Skip to main content
Top

2018 | OriginalPaper | Chapter

Aristotelian and Duality Relations Beyond the Square of Opposition

Authors : Lorenz Demey, Hans Smessaert

Published in: Diagrammatic Representation and Inference

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nearly all squares of opposition found in the literature represent both the Aristotelian relations and the duality relations, and exhibit a very close correspondence between both types of logical relations. This paper investigates the interplay between Aristotelian and duality relations in diagrams beyond the square. In particular, we study a Buridan octagon, a Lenzen octagon, a Keynes-Johnson octagon and a Moretti octagon. Each of these octagons is a natural extension of the square, both from an Aristotelian perspective and from a duality perspective. The results of our comparative analysis turn out to be highly nuanced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Similar conclusions were reached in [41], but there, one could still object that the loss of correspondence beyond the square is merely due to the fact that from a duality perspective, the hexagon is not a natural generalization of the square of opposition. Such an objection cannot be raised against the conclusions drawn in this paper.
 
2
Note that the definitions of contrariety and subcontrariety can both be seen as weakened versions of that of contradiction. It can also be shown that contradiction is the most informative of the Aristotelian relations [43].
 
3
Furthermore, the contradiction relation is usually visualized by means of central symmetry, so that all pairs of contradictory propositions are represented by diagonals that intersect each other in the Aristotelian diagram’s center of symmetry [10, 12, 14].
 
4
In this paper we will not distinguish between different geometrical representations of the same set of PCDs. For example: (i) 3 PCDs can be visualized as a hexagon or as an octahedron; (ii) 4 PCDs can be visualized as an octagon or as a cube [12, 14].
 
5
Under the group-theoretical isomorphism between the Klein 4-group for the duality functions and \(\mathbb {Z}_2 \times \mathbb {Z}_2\), id corresponds to (0, 0) (apply no negations at all), eneg to (1, 0) (only apply external negation), ineg to (0, 1) (only apply internal negation) and dual to (1, 1) (apply both external and internal negation). If the duality function f corresponds to \((i,j) \in \mathbb {Z}_2 \times \mathbb {Z}_2\), we thus get \(f(O(\alpha _1,\dots ,\alpha _n)) = \lnot ^i O(\lnot ^j\alpha _1,\dots ,\lnot ^j\alpha _n)\) (with the usual definitions \(\lnot ^0 \varphi := \varphi \) and \(\lnot ^1\varphi := \lnot \varphi \)).
 
6
Note that the ADM includes EQ (logical equivalence) as the Aristotelian counterpart of id. Strictly speaking, EQ is not one of the Aristotelian relations, but it is closely related to them [43], and it is implicitly present whenever we write multiple, logically equivalent propositions in a single vertex of an Aristotelian diagram. (Each vertex thus has an EQ-loop to itself.) Note, in this context, that the square of opposition is sometimes also referred to as ‘the square of opposition and equipollence’ [33].
 
7
This rhyme is incomplete, because as we have seen above (Fig. 2), internal negation (post) should not just be associated with contrariety, but also with subcontrariety [29, Footnote 54]. However, this omission can be explained in terms of the famous non-lexicalization of the O-corner [22]. The fact that no A are B is the internal negation of all A are B (i.e. no \(\equiv \) all \(\lnot \), or in Latin: nullus \(\equiv \) omnis \(\lnot \)) is a contingent, empirical fact about English (resp. Latin), and should thus be captured by the rhyme. By contrast, the fact that some A are not B is the internal negation of some A are B (i.e. some not \(\equiv \) some \(\lnot \), or in Latin: aliquis non \(\equiv \) aliquis \(\lnot \)) is almost analytically true, and thus need not be captured by the mnemotechnic rhyme.
 
8
For reasons of space, we only consider the modal hexagon, which extends the modal square in Fig. 1(b). In exactly the same way, one could also extend the other two squares in Fig. 1(a)/(c) to hexagons, and draw the same conclusions about them.
 
9
If \(O_2\) is n-ary, the composed operator \(O_1\circ O_2\) will also be n-ary. Furthermore, \(O_1\) will be assumed to be unary, but this assumption is not essential.
 
10
To avoid cluttering the diagrams, we will henceforth not explicitly show the CD- and eneg-relations. These occur exactly at the diagram’s diagonals, which intersect each other in the diagram’s center of symmetry (recall Footnote 3).
 
