Skip to main content
Erschienen in: Journal of Electronic Materials 2/2023

10.11.2022 | Original Research Article

Aramid Nanofiber-Based Nitrogen-Doped Carbon Aerogel Film for Flexible Solid Supercapacitors

verfasst von: Kezheng Gao, Zhankui Zheng, Zixin Feng, Qingyuan Niu, Qiheng Tang, Xiankai Sun, Lizhen Wang

Erschienen in: Journal of Electronic Materials | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon materials are the most popular electrode material for supercapacitors. Among carbon electrode materials, carbon aerogel is a promising candidate for flexible supercapacitors. In this work, aramid nanofiber-based nitrogen-doped carbon aerogel flexible film electrode materials were successfully prepared by hydrogelation, freeze-drying, and high-temperature carbonization. The physicochemical properties of the aramid nanofiber-based nitrogen-doped carbon aerogel flexible film electrode materials can be effectively controlled by the concentration of the aramid nanofibers. The optimum concentration of the aramid nanofibers is 0.6. At a current density of 20 μA cm−2, the area specific capacitance of the aramid nanofiber (ANF)-0.6 carbon aerogel film-based flexible solid supercapacitor is about 15.2 mF cm−2. The area specific capacitance is about 59.3% of the area specific capacitance at 20 μA cm−2 when the current density is increased by a factor of 15. The ANF-0.6 carbon aerogel film-based flexible solid supercapacitor exhibits about 72% capacitance retention after 1200 folding cycles.

