Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. A general view of rate-independent systems

verfasst von : Alexander Mielke, Tomàš Roubíček

Erschienen in: Rate-Independent Systems

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides a basic introduction to the concepts and notions developed in this book. We begin from the perspective of ordinary differential equations arising in mechanics

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
See., e.g., [455, Sect. 15.1.1] for this terminology.
 
2
Special situations can be handled as in [367], where the case α = 2 and \([-\lambda, 0]\) instead of \((-\infty, 0]\) is considered.
 
3
In fact, for d = 2, using in a nontrivial way a sophisticated regularity argument by Gröger [239], the analysis has been performed by Knees [303]; more precisely, even the vectorial situation has been addressed in [303] using [266]. However, for d = 3, this fails if α ≥ 2.
 
4
Historically, internal variables have also been called “internal coordinates” or “internal degrees of freedom”; cf. [72, Ch. 6].
 
5
First, the prefix “pseudo” (as used in [382]) refers to the fact that the actual dissipation rate \(\mathfrak{R}\) is different from the potential \(\mathcal{R}\), in contrast to the “static” energy \(\langle \frac{1} {2}Kq -\ell (t),q\rangle\), which serves equally for the potential of conservative forces and for the energy stored. Yet \(\mathcal{R}\) is simultaneously the dissipation rate and the dissipation potential if and only if it is 1-homogeneous (cf. Proposition 3.​2.​4 for the “only if” part); thus we can legally call \(\mathcal{R}\) a potential. Second, “pseudo” sometimes refers to the nondifferentiability of \(\mathcal{R}\) at 0 (cf. [455]), so that in this terminology, \(\mathcal{R}\) would remain a “pseudopotential” even in the 1-homogeneous case on which this book focuses.
 
6
Usually, the term “flow” refers to the solution semigroup generated by the differential inclusion or equation. If this equation has the above gradient structure, then this semigroup is called a (generalized) gradient flow. We adopt a convention to address freely also the differential equation itself as a (generalized) gradient flow.
 
7
In the distributed-parameter variant and in the notation of Sections 4.​2.​3 and 4.​3.​4.​1, we can think of the internal variable z ≥ 0 on the contact surface \(\varGamma \mathrm{C}\) as governed by a rate-independent flow rule \({\buildrel \hspace{0.85005pt}.\over z} =\sigma _{\mathrm{n}}\vert [[{\buildrel \hspace{0.85005pt}.\over u}]]\mathrm{t}\vert /k\) (a so-called Archard’s law [24], i.e., volume of the removed debris due to wear is proportional to the work done by frictional forces) with \([[u]]\mathrm{t}\) standing for the tangential displacement and \(\sigma _{\mathrm{n}} \geq 0\) the normal stress, and k > 0 a material constant expressing resistance of the surface to wear (usually large). The interpretation of z is the width of a layer where the material was already brushed away, and as such, it enters the contact boundary condition and thus \(\mathcal{E}\). See, e.g., [20, 572].
 
Literatur
8.
Zurück zum Zitat H.-D. Alber. Materials with Memory. Springer-Verlag, Berlin, 1998.MATH H.-D. Alber. Materials with Memory. Springer-Verlag, Berlin, 1998.MATH
12.
Zurück zum Zitat F. Alouges, A. DeSimone, and A. Levebvre. Optimal strokes for low Reynolds optnumber swimmers: an example. J. Nonlinear Sci., 18:277–302, 2008.MATHMathSciNetCrossRef F. Alouges, A. DeSimone, and A. Levebvre. Optimal strokes for low Reynolds optnumber swimmers: an example. J. Nonlinear Sci., 18:277–302, 2008.MATHMathSciNetCrossRef
20.
Zurück zum Zitat K. T. Andrews, A. Klarbring, M. Shillor, and S. Wright. A dynamical thermoviscoelastic contact problem with friction and wear. Int. J. Engng. Sci., 35:1291–1309, 1997.MATHMathSciNetCrossRef K. T. Andrews, A. Klarbring, M. Shillor, and S. Wright. A dynamical thermoviscoelastic contact problem with friction and wear. Int. J. Engng. Sci., 35:1291–1309, 1997.MATHMathSciNetCrossRef
24.
