathem. Nach., 282:1492–1512, 2009.MATHMathSciNetView Article
  112. J. F. Sturm. Implementation of interior point methods for mixed semidefinite and second order cone optimization problems. Optimization Methods and Software, 17:1105–1154, 2002.MATHMathSciNetView Article
  113. M. Thomas. Rate-independent damage processes in nonlinearly elastic materials. PhD thesis, Institut für Mathematik, Humboldt-Universität zu Berlin, February 2010.
  114. M. Thomas and A. Mielke. Damage of nonlinearly elastic materials at small strain – Existence and regularity results –. Zeitschrift angew. Math. Mech., 90:88–112, 2010.MATHMathSciNetView Article
  115. R. Toader and C. Zanini. An artificial viscosity approach to quasistatic crack growth. Boll. Unione Matem. Ital., 2:1–36, 2009.MATHMathSciNet
  116. A. Visintin. Differential Models of Hysteresis. Springer-Verlag, Berlin, 1994.MATHView Article
  117. A. Visintin. Models of Phase Transitions. Birkhäuser, Boston, 1996.MATHView Article
  118. R. Vodička, V. Mantič, and T. Roubíček. Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by SGBEM/QP. Comp. Meth. Appl. Mechanics Engrg., 2015, submitted.
  119. E. Zeidler. Nonlinear Functional Analysis and its Applications III, Variational Methods and Optimization. Springer-Verlag, New York, 1985.MATHView Article
Metadaten
Titel
Rate-independent systems in Banach spaces
verfasst von
Alexander Mielke
Tomàš Roubíček
Copyright-Jahr
2015
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2706-7_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.