Skip to main content
Top
Published in: Journal of Electronic Materials 2/2023

10-11-2022 | Original Research Article

Aramid Nanofiber-Based Nitrogen-Doped Carbon Aerogel Film for Flexible Solid Supercapacitors

Authors: Kezheng Gao, Zhankui Zheng, Zixin Feng, Qingyuan Niu, Qiheng Tang, Xiankai Sun, Lizhen Wang

Published in: Journal of Electronic Materials | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon materials are the most popular electrode material for supercapacitors. Among carbon electrode materials, carbon aerogel is a promising candidate for flexible supercapacitors. In this work, aramid nanofiber-based nitrogen-doped carbon aerogel flexible film electrode materials were successfully prepared by hydrogelation, freeze-drying, and high-temperature carbonization. The physicochemical properties of the aramid nanofiber-based nitrogen-doped carbon aerogel flexible film electrode materials can be effectively controlled by the concentration of the aramid nanofibers. The optimum concentration of the aramid nanofibers is 0.6. At a current density of 20 μA cm−2, the area specific capacitance of the aramid nanofiber (ANF)-0.6 carbon aerogel film-based flexible solid supercapacitor is about 15.2 mF cm−2. The area specific capacitance is about 59.3% of the area specific capacitance at 20 μA cm−2 when the current density is increased by a factor of 15. The ANF-0.6 carbon aerogel film-based flexible solid supercapacitor exhibits about 72% capacitance retention after 1200 folding cycles.