Zurück zum Zitat J. F. Archard. Contact and rubbing of flat surfaces. J. Appl. Phys., 24:981–988, 1953.CrossRef J. F. Archard. Contact and rubbing of flat surfaces. J. Appl. Phys., 24:981–988, 1953.CrossRef
42.
Zurück zum Zitat J. M. Ball. Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sci., 7:475–502, 1997. Erratum J. Nonlinear Sci. 8 (1998) page 233. J. M. Ball. Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sci., 7:475–502, 1997. Erratum J. Nonlinear Sci. 8 (1998) page 233.
72.
Zurück zum Zitat M. A. Biot. Mechanics of Incremental Deformations. John Wiley & Sons, New York, 1965. M. A. Biot. Mechanics of Incremental Deformations. John Wiley & Sons, New York, 1965.
94.
Zurück zum Zitat A. Braides. Γ-Convergence for Beginners. Oxford University Press, 2002. A. Braides. Γ-Convergence for Beginners. Oxford University Press, 2002.
101.
Zurück zum Zitat M. Brokate and J. Sprekels. Hysteresis and Phase Transitions. Springer-Verlag, New York, 1996.MATHCrossRef M. Brokate and J. Sprekels. Hysteresis and Phase Transitions. Springer-Verlag, New York, 1996.MATHCrossRef
131.
132.
Zurück zum Zitat P. Colli and A. Visintin. On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations, 15:737–756, 1990.MATHMathSciNetCrossRef P. Colli and A. Visintin. On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations, 15:737–756, 1990.MATHMathSciNetCrossRef
140.
Zurück zum Zitat B. Dacorogna. Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, 1989.MATHCrossRef B. Dacorogna. Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, 1989.MATHCrossRef
142.
Zurück zum Zitat G. Dal Maso and A. DeSimone. Quasistatic evolution for cam-clay plasticity: examples of spatially homogeneous solutions. Math. Models Meth. Appl. Sci., 19:1643–1711, 2009.MATHMathSciNetCrossRef G. Dal Maso and A. DeSimone. Quasistatic evolution for cam-clay plasticity: examples of spatially homogeneous solutions. Math. Models Meth. Appl. Sci., 19:1643–1711, 2009.MATHMathSciNetCrossRef
148.
Zurück zum Zitat G. Dal Maso, A. DeSimone, and F. Solombrino. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calc. Var. Part. Diff. Eqns., 44:495–541, 2012.MATHMathSciNetCrossRef G. Dal Maso, A. DeSimone, and F. Solombrino. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calc. Var. Part. Diff. Eqns., 44:495–541, 2012.MATHMathSciNetCrossRef
149.
Zurück zum Zitat G. Dal Maso, G. A. Francfort, and R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal., 176:165–225, 2005.MATHMathSciNetCrossRef G. Dal Maso, G. A. Francfort, and R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal., 176:165–225, 2005.MATHMathSciNetCrossRef
151.
Zurück zum Zitat G. Dal Maso and G. Lazzaroni. Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poinc. Anal. Non Lin., 27:257–290, 2010.MATHMathSciNetCrossRef G. Dal Maso and G. Lazzaroni. Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poinc. Anal. Non Lin., 27:257–290, 2010.MATHMathSciNetCrossRef
152.
Zurück zum Zitat G. Dal Maso and R. Toader. A model for quasi–static growth of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal., 162:101–135, 2002.MATHMathSciNetCrossRef G. Dal Maso and R. Toader. A model for quasi–static growth of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal., 162:101–135, 2002.MATHMathSciNetCrossRef
171.
Zurück zum Zitat M. Efendiev and A. Mielke. On the rate–independent limit of systems with dry friction and small viscosity. J. Convex Anal., 13:151–167, 2006.MATHMathSciNet M. Efendiev and A. Mielke. On the rate–independent limit of systems with dry friction and small viscosity. J. Convex Anal., 13:151–167, 2006.MATHMathSciNet
198.