Graphical Abstract

The aramid nanofiber-based nitrogen-doped carbon aerogel film flexible solid supercapacitor exhibits good electrochemical and flexibility performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat S. Najib and E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817 (2019).CrossRef S. Najib and E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817 (2019).CrossRef
2.
Zurück zum Zitat A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRef A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRef
3.
Zurück zum Zitat A.S. Ghouri, R. Aslam, M.S. Siddiqui, and S.K. Sami, Recent progress in textile-based flexible supercapacitor. Front Mater. 7, 58 (2020).CrossRef A.S. Ghouri, R. Aslam, M.S. Siddiqui, and S.K. Sami, Recent progress in textile-based flexible supercapacitor. Front Mater. 7, 58 (2020).CrossRef
4.
Zurück zum Zitat Y.P. Fu, X. Cai, H.W. Wu, Z.B. Lv, S.C. Hou, M. Peng, X. Yu, and D.C. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713 (2012).CrossRef Y.P. Fu, X. Cai, H.W. Wu, Z.B. Lv, S.C. Hou, M. Peng, X. Yu, and D.C. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713 (2012).CrossRef
5.
Zurück zum Zitat Y.F. Wang, L. Zhang, H.Q. Hou, W.H. Xu, G.G. Duan, S.J. He, K.M. Liu, and S.H. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56, 173 (2021).CrossRef Y.F. Wang, L. Zhang, H.Q. Hou, W.H. Xu, G.G. Duan, S.J. He, K.M. Liu, and S.H. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56, 173 (2021).CrossRef
6.
Zurück zum Zitat N.A. Rashidi and S. Yusup, Recent methodological trends in nitrogen - functionalized activated carbon production towards the gravimetric capacitance: A mini review. J. Energy Storage. 32, 101757 (2020).CrossRef N.A. Rashidi and S. Yusup, Recent methodological trends in nitrogen - functionalized activated carbon production towards the gravimetric capacitance: A mini review. J. Energy Storage. 32, 101757 (2020).CrossRef
7.
Zurück zum Zitat T.K. Enock, C.K. King’ondu, A. Pogrebnoi, and Y.A.C. Jande, Status of biomass derived carbon materials for supercapacitor application. Int. J. Electrochem. 2017, 6453420 (2017).CrossRef T.K. Enock, C.K. King’ondu, A. Pogrebnoi, and Y.A.C. Jande, Status of biomass derived carbon materials for supercapacitor application. Int. J. Electrochem. 2017, 6453420 (2017).CrossRef
8.
Zurück zum Zitat S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, and J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 403, 126352 (2021).CrossRef S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, and J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 403, 126352 (2021).CrossRef
9.
Zurück zum Zitat L. Yang, X. Zhang, L.X. Yu, J.H. Hou, Z. Zhou, and R.T. Lv, Atomic Fe-N-4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-Air batteries with stable cycling over 1000 h. Adv. Mater. 34, 2105410 (2022).CrossRef L. Yang, X. Zhang, L.X. Yu, J.H. Hou, Z. Zhou, and R.T. Lv, Atomic Fe-N-4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-Air batteries with stable cycling over 1000 h. Adv. Mater. 34, 2105410 (2022).CrossRef
10.
Zurück zum Zitat Q. Dou, J.H. Hou, A. Hussain, G.S. Zhang, Y.C. Zhang, M. Luo, X.Z. Wang, and C.B. Cao, One-pot synthesis of sodium-doped willow-shaped graphitic carbon nitride for improved photocatalytic activity under visible-light irradiation. J. Colloid Interf. Sci. 624, 79 (2022).CrossRef Q. Dou, J.H. Hou, A. Hussain, G.S. Zhang, Y.C. Zhang, M. Luo, X.Z. Wang, and C.B. Cao, One-pot synthesis of sodium-doped willow-shaped graphitic carbon nitride for improved photocatalytic activity under visible-light irradiation. J. Colloid Interf. Sci. 624, 79 (2022).CrossRef
11.
Zurück zum Zitat W.Z. Li, B.Y. Li, M. Shen, Q. Gao, and J.H. Hou, Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors. Chem. Eng. J. 384, 123309 (2020).CrossRef W.Z. Li, B.Y. Li, M. Shen, Q. Gao, and J.H. Hou, Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors. Chem. Eng. J. 384, 123309 (2020).CrossRef
12.
Zurück zum Zitat M. Sandhiya, M.P. Nadira, and M. Sathish, Fabrication of flexible supercapacitor using N-doped porous activated carbon derived from poultry waste. Energy Fuels 35, 15094 (2021).CrossRef M. Sandhiya, M.P. Nadira, and M. Sathish, Fabrication of flexible supercapacitor using N-doped porous activated carbon derived from poultry waste. Energy Fuels 35, 15094 (2021).CrossRef
13.
Zurück zum Zitat I.I.G. Inal and Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Appl. Surf. Sci. 514, 145895 (2020).CrossRef I.I.G. Inal and Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Appl. Surf. Sci. 514, 145895 (2020).CrossRef
14.
Zurück zum Zitat J.H. Hou, X.Y. Tu, X.G. Wu, M. Shen, X.Z. Wang, C.Y. Wang, C.B. Cao, H. Peng, and G.X. Wang, Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host. Chem. Eng. J. 401, 126141 (2020).CrossRef J.H. Hou, X.Y. Tu, X.G. Wu, M. Shen, X.Z. Wang, C.Y. Wang, C.B. Cao, H. Peng, and G.X. Wang, Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host. Chem. Eng. J. 401, 126141 (2020).CrossRef