Graphical Abstract

The aramid nanofiber-based nitrogen-doped carbon aerogel film flexible solid supercapacitor exhibits good electrochemical and flexibility performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference S. Najib and E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817 (2019).CrossRef S. Najib and E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817 (2019).CrossRef
2.
go back to reference A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRef A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRef
3.
go back to reference A.S. Ghouri, R. Aslam, M.S. Siddiqui, and S.K. Sami, Recent progress in textile-based flexible supercapacitor. Front Mater. 7, 58 (2020).CrossRef A.S. Ghouri, R. Aslam, M.S. Siddiqui, and S.K. Sami, Recent progress in textile-based flexible supercapacitor. Front Mater. 7, 58 (2020).CrossRef
4.
go back to reference Y.P. Fu, X. Cai, H.W. Wu, Z.B. Lv, S.C. Hou, M. Peng, X. Yu, and D.C. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713 (2012).CrossRef Y.P. Fu, X. Cai, H.W. Wu, Z.B. Lv, S.C. Hou, M. Peng, X. Yu, and D.C. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713 (2012).CrossRef
5.
go back to reference Y.F. Wang, L. Zhang, H.Q. Hou, W.H. Xu, G.G. Duan, S.J. He, K.M. Liu, and S.H. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56, 173 (2021).CrossRef Y.F. Wang, L. Zhang, H.Q. Hou, W.H. Xu, G.G. Duan, S.J. He, K.M. Liu, and S.H. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56, 173 (2021).CrossRef
6.
go back to reference N.A. Rashidi and S. Yusup, Recent methodological trends in nitrogen - functionalized activated carbon production towards the gravimetric capacitance: A mini review. J. Energy Storage. 32, 101757 (2020).CrossRef N.A. Rashidi and S. Yusup, Recent methodological trends in nitrogen - functionalized activated carbon production towards the gravimetric capacitance: A mini review. J. Energy Storage. 32, 101757 (2020).CrossRef
7.
go back to reference T.K. Enock, C.K. King’ondu, A. Pogrebnoi, and Y.A.C. Jande, Status of biomass derived carbon materials for supercapacitor application. Int. J. Electrochem. 2017, 6453420 (2017).CrossRef T.K. Enock, C.K. King’ondu, A. Pogrebnoi, and Y.A.C. Jande, Status of biomass derived carbon materials for supercapacitor application. Int. J. Electrochem. 2017, 6453420 (2017).CrossRef
8.
go back to reference S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, and J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 403, 126352 (2021).CrossRef S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, and J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 403, 126352 (2021).CrossRef
9.
go back to reference L. Yang, X. Zhang, L.X. Yu, J.H. Hou, Z. Zhou, and R.T. Lv, Atomic Fe-N-4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-Air batteries with stable cycling over 1000 h. Adv. Mater. 34, 2105410 (2022).CrossRef L. Yang, X. Zhang, L.X. Yu, J.H. Hou, Z. Zhou, and R.T. Lv, Atomic Fe-N-4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-Air batteries with stable cycling over 1000 h. Adv. Mater. 34, 2105410 (2022).CrossRef
10.
go back to reference Q. Dou, J.H. Hou, A. Hussain, G.S. Zhang, Y.C. Zhang, M. Luo, X.Z. Wang, and C.B. Cao, One-pot synthesis of sodium-doped willow-shaped graphitic carbon nitride for improved photocatalytic activity under visible-light irradiation. J. Colloid Interf. Sci. 624, 79 (2022).CrossRef Q. Dou, J.H. Hou, A. Hussain, G.S. Zhang, Y.C. Zhang, M. Luo, X.Z. Wang, and C.B. Cao, One-pot synthesis of sodium-doped willow-shaped graphitic carbon nitride for improved photocatalytic activity under visible-light irradiation. J. Colloid Interf. Sci. 624, 79 (2022).CrossRef
11.
go back to reference W.Z. Li, B.Y. Li, M. Shen, Q. Gao, and J.H. Hou, Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors. Chem. Eng. J. 384, 123309 (2020).CrossRef W.Z. Li, B.Y. Li, M. Shen, Q. Gao, and J.H. Hou, Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors. Chem. Eng. J. 384, 123309 (2020).CrossRef
12.
go back to reference M. Sandhiya, M.P. Nadira, and M. Sathish, Fabrication of flexible supercapacitor using N-doped porous activated carbon derived from poultry waste. Energy Fuels 35, 15094 (2021).CrossRef M. Sandhiya, M.P. Nadira, and M. Sathish, Fabrication of flexible supercapacitor using N-doped porous activated carbon derived from poultry waste. Energy Fuels 35, 15094 (2021).CrossRef
13.
go back to reference I.I.G. Inal and Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Appl. Surf. Sci. 514, 145895 (2020).CrossRef I.I.G. Inal and Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Appl. Surf. Sci. 514, 145895 (2020).CrossRef
14.
go back to reference J.H. Hou, X.Y. Tu, X.G. Wu, M. Shen, X.Z. Wang, C.Y. Wang, C.B. Cao, H. Peng, and G.X. Wang, Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host. Chem. Eng. J. 401, 126141 (2020).CrossRef J.H. Hou, X.Y. Tu, X.G. Wu, M. Shen, X.Z. Wang, C.Y. Wang, C.B. Cao, H. Peng, and G.X. Wang, Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host. Chem. Eng. J. 401, 126141 (2020).CrossRef