Zurück zum Zitat G. A. Francfort and J.-J. Marigo. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 46:1319–1342, 1998.MATHMathSciNetCrossRef G. A. Francfort and J.-J. Marigo. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 46:1319–1342, 1998.MATHMathSciNetCrossRef
199.
Zurück zum Zitat G. A. Francfort and U. Stefanelli. Quasi-static evolution for the Armstrong-Frederick hardening-plasticity model. Appl. Math. Research, 2:297–344, 2013.MathSciNet G. A. Francfort and U. Stefanelli. Quasi-static evolution for the Armstrong-Frederick hardening-plasticity model. Appl. Math. Research, 2:297–344, 2013.MathSciNet
235.
Zurück zum Zitat K. Gröger. Evolution equations in the theory of plasticity. In Theory of nonlinear operators (Proc. 5th Int. Summer School, Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977), volume 6 of Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1978, pages 97–107. Akademie-Verlag, Berlin, 1978. K. Gröger. Evolution equations in the theory of plasticity. In Theory of nonlinear operators (Proc. 5th Int. Summer School, Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977), volume 6 of Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1978, pages 97–107. Akademie-Verlag, Berlin, 1978.
239.
Zurück zum Zitat K. Gröger. A W 1, p -estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Anal., 283:679–687, 1989.MATHCrossRef K. Gröger. A W 1, p -estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Anal., 283:679–687, 1989.MATHCrossRef
248.
Zurück zum Zitat K. Hackl and F. D. Fischer. On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potential. Proc. Royal Soc. A, 464:117–132, 2007.MathSciNetCrossRef K. Hackl and F. D. Fischer. On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potential. Proc. Royal Soc. A, 464:117–132, 2007.MathSciNetCrossRef
257.
Zurück zum Zitat W. Han and B. D. Reddy. Plasticity (Mathematical Theory and Numerical Analysis). Springer-Verlag, New York, 1999.MATH W. Han and B. D. Reddy. Plasticity (Mathematical Theory and Numerical Analysis). Springer-Verlag, New York, 1999.MATH
266.
Zurück zum Zitat R. Herzog, C. Meyer, and G. Wachsmuth. Regularity of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl., 382:802–813, 2011.MATHMathSciNetCrossRef R. Herzog, C. Meyer, and G. Wachsmuth. Regularity of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl., 382:802–813, 2011.MATHMathSciNetCrossRef
267.
Zurück zum Zitat R. Hill. A variational principle of maximum plastic work in classical plasticity. Q.J. Mech. Appl. Math., 1:18–28, 1948. R. Hill. A variational principle of maximum plastic work in classical plasticity. Q.J. Mech. Appl. Math., 1:18–28, 1948.
279.
Zurück zum Zitat A. Y. Ishlinskiĭ. Some applications of statistical methods to describing deformations of bodies. Izv. A.N. S.S.S.R. Techn. Ser., 9:580–590, 1944. (Russian). A. Y. Ishlinskiĭ. Some applications of statistical methods to describing deformations of bodies. Izv. A.N. S.S.S.R. Techn. Ser., 9:580–590, 1944. (Russian).
280.
Zurück zum Zitat R. D. James. Hysteresis in phase transformations. In ICIAM 95 (Hamburg, 1995), volume 87 of Math. Res., pages 135–154. Akademie Verlag, Berlin, 1996. R. D. James. Hysteresis in phase transformations. In ICIAM 95 (Hamburg, 1995), volume 87 of Math. Res., pages 135–154. Akademie Verlag, Berlin, 1996.
303.
Zurück zum Zitat D. Knees, R. Rossi, and C. Zanini. A vanishing viscosity approach to a rate-independent damage model. Math. Models Meth. Appl. Sci., 23:565–616, 2013.MATHMathSciNetCrossRef D. Knees, R. Rossi, and C. Zanini. A vanishing viscosity approach to a rate-independent damage model. Math. Models Meth. Appl. Sci., 23:565–616, 2013.MATHMathSciNetCrossRef
317.