15.
Zurück zum Zitat J.H. Hou, Q. Dou, T. Jiang, J. Yin, J.L. Liu, Y.Y. Li, G.S. Zhang, and X.Z. Wang, BiOCl/cattail carbon composites with hierarchical structure for enhanced photocatalytic activity. Sol. Energy 211, 1263 (2020).CrossRef J.H. Hou, Q. Dou, T. Jiang, J. Yin, J.L. Liu, Y.Y. Li, G.S. Zhang, and X.Z. Wang, BiOCl/cattail carbon composites with hierarchical structure for enhanced photocatalytic activity. Sol. Energy 211, 1263 (2020).CrossRef
16.
Zurück zum Zitat J. Li, X.Y. Wang, Q.H. Huang, S. Gamboa, and P.J. Sebastian, Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 158, 784 (2006).CrossRef J. Li, X.Y. Wang, Q.H. Huang, S. Gamboa, and P.J. Sebastian, Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 158, 784 (2006).CrossRef
17.
Zurück zum Zitat Y.J. Lee, J.C. Jung, S.Y. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, and I.K. Song, Nano-sized Ni-doped carbon aerogel for supercapacitor. J. Nanosci. Nanotechnol. 11, 6528 (2011).CrossRef Y.J. Lee, J.C. Jung, S.Y. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, and I.K. Song, Nano-sized Ni-doped carbon aerogel for supercapacitor. J. Nanosci. Nanotechnol. 11, 6528 (2011).CrossRef
18.
Zurück zum Zitat B. Bienias, W. Michalski, and L. Wagner, Mechanical strength assessment of aramid, glass and aramid-glass hybrid fibers reinforced dental photopolymer. Polimery 64, 605 (2019).CrossRef B. Bienias, W. Michalski, and L. Wagner, Mechanical strength assessment of aramid, glass and aramid-glass hybrid fibers reinforced dental photopolymer. Polimery 64, 605 (2019).CrossRef
19.
Zurück zum Zitat B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, and X.Y. Ding, Time saving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13, 7886 (2019).CrossRef B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, and X.Y. Ding, Time saving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13, 7886 (2019).CrossRef
20.
Zurück zum Zitat Q. Yin, H.B. Jia, G.G. Liu, and Q.M. Ji, Tailoring the mechanical performance of carbon nanotubes buckypaper by aramid nanofibers towards robust and compact supercapacitor electrode. Adv. Funct. Mater. 32, 2111177 (2022).CrossRef Q. Yin, H.B. Jia, G.G. Liu, and Q.M. Ji, Tailoring the mechanical performance of carbon nanotubes buckypaper by aramid nanofibers towards robust and compact supercapacitor electrode. Adv. Funct. Mater. 32, 2111177 (2022).CrossRef
21.
Zurück zum Zitat X.W. Zhan, Q. Yin, W.Q. Mai, Y.N. Wang, A.F.A.A. Melo, K. Jiang, H.B. Jia, and Q.M. Ji, Mechanically strong double-layered aramid nanofibers/MWCNTs/PANI film electrode for flexible supercapacitor. J. Electrochem. Soc. 168, 020513 (2021).CrossRef X.W. Zhan, Q. Yin, W.Q. Mai, Y.N. Wang, A.F.A.A. Melo, K. Jiang, H.B. Jia, and Q.M. Ji, Mechanically strong double-layered aramid nanofibers/MWCNTs/PANI film electrode for flexible supercapacitor. J. Electrochem. Soc. 168, 020513 (2021).CrossRef
22.
Zurück zum Zitat X.M. Yang, T. Li, X.X. He, Q. Li, J. Sun, Z.B. Lei, and Z.H. Liu, Ti3C2Tx/aramid film electrode with high capacitance and good mechanical strength and the assembled wide temperature all-solid-state symmetrical supercapacitor. J. Power Sources 520, 230899 (2022).CrossRef X.M. Yang, T. Li, X.X. He, Q. Li, J. Sun, Z.B. Lei, and Z.H. Liu, Ti3C2Tx/aramid film electrode with high capacitance and good mechanical strength and the assembled wide temperature all-solid-state symmetrical supercapacitor. J. Power Sources 520, 230899 (2022).CrossRef
23.
Zurück zum Zitat C.J. Xie, L.Y. He, Y.F. Shi, Z.X. Guo, T. Qiu, and X.L. Tuo, From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers. ACS Nano 13, 7811 (2019).CrossRef C.J. Xie, L.Y. He, Y.F. Shi, Z.X. Guo, T. Qiu, and X.L. Tuo, From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers. ACS Nano 13, 7811 (2019).CrossRef
24.
Zurück zum Zitat Y.H. Hu, G. Yang, J.T. Zhou, H.Y. Li, L. Shi, X.L. Xu, B. Cheng, and X.P. Zhuang, Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 16, 5984 (2022).CrossRef Y.H. Hu, G. Yang, J.T. Zhou, H.Y. Li, L. Shi, X.L. Xu, B. Cheng, and X.P. Zhuang, Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 16, 5984 (2022).CrossRef
25.
Zurück zum Zitat X.H. Zhang, X.X. Ni, M.Y. He, Y.J. Gao, C.X. Li, X.L. Mo, G. Sun, and B. You, A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel. Mater. Chem. Front. 5, 804 (2021).CrossRef X.H. Zhang, X.X. Ni, M.Y. He, Y.J. Gao, C.X. Li, X.L. Mo, G. Sun, and B. You, A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel. Mater. Chem. Front. 5, 804 (2021).CrossRef
26.
Zurück zum Zitat Y.S. Yang, J. Lyu, J. Chen, J.H. Liao, and X.T. Zhang, Flame-retardant host-guest films for efficient thermal management of cryogenic devices. Adv. Funct. Mater. 31, 2102232 (2021).CrossRef Y.S. Yang, J. Lyu, J. Chen, J.H. Liao, and X.T. Zhang, Flame-retardant host-guest films for efficient thermal management of cryogenic devices. Adv. Funct. Mater. 31, 2102232 (2021).CrossRef