11
Compare the ADMs for the modal JSB hexagon and Buridan’s modal octagon in Figs. 4 and 6, and note the absence of \(\varnothing \) in the latter.
 
12
In general, for an n-ary operator, we have \(n+1\) independent negation positions, viz. 1 external negation and n internal negations (one for each argument position).
 
Literature
1.
go back to reference van Benthem, J.: Linguistic universals in logical semantics. In: Zaefferer, D. (ed.) Semantic Universals and Universal Semantics, pp. 17–36. Foris (1991) van Benthem, J.: Linguistic universals in logical semantics. In: Zaefferer, D. (ed.) Semantic Universals and Universal Semantics, pp. 17–36. Foris (1991)
2.
4.
go back to reference Copenhaver, B.P., Normore, C.G., Parsons, T. (eds.): Peter of Spain, Summaries of Logic. Text, Translation, Introduction and Notes. Oxford University Press, Oxford (2014)MATH Copenhaver, B.P., Normore, C.G., Parsons, T. (eds.): Peter of Spain, Summaries of Logic. Text, Translation, Introduction and Notes. Oxford University Press, Oxford (2014)MATH
9.
go back to reference Demey, L.: The logical geometry of Russell’s theory of definite descriptions. Unpublished manuscript (2017) Demey, L.: The logical geometry of Russell’s theory of definite descriptions. Unpublished manuscript (2017)
11.
go back to reference Demey, L., Smessaert, H.: Duality in logic and language. In: Fieser, J., Dowden, B. (eds.) Internet Encyclopedia of Philosophy. University of Tennessee, Knoxville (2016)MATH Demey, L., Smessaert, H.: Duality in logic and language. In: Fieser, J., Dowden, B. (eds.) Internet Encyclopedia of Philosophy. University of Tennessee, Knoxville (2016)MATH
13.
14.
go back to reference Demey, L., Smessaert, H.: Shape heuristics in Aristotelian diagrams. In: Kutz, O., Borgo, S., Bhatt, M. (eds.) Shapes 3.0, vol. 1616, pp. 35–45. CEUR-WS (2016) Demey, L., Smessaert, H.: Shape heuristics in Aristotelian diagrams. In: Kutz, O., Borgo, S., Bhatt, M. (eds.) Shapes 3.0, vol. 1616, pp. 35–45. CEUR-WS (2016)
16.
go back to reference Demey, L., Smessaert, H.: Logical and geometrical distance in polyhedral Aristotelian diagrams in knowledge representation. Symmetry 9, 204 (2017)CrossRef Demey, L., Smessaert, H.: Logical and geometrical distance in polyhedral Aristotelian diagrams in knowledge representation. Symmetry 9, 204 (2017)CrossRef
17.
go back to reference Demey, L., Steinkrüger, P.: De logische geometrie van Johannes Buridanus’ modale achthoek. Tijdschrift voor Filosofie 79, 217–238 (2017) Demey, L., Steinkrüger, P.: De logische geometrie van Johannes Buridanus’ modale achthoek. Tijdschrift voor Filosofie 79, 217–238 (2017)
19.
go back to reference Dziewicki, M.H. (ed.): Johannis Wyclif, Tractatus de Logica, vol. 1. Trübner (1893) Dziewicki, M.H. (ed.): Johannis Wyclif, Tractatus de Logica, vol. 1. Trübner (1893)
20.
go back to reference Hacker, E.A.: The octagon of opposition. Notre Dame J. Form. Log. 16, 352–353 (1975)CrossRef Hacker, E.A.: The octagon of opposition. Notre Dame J. Form. Log. 16, 352–353 (1975)CrossRef
21.
go back to reference Hess, E.: The open future square of opposition: a defense. Sophia 56, 573–587 (2017)CrossRef Hess, E.: The open future square of opposition: a defense. Sophia 56, 573–587 (2017)CrossRef
22.
go back to reference Horn, L.R.: A Natural History of Negation. University of Chicago Press, Chicago (1989) Horn, L.R.: A Natural History of Negation. University of Chicago Press, Chicago (1989)
23.
go back to reference Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, Abingdon (1996)CrossRef Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, Abingdon (1996)CrossRef
25.
go back to reference Jacoby, P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholasticism 24, 32–56 (1950)CrossRef Jacoby, P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholasticism 24, 32–56 (1950)CrossRef
26.
go back to reference Johnson, W.: Logic. Part I. Cambridge University Press, Cambridge (1921) Johnson, W.: Logic. Part I. Cambridge University Press, Cambridge (1921)