Zurück zum Zitat M. A. Krasnosel’skiĭ and A. V. Pokrovskiĭ. Systems with Hysteresis. Springer-Verlag, Berlin, 1989.MATHCrossRef M. A. Krasnosel’skiĭ and A. V. Pokrovskiĭ. Systems with Hysteresis. Springer-Verlag, Berlin, 1989.MATHCrossRef
320.
Zurück zum Zitat P. Krejčí. Evolution variational inequalities and multidimensional hysteresis operators. In P. Drábek, P. Krejčí, and P. Takáč, editors, Nonlinear differential equations, pages 47–110. Chapman & Hall/CRC, Boca Raton, FL, 1999. P. Krejčí. Evolution variational inequalities and multidimensional hysteresis operators. In P. Drábek, P. Krejčí, and P. Takáč, editors, Nonlinear differential equations, pages 47–110. Chapman & Hall/CRC, Boca Raton, FL, 1999.
322.
Zurück zum Zitat P. Krejčí and A. Vladimirov. Lipschitz continuity of polyhedral Skorokhod maps. Zeitschrift Anal. Anwend., 20:817–844, 2001.MATHCrossRef P. Krejčí and A. Vladimirov. Lipschitz continuity of polyhedral Skorokhod maps. Zeitschrift Anal. Anwend., 20:817–844, 2001.MATHCrossRef
323.
Zurück zum Zitat P. Krejčí and A. Vladimirov. Polyhedral sweeping processes with oblique reflection in the space of regulated functions. Set-Valued Anal., 11:91–110, 2003.MATHMathSciNetCrossRef P. Krejčí and A. Vladimirov. Polyhedral sweeping processes with oblique reflection in the space of regulated functions. Set-Valued Anal., 11:91–110, 2003.MATHMathSciNetCrossRef
342.
Zurück zum Zitat M. Kunze and M. D. P. Monteiro Marques. On parabolic quasi-variational inequalities and state-dependent sweeping processes. Topol. Methods Nonlinear Anal., 12:179–191, 1998.MATHMathSciNet M. Kunze and M. D. P. Monteiro Marques. On parabolic quasi-variational inequalities and state-dependent sweeping processes. Topol. Methods Nonlinear Anal., 12:179–191, 1998.MATHMathSciNet
355.
Zurück zum Zitat D. Leguillon. Strength or toughness? A criterion for crack onset at a notch. European J. of Mechanics A/Solids, 21:61–72, 2002.MATHCrossRef D. Leguillon. Strength or toughness? A criterion for crack onset at a notch. European J. of Mechanics A/Solids, 21:61–72, 2002.MATHCrossRef
367.
Zurück zum Zitat F. Luterotti, G. Schmiperna, and U. Stefanelli. Global solution to a phase field model with irreversible and constrained phase evolution. Quart. Appl. Math., 60:301–316, 2002.MATHMathSciNet F. Luterotti, G. Schmiperna, and U. Stefanelli. Global solution to a phase field model with irreversible and constrained phase evolution. Quart. Appl. Math., 60:301–316, 2002.MATHMathSciNet
376.
Zurück zum Zitat V. Mantič. Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. application of a coupled stress and energy criterion. Int. J. Solids Structures, 46:1287–1304, 2009. V. Mantič. Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. application of a coupled stress and energy criterion. Int. J. Solids Structures, 46:1287–1304, 2009.
382.
Zurück zum Zitat G. A. Maugin. The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge, 1992.MATHCrossRef G. A. Maugin. The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge, 1992.MATHCrossRef
390.
Zurück zum Zitat A. Mielke. Finite elastoplasticity, Lie groups and geodesics on SL(d). In P. Newton, A. Weinstein, and P. J. Holmes, editors, Geometry, Mechanics, and Dynamics, pages 61–90. Springer–Verlag, New York, 2002. A. Mielke. Finite elastoplasticity, Lie groups and geodesics on SL(d). In P. Newton, A. Weinstein, and P. J. Holmes, editors, Geometry, Mechanics, and Dynamics, pages 61–90. Springer–Verlag, New York, 2002.