15.
go back to reference J.H. Hou, Q. Dou, T. Jiang, J. Yin, J.L. Liu, Y.Y. Li, G.S. Zhang, and X.Z. Wang, BiOCl/cattail carbon composites with hierarchical structure for enhanced photocatalytic activity. Sol. Energy 211, 1263 (2020).CrossRef J.H. Hou, Q. Dou, T. Jiang, J. Yin, J.L. Liu, Y.Y. Li, G.S. Zhang, and X.Z. Wang, BiOCl/cattail carbon composites with hierarchical structure for enhanced photocatalytic activity. Sol. Energy 211, 1263 (2020).CrossRef
16.
go back to reference J. Li, X.Y. Wang, Q.H. Huang, S. Gamboa, and P.J. Sebastian, Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 158, 784 (2006).CrossRef J. Li, X.Y. Wang, Q.H. Huang, S. Gamboa, and P.J. Sebastian, Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 158, 784 (2006).CrossRef
17.
go back to reference Y.J. Lee, J.C. Jung, S.Y. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, and I.K. Song, Nano-sized Ni-doped carbon aerogel for supercapacitor. J. Nanosci. Nanotechnol. 11, 6528 (2011).CrossRef Y.J. Lee, J.C. Jung, S.Y. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, and I.K. Song, Nano-sized Ni-doped carbon aerogel for supercapacitor. J. Nanosci. Nanotechnol. 11, 6528 (2011).CrossRef
18.
go back to reference B. Bienias, W. Michalski, and L. Wagner, Mechanical strength assessment of aramid, glass and aramid-glass hybrid fibers reinforced dental photopolymer. Polimery 64, 605 (2019).CrossRef B. Bienias, W. Michalski, and L. Wagner, Mechanical strength assessment of aramid, glass and aramid-glass hybrid fibers reinforced dental photopolymer. Polimery 64, 605 (2019).CrossRef
19.
go back to reference B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, and X.Y. Ding, Time saving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13, 7886 (2019).CrossRef B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, and X.Y. Ding, Time saving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13, 7886 (2019).CrossRef
20.
go back to reference Q. Yin, H.B. Jia, G.G. Liu, and Q.M. Ji, Tailoring the mechanical performance of carbon nanotubes buckypaper by aramid nanofibers towards robust and compact supercapacitor electrode. Adv. Funct. Mater. 32, 2111177 (2022).CrossRef Q. Yin, H.B. Jia, G.G. Liu, and Q.M. Ji, Tailoring the mechanical performance of carbon nanotubes buckypaper by aramid nanofibers towards robust and compact supercapacitor electrode. Adv. Funct. Mater. 32, 2111177 (2022).CrossRef
21.
go back to reference X.W. Zhan, Q. Yin, W.Q. Mai, Y.N. Wang, A.F.A.A. Melo, K. Jiang, H.B. Jia, and Q.M. Ji, Mechanically strong double-layered aramid nanofibers/MWCNTs/PANI film electrode for flexible supercapacitor. J. Electrochem. Soc. 168, 020513 (2021).CrossRef X.W. Zhan, Q. Yin, W.Q. Mai, Y.N. Wang, A.F.A.A. Melo, K. Jiang, H.B. Jia, and Q.M. Ji, Mechanically strong double-layered aramid nanofibers/MWCNTs/PANI film electrode for flexible supercapacitor. J. Electrochem. Soc. 168, 020513 (2021).CrossRef
22.
go back to reference X.M. Yang, T. Li, X.X. He, Q. Li, J. Sun, Z.B. Lei, and Z.H. Liu, Ti3C2Tx/aramid film electrode with high capacitance and good mechanical strength and the assembled wide temperature all-solid-state symmetrical supercapacitor. J. Power Sources 520, 230899 (2022).CrossRef X.M. Yang, T. Li, X.X. He, Q. Li, J. Sun, Z.B. Lei, and Z.H. Liu, Ti3C2Tx/aramid film electrode with high capacitance and good mechanical strength and the assembled wide temperature all-solid-state symmetrical supercapacitor. J. Power Sources 520, 230899 (2022).CrossRef
23.
go back to reference C.J. Xie, L.Y. He, Y.F. Shi, Z.X. Guo, T. Qiu, and X.L. Tuo, From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers. ACS Nano 13, 7811 (2019).CrossRef C.J. Xie, L.Y. He, Y.F. Shi, Z.X. Guo, T. Qiu, and X.L. Tuo, From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers. ACS Nano 13, 7811 (2019).CrossRef
24.
go back to reference Y.H. Hu, G. Yang, J.T. Zhou, H.Y. Li, L. Shi, X.L. Xu, B. Cheng, and X.P. Zhuang, Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 16, 5984 (2022).CrossRef Y.H. Hu, G. Yang, J.T. Zhou, H.Y. Li, L. Shi, X.L. Xu, B. Cheng, and X.P. Zhuang, Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 16, 5984 (2022).CrossRef
25.
go back to reference X.H. Zhang, X.X. Ni, M.Y. He, Y.J. Gao, C.X. Li, X.L. Mo, G. Sun, and B. You, A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel. Mater. Chem. Front. 5, 804 (2021).CrossRef X.H. Zhang, X.X. Ni, M.Y. He, Y.J. Gao, C.X. Li, X.L. Mo, G. Sun, and B. You, A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel. Mater. Chem. Front. 5, 804 (2021).CrossRef
26.
go back to reference Y.S. Yang, J. Lyu, J. Chen, J.H. Liao, and X.T. Zhang, Flame-retardant host-guest films for efficient thermal management of cryogenic devices. Adv. Funct. Mater. 31, 2102232 (2021).CrossRef Y.S. Yang, J. Lyu, J. Chen, J.H. Liao, and X.T. Zhang, Flame-retardant host-guest films for efficient thermal management of cryogenic devices. Adv. Funct. Mater. 31, 2102232 (2021).CrossRef