27.
go back to reference Keynes, J.N.: Studies and Exercises in Formal Logic. MacMillan, London (1884) Keynes, J.N.: Studies and Exercises in Formal Logic. MacMillan, London (1884)
28.
go back to reference Klima, G. (ed.): John Buridan, Summulae de Dialectica. Yale University Press, New Haven (2001) Klima, G. (ed.): John Buridan, Summulae de Dialectica. Yale University Press, New Haven (2001)
29.
go back to reference Kretzmann, N.: William of Sherwood’s Introduction to Logic. Minnesota Archive Editions (1966) Kretzmann, N.: William of Sherwood’s Introduction to Logic. Minnesota Archive Editions (1966)
32.
go back to reference Luzeaux, D., Sallantin, J., Dartnell, C.: Logical extensions of Aristotle’s square. Log. Univers. 2, 167–187 (2008)MathSciNetCrossRef Luzeaux, D., Sallantin, J., Dartnell, C.: Logical extensions of Aristotle’s square. Log. Univers. 2, 167–187 (2008)MathSciNetCrossRef
33.
go back to reference Mikhail, J.: Elements of Moral Cognition. Cambridge University Press, Cambridge (2011)CrossRef Mikhail, J.: Elements of Moral Cognition. Cambridge University Press, Cambridge (2011)CrossRef
34.
go back to reference Moretti, A.: The geometry of logical opposition. Ph.D. thesis, Neuchâtel (2009) Moretti, A.: The geometry of logical opposition. Ph.D. thesis, Neuchâtel (2009)
36.
go back to reference Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy, Summer 2017 edn. CSLI, Stanford (2017) Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy, Summer 2017 edn. CSLI, Stanford (2017)
37.
go back to reference Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Oxford University Press, Oxford (2006) Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Oxford University Press, Oxford (2006)
39.
go back to reference Schumann, A.: On two squares of opposition: the Leśniewski’s style formalization of synthetic propositions. Acta Analytica 28, 71–93 (2013)CrossRef Schumann, A.: On two squares of opposition: the Leśniewski’s style formalization of synthetic propositions. Acta Analytica 28, 71–93 (2013)CrossRef
40.
go back to reference Sesmat, A.: Logique II. Les Raisonnements. La syllogistique. Hermann (1951) Sesmat, A.: Logique II. Les Raisonnements. La syllogistique. Hermann (1951)
41.
go back to reference Smessaert, H.: The classical Aristotelian hexagon versus the modern duality hexagon. Log. Univers. 6, 171–199 (2012)MathSciNetCrossRef Smessaert, H.: The classical Aristotelian hexagon versus the modern duality hexagon. Log. Univers. 6, 171–199 (2012)MathSciNetCrossRef
43.
go back to reference Smessaert, H., Demey, L.: Logical geometries and information in the square of opposition. J. Logic Lang. Inform. 23, 527–565 (2014)MathSciNetCrossRef Smessaert, H., Demey, L.: Logical geometries and information in the square of opposition. J. Logic Lang. Inform. 23, 527–565 (2014)MathSciNetCrossRef
45.
go back to reference Smessaert, H., Demey, L.: Duality patterns in 2-PCD fragments. South Am. J. Log. (2017) Smessaert, H., Demey, L.: Duality patterns in 2-PCD fragments. South Am. J. Log. (2017)
47.
go back to reference Westerståhl, D.: Classical vs. modern squares of opposition, and beyond. In: Béziau, J.Y., Payette, G. (eds.) The Square of Opposition. A General Framework for Cognition, pp. 195–229. Peter Lang (2012) Westerståhl, D.: Classical vs. modern squares of opposition, and beyond. In: Béziau, J.Y., Payette, G. (eds.) The Square of Opposition. A General Framework for Cognition, pp. 195–229. Peter Lang (2012)
48.
go back to reference Yao, Y.: Duality in rough set theory based on the square of opposition. Fundamenta Informaticae 127, 49–64 (2013)MathSciNetMATH Yao, Y.: Duality in rough set theory based on the square of opposition. Fundamenta Informaticae 127, 49–64 (2013)MathSciNetMATH
Metadata
Title
Aristotelian and Duality Relations Beyond the Square of Opposition
Authors
Lorenz Demey
Hans Smessaert
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-91376-6_57