391.
Zurück zum Zitat A. Mielke. Energetic formulation of multiplicative elasto–plasticity using dissipation distances. Continuum Mech. Thermodyn., 15:351–382, 2003.MATHMathSciNetCrossRef A. Mielke. Energetic formulation of multiplicative elasto–plasticity using dissipation distances. Continuum Mech. Thermodyn., 15:351–382, 2003.MATHMathSciNetCrossRef
393.
Zurück zum Zitat A. Mielke. Evolution in rate-independent systems (Ch. 6). In C.M. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations, vol. 2, pages 461–559. Elsevier B.V., Amsterdam, 2005. A. Mielke. Evolution in rate-independent systems (Ch. 6). In C.M. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations, vol. 2, pages 461–559. Elsevier B.V., Amsterdam, 2005.
398.
Zurück zum Zitat A. Mielke. Differential, energetic, and metric formulations for rate-independent processes. In L. Ambrosio and G. Savaré, editors, Nonlinear PDE’s and Applications, pages 87–170. Springer, 2011. (C.I.M.E. Summer School, Cetraro, Italy 2008, Lect. Notes Math. Vol. 2028). A. Mielke. Differential, energetic, and metric formulations for rate-independent processes. In L. Ambrosio and G. Savaré, editors, Nonlinear PDE’s and Applications, pages 87–170. Springer, 2011. (C.I.M.E. Summer School, Cetraro, Italy 2008, Lect. Notes Math. Vol. 2028).
399.
Zurück zum Zitat A. Mielke. Emergence of rate-independent dissipation from viscous systems with wiggly energies. Continuum Mech. Thermodyn., 24:591–606, 2012.MATHMathSciNetCrossRef A. Mielke. Emergence of rate-independent dissipation from viscous systems with wiggly energies. Continuum Mech. Thermodyn., 24:591–606, 2012.MATHMathSciNetCrossRef
400.
Zurück zum Zitat A. Mielke. Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction. Physica B, 407:1330–1335, 2012.MathSciNetCrossRef A. Mielke. Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction. Physica B, 407:1330–1335, 2012.MathSciNetCrossRef
401.
Zurück zum Zitat A. Mielke. On evolutionary Γ-convergence for gradient systems. WIAS Preprint 1915, 2014. To appear in Proc. Summer School in Twente University June 2012. A. Mielke. On evolutionary Γ-convergence for gradient systems. WIAS Preprint 1915, 2014. To appear in Proc. Summer School in Twente University June 2012.
412.
Zurück zum Zitat A. Mielke, R. Rossi, and G. Savaré. BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var., 18:36–80, 2012.MATHMathSciNetCrossRef A. Mielke, R. Rossi, and G. Savaré. BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var., 18:36–80, 2012.MATHMathSciNetCrossRef
424.
Zurück zum Zitat A. Mielke and F. Theil. A mathematical model for rate-independent phase transformations with hysteresis. In H.-D. Alber, R.M. Balean, and R. Farwig, editors, Proc. Workshop on “Models of Continuum Mechanics in Analysis and Engineering”, pages 117–129, Aachen, 1999. Shaker-Verlag. A. Mielke and F. Theil. A mathematical model for rate-independent phase transformations with hysteresis. In H.-D. Alber, R.M. Balean, and R. Farwig, editors, Proc. Workshop on “Models of Continuum Mechanics in Analysis and Engineering”, pages 117–129, Aachen, 1999. Shaker-Verlag.
426.
Zurück zum Zitat A. Mielke, F. Theil, and V. I. Levitas. A variational formulation of rate–independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162:137–177, 2002.MATHMathSciNetCrossRef A. Mielke, F. Theil, and V. I. Levitas. A variational formulation of rate–independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162:137–177, 2002.MATHMathSciNetCrossRef
430.