27.
Zurück zum Zitat Z.C. He, F. Wu, S.J. Guan, L. Liu, J. Li, and Y.D. Huang, Polyamide amine/aramid nanofiber composite aerogels as an ultra-high capacity adsorbent for Congo red removal. J. Mater. Chem. A 9, 13320 (2021).CrossRef Z.C. He, F. Wu, S.J. Guan, L. Liu, J. Li, and Y.D. Huang, Polyamide amine/aramid nanofiber composite aerogels as an ultra-high capacity adsorbent for Congo red removal. J. Mater. Chem. A 9, 13320 (2021).CrossRef
28.
Zurück zum Zitat B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, Z.Q. Lu, and X.Y. Ding, Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186 (2020).CrossRef B. Yang, L. Wang, M.Y. Zhang, J.J. Luo, Z.Q. Lu, and X.Y. Ding, Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186 (2020).CrossRef
29.
Zurück zum Zitat C.J. Xie, S.Y. Liu, Q.Q. Zhang, H.X. Ma, S.X. Yang, Z.X. Guo, T. Qu, and X.L. Tuo, Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing- drying method. ACS Nano 15, 10000 (2021).CrossRef C.J. Xie, S.Y. Liu, Q.Q. Zhang, H.X. Ma, S.X. Yang, Z.X. Guo, T. Qu, and X.L. Tuo, Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing- drying method. ACS Nano 15, 10000 (2021).CrossRef
30.
Zurück zum Zitat H. Hosseini, A. Zirakjou, V. Goodarzi, S.M. Mousavi, H.A. Khonakdar and S. Zamanlui, Lightweight aerogels based on bacterial cellulose/silver nanoparticles/polyaniline with tuning morphology of polyaniline and application in soft tissue engineering. Int. J. Biol. Macromol. 152, 57 (2020). H. Hosseini, A. Zirakjou, V. Goodarzi, S.M. Mousavi, H.A. Khonakdar and S. Zamanlui, Lightweight aerogels based on bacterial cellulose/silver nanoparticles/polyaniline with tuning morphology of polyaniline and application in soft tissue engineering. Int. J. Biol. Macromol. 152, 57 (2020).
31.
Zurück zum Zitat R.R. Li, X.X. He, Z. Yang, X.H. Liu, Y. Qiao, L. Xu, L. Li, and S.L. Chou, Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries. Mater. Chem. Front. 5, 7595 (2021).CrossRef R.R. Li, X.X. He, Z. Yang, X.H. Liu, Y. Qiao, L. Xu, L. Li, and S.L. Chou, Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries. Mater. Chem. Front. 5, 7595 (2021).CrossRef
32.
Zurück zum Zitat Y. Zhu, J.Y. Li, X.R. Yun, G.G. Zhao, P. Ge, G.Q. Zou, Y. Liu, H.S. Hou, and X.B. Ji, Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 12, 1 (2020).CrossRef Y. Zhu, J.Y. Li, X.R. Yun, G.G. Zhao, P. Ge, G.Q. Zou, Y. Liu, H.S. Hou, and X.B. Ji, Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 12, 1 (2020).CrossRef
33.
Zurück zum Zitat L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors. J. Mater. Chem. A 4, 15006 (2016).CrossRef L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors. J. Mater. Chem. A 4, 15006 (2016).CrossRef
34.
Zurück zum Zitat P. Wang, X.M. Zhang, W. Duan, W. Teng, Y.B. Liu, and Q. Xie, Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 39, 1153 (2021).CrossRef P. Wang, X.M. Zhang, W. Duan, W. Teng, Y.B. Liu, and Q. Xie, Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 39, 1153 (2021).CrossRef
35.
Zurück zum Zitat J.T. Li, R. Xiao, M. Li, H.Y. Zhang, S.L. Wu, and C.L. Xia, Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes. Fuel Process. Technol. 192, 239 (2019).CrossRef J.T. Li, R. Xiao, M. Li, H.Y. Zhang, S.L. Wu, and C.L. Xia, Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes. Fuel Process. Technol. 192, 239 (2019).CrossRef
36.
Zurück zum Zitat H. Han, J.W. Paik, M. Ham, K.M. Kim, J.K. Park, and Y.K. Jeong, Atomic layer deposition-assisted fabrication of Co-nanoparticle/N-doped carbon nanotube hybrids as efficient electrocatalysts for the oxygen evolution reaction. Small 16, 2002427 (2020).CrossRef H. Han, J.W. Paik, M. Ham, K.M. Kim, J.K. Park, and Y.K. Jeong, Atomic layer deposition-assisted fabrication of Co-nanoparticle/N-doped carbon nanotube hybrids as efficient electrocatalysts for the oxygen evolution reaction. Small 16, 2002427 (2020).CrossRef
37.
Zurück zum Zitat X.L. Wu, T. Wen, H. Li Guo, S.B. Yang, X.K. Wang, and A.W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. Acs Nano. 7, 3589 (2013).CrossRef X.L. Wu, T. Wen, H. Li Guo, S.B. Yang, X.K. Wang, and A.W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. Acs Nano. 7, 3589 (2013).CrossRef
Metadaten
Titel
Aramid Nanofiber-Based Nitrogen-Doped Carbon Aerogel Film for Flexible Solid Supercapacitors
verfasst von
Kezheng Gao
Zhankui Zheng
Zixin Feng
Qingyuan Niu
Qiheng Tang
Xiankai Sun
Lizhen Wang
Publikationsdatum
10.11.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 2/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10051-9

Weitere Artikel der Ausgabe 2/2023

Journal of Electronic Materials 2/2023 Zur Ausgabe

Topical Collection: Electronic Packaging and Interconnections 2022

Surface Precipitation and Growth of Bismuth Particles in Sn-Ag-Cu-Bi Solder Joints

Neuer Inhalt