27.
go back to reference Z.C. He, F. Wu, S.J. Guan, L. Liu, J. Li, and Y.D. Huang, Polyamide amine/aramid nanofiber composite aerogels as an ultra-high capacity adsorbent for Congo red removal. J. Mater. Chem. A 9, 13320 (2021).CrossRef Z.C. He, F. Wu, S.J. Guan, L. Liu, J. Li, and Y.D. Huang, Polyamide amine/aramid nanofiber composite aerogels as an ultra-high capacity adsorbent for Congo red removal. J. Mater. Chem. A 9, 13320 (2021).CrossRef
28.
go back to reference B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, Z.Q. Lu, and X.Y. Ding, Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186 (2020).CrossRef B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, Z.Q. Lu, and X.Y. Ding, Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186 (2020).CrossRef
29.
go back to reference C.J. Xie, S.Y. Liu, Q.Q. Zhang, H.X. Ma, S.X. Yang, Z.X. Guo, T. Qu, and X.L. Tuo, Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing- drying method. ACS Nano 15, 10000 (2021).CrossRef C.J. Xie, S.Y. Liu, Q.Q. Zhang, H.X. Ma, S.X. Yang, Z.X. Guo, T. Qu, and X.L. Tuo, Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing- drying method. ACS Nano 15, 10000 (2021).CrossRef
30.
go back to reference H. Hosseini, A. Zirakjou, V. Goodarzi, S.M. Mousavi, H.A. Khonakdar and S. Zamanlui, Lightweight aerogels based on bacterial cellulose/silver nanoparticles/polyaniline with tuning morphology of polyaniline and application in soft tissue engineering. Int. J. Biol. Macromol. 152, 57 (2020). H. Hosseini, A. Zirakjou, V. Goodarzi, S.M. Mousavi, H.A. Khonakdar and S. Zamanlui, Lightweight aerogels based on bacterial cellulose/silver nanoparticles/polyaniline with tuning morphology of polyaniline and application in soft tissue engineering. Int. J. Biol. Macromol. 152, 57 (2020).
31.
go back to reference R.R. Li, X.X. He, Z. Yang, X.H. Liu, Y. Qiao, L. Xu, L. Li, and S.L. Chou, Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries. Mater. Chem. Front. 5, 7595 (2021).CrossRef R.R. Li, X.X. He, Z. Yang, X.H. Liu, Y. Qiao, L. Xu, L. Li, and S.L. Chou, Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries. Mater. Chem. Front. 5, 7595 (2021).CrossRef
32.
go back to reference Y. Zhu, J.Y. Li, X.R. Yun, G.G. Zhao, P. Ge, G.Q. Zou, Y. Liu, H.S. Hou, and X.B. Ji, Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 12, 1 (2020).CrossRef Y. Zhu, J.Y. Li, X.R. Yun, G.G. Zhao, P. Ge, G.Q. Zou, Y. Liu, H.S. Hou, and X.B. Ji, Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 12, 1 (2020).CrossRef
33.
go back to reference L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors. J. Mater. Chem. A 4, 15006 (2016).CrossRef L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors. J. Mater. Chem. A 4, 15006 (2016).CrossRef
34.
go back to reference P. Wang, X.M. Zhang, W. Duan, W. Teng, Y.B. Liu, and Q. Xie, Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 39, 1153 (2021).CrossRef P. Wang, X.M. Zhang, W. Duan, W. Teng, Y.B. Liu, and Q. Xie, Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 39, 1153 (2021).CrossRef
35.
go back to reference J.T. Li, R. Xiao, M. Li, H.Y. Zhang, S.L. Wu, and C.L. Xia, Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes. Fuel Process. Technol. 192, 239 (2019).CrossRef J.T. Li, R. Xiao, M. Li, H.Y. Zhang, S.L. Wu, and C.L. Xia, Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes. Fuel Process. Technol. 192, 239 (2019).CrossRef
36.
go back to reference H. Han, J.W. Paik, M. Ham, K.M. Kim, J.K. Park, and Y.K. Jeong, Atomic layer deposition-assisted fabrication of Co-nanoparticle/N-doped carbon nanotube hybrids as efficient electrocatalysts for the oxygen evolution reaction. Small 16, 2002427 (2020).CrossRef H. Han, J.W. Paik, M. Ham, K.M. Kim, J.K. Park, and Y.K. Jeong, Atomic layer deposition-assisted fabrication of Co-nanoparticle/N-doped carbon nanotube hybrids as efficient electrocatalysts for the oxygen evolution reaction. Small 16, 2002427 (2020).CrossRef
37.
go back to reference X.L. Wu, T. Wen, H. Li Guo, S.B. Yang, X.K. Wang, and A.W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. Acs Nano. 7, 3589 (2013).CrossRef X.L. Wu, T. Wen, H. Li Guo, S.B. Yang, X.K. Wang, and A.W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. Acs Nano. 7, 3589 (2013).CrossRef
Metadata
Title
Aramid Nanofiber-Based Nitrogen-Doped Carbon Aerogel Film for Flexible Solid Supercapacitors
Authors
Kezheng Gao
Zhankui Zheng
Zixin Feng
Qingyuan Niu
Qiheng Tang
Xiankai Sun
Lizhen Wang
Publication date
10-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 2/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10051-9

Other articles of this Issue 2/2023

Journal of Electronic Materials 2/2023 Go to the issue

Topical Collection: Electronic Packaging and Interconnections 2022

Effect of Joint Size on Creep Behavior of Sn-Ag-Cu Solder-Cu Joints

Topical Collection: Electronic Packaging and Interconnections 2022

The Failure of Sn-Bi-Based Solder Joints Due to Current Stressing