Zurück zum Zitat A. Mielke and L. Truskinovsky. From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Rational Mech. Anal., 203:577–619, 2012.MATHMathSciNetCrossRef A. Mielke and L. Truskinovsky. From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Rational Mech. Anal., 203:577–619, 2012.MATHMathSciNetCrossRef
431.
Zurück zum Zitat A. Mielke and S. Zelik. On the vanishing viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), XIII:67–135, 2014. A. Mielke and S. Zelik. On the vanishing viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), XIII:67–135, 2014.
432.
Zurück zum Zitat M. D. P. Monteiro Marques. Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction. Birkhäuser Verlag, Basel, 1993. M. D. P. Monteiro Marques. Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction. Birkhäuser Verlag, Basel, 1993.
436.
Zurück zum Zitat J.-J. Moreau. Application of convex analysis to the treatment of elastoplastic systems. In P. Germain and B. Nayroles, editors, Appl. of Meth. of Funct. Anal. to Problems in Mech., pages 56–89. Springer-Verlag, 1976. Lecture Notes in Mathematics, 503. J.-J. Moreau. Application of convex analysis to the treatment of elastoplastic systems. In P. Germain and B. Nayroles, editors, Appl. of Meth. of Funct. Anal. to Problems in Mech., pages 56–89. Springer-Verlag, 1976. Lecture Notes in Mathematics, 503.
437.
Zurück zum Zitat J.-J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations, 26:347–374, 1977.MATHMathSciNetCrossRef J.-J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations, 26:347–374, 1977.MATHMathSciNetCrossRef
455.
Zurück zum Zitat Q. S. Nguyen. Stability and Nonlinear Solid Mechanics. J. Wiley, Chichester, 2000. Q. S. Nguyen. Stability and Nonlinear Solid Mechanics. J. Wiley, Chichester, 2000.
461.
Zurück zum Zitat L. Onsager. Reciprocal relations in irreversible processes, I+II. Physical Review, 37:405–426, 1931. (part II, 38:2265–2279). L. Onsager. Reciprocal relations in irreversible processes, I+II. Physical Review, 37:405–426, 1931. (part II, 38:2265–2279).
488.
Zurück zum Zitat V. L. Popov and J. A. T. Gray. Prandtl-Tomlinson model: History and applications in friction, plasticity, and nanotechnologies. Zeitschrift angew. Math. Mech., 92:692–708, 2012.MathSciNetCrossRef V. L. Popov and J. A. T. Gray. Prandtl-Tomlinson model: History and applications in friction, plasticity, and nanotechnologies. Zeitschrift angew. Math. Mech., 92:692–708, 2012.MathSciNetCrossRef
491.
Zurück zum Zitat L. Prandtl. Gedankenmodel zur kinetischen Theorie der festen Körper. Zeitschrift angew. Math. Mech., 8:85–106, 1928.MATHCrossRef L. Prandtl. Gedankenmodel zur kinetischen Theorie der festen Körper. Zeitschrift angew. Math. Mech., 8:85–106, 1928.MATHCrossRef
494.
Zurück zum Zitat G. Puglisi and L. Truskinovsky. Rate independent hysteresis in a bi-stable chain. J. Mech. Phys. Solids, 50:165–187, 2002.MATHMathSciNetCrossRef G. Puglisi and L. Truskinovsky. Rate independent hysteresis in a bi-stable chain. J. Mech. Phys. Solids, 50:165–187, 2002.MATHMathSciNetCrossRef
495.
Zurück zum Zitat G. Puglisi and L. Truskinovsky. Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids, 53:655–679, 2005.MATHMathSciNetCrossRef G. Puglisi and L. Truskinovsky. Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids, 53:655–679, 2005.MATHMathSciNetCrossRef
500.
Zurück zum Zitat K. R. Rajagopal and A. R. Srinivasa. On thermomechanical restrictions of continua. Proc. R. Soc. Lond. A, 460:631–651, 2004.MATHMathSciNetCrossRef K. R. Rajagopal and A. R. Srinivasa. On thermomechanical restrictions of continua. Proc. R. Soc. Lond. A, 460:631–651, 2004.MATHMathSciNetCrossRef
516.
Zurück zum Zitat R. Rossi and G. Savaré. A characterization of energetic and BV solutions to one-dimensional rate-independent systems. Discr. Cont. Dynam. Systems Ser. S, 6:167–191, 2013.MATH R. Rossi and G. Savaré. A characterization of energetic and BV solutions to one-dimensional rate-independent systems. Discr. Cont. Dynam. Systems Ser. S, 6:167–191, 2013.MATH
532.
Zurück zum Zitat T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.CrossRef T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.CrossRef
534.
Zurück zum Zitat T. Roubíček. Calculus of variations. In M. Grinfeld, editor, Mathematical Tools for Physicists, chapter 17, pages 551–587. J. Wiley, Weinheim, 2014. T. Roubíček. Calculus of variations. In M. Grinfeld, editor, Mathematical Tools for Physicists, chapter 17, pages 551–587. J. Wiley, Weinheim, 2014.
535.
Zurück zum Zitat T. Roubíček. A note about the rate-and-state-dependent friction model in a thermodynamic framework of the Biot-type equation. Geophys. J. Int., 199:286–295, 2014.CrossRef T. Roubíček. A note about the rate-and-state-dependent friction model in a thermodynamic framework of the Biot-type equation. Geophys. J. Int., 199:286–295, 2014.CrossRef
558.
Zurück zum Zitat F. Schmid and A. Mielke. Existence results for a contact problem with varying friction coefficient and nonlinear forces. Zeitschrift angew. Math. Mech., 87:616–631, 2007.MATHMathSciNetCrossRef F. Schmid and A. Mielke. Existence results for a contact problem with varying friction coefficient and nonlinear forces. Zeitschrift angew. Math. Mech., 87:616–631, 2007.MATHMathSciNetCrossRef
572.
Zurück zum Zitat N. Strömberg, L. Johansson, and A. Klarbring. Derivation and analysis of a generalized standard model for contact, friction and wear. Int. J. Solids Structures, 33:1817–1836, 1996.MATHCrossRef N. Strömberg, L. Johansson, and A. Klarbring. Derivation and analysis of a generalized standard model for contact, friction and wear. Int. J. Solids Structures, 33:1817–1836, 1996.MATHCrossRef
582.
Zurück zum Zitat J. Svoboda, I. Turek, and F. D. Fischer. Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos. Magazine, 85:3699–3707, 2005.CrossRef J. Svoboda, I. Turek, and F. D. Fischer. Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos. Magazine, 85:3699–3707, 2005.CrossRef
599.
Zurück zum Zitat G. A. Tomlinson. A molecular theory of friction. Philos. Mag., 7:905–939, 1929.CrossRef G. A. Tomlinson. A molecular theory of friction. Philos. Mag., 7:905–939, 1929.CrossRef
608.
627.
Zurück zum Zitat H. Ziegler. An attempt to generalize Onsager’s principle, and its significance for rheological problems. Zeitschrift angew. Math. Physik, 9:748–763, 1958.CrossRef H. Ziegler. An attempt to generalize Onsager’s principle, and its significance for rheological problems. Zeitschrift angew. Math. Physik, 9:748–763, 1958.CrossRef
628.
Zurück zum Zitat H. Ziegler. Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In Progress in Solid Mechanics, Vol. IV, pages 91–193. North-Holland, Amsterdam, 1963. H. Ziegler. Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In Progress in Solid Mechanics, Vol. IV, pages 91–193. North-Holland, Amsterdam, 1963.
630.
Zurück zum Zitat H. Ziegler and Ch. Wehrli. On a principle of maximal rate of entropy production. J. Non-Equilib. Thermodyn., 12:229–243, 1987.CrossRef H. Ziegler and Ch. Wehrli. On a principle of maximal rate of entropy production. J. Non-Equilib. Thermodyn., 12:229–243, 1987.CrossRef
Metadaten
Titel
A general view of rate-independent systems
verfasst von
Alexander Mielke
Tomàš Roubíček
Copyright-Jahr
2015
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2706-7_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.