Skip to main content
Erschienen in: Journal of Logic, Language and Information 4/2014

01.12.2014

Logical Geometries and Information in the Square of Oppositions

verfasst von: Hans Smessaert, Lorenz Demey

Erschienen in: Journal of Logic, Language and Information | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Aristotelian square of oppositions is a well-known diagram in logic and linguistics. In recent years, several extensions of the square have been discovered. However, these extensions have failed to become as widely known as the square. In this paper we argue that there is indeed a fundamental difference between the square and its extensions, viz., a difference in informativity. To do this, we distinguish between concrete Aristotelian diagrams (such as the square) and, on a more abstract level, the Aristotelian geometry (a set of logical relations). We then introduce two new logical geometries (and their corresponding diagrams), and develop a formal, well-motivated account of their informativity. This enables us to show that the square is strictly more informative than many of the more complex diagrams.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For the sake of readability, some technical remarks and results have been placed in an Appendix; they are not essential for our main line of argumentation.
 
2
For a more exhaustive historical overview, see Parsons (2006) and Seuren (2010, chapter 5).
 
3
In this paper, the term ‘Aristotelian’ is used in a strictly technical sense, to distinguish the Aristotelian geometry and its diagrams from other kinds of geometries and diagrams that will be introduced later. Hence, by calling a certain relation ‘Aristotelian’ we do not mean to imply that Aristotle himself acknowledged that relation; similarly, by calling a certain diagram ‘Aristotelian’ we do not mean to imply that Aristotle himsef drew such a diagram, or even defended its validity. (For a detailed account of the historical origins of the square, see Londey and Johanson (1984).) Finally, the discussion of the problems in the Aristotelian geometry in Sect. 3.1 should not be seen as a piece of historical Aristotle scholarship, but rather as the systematic development of a new perspective on some issues in contemporary logic.
 
4
It is well-known that in the presence of classical negation, each of \(\wedge \) and \(\rightarrow \) can be defined in terms of the other: \(\varphi \rightarrow \psi = \lnot (\varphi \wedge \lnot \psi )\), and \(\varphi \wedge \psi = \lnot (\varphi \rightarrow \lnot \psi )\). We will return to this remark in Sect. 3.3.
 
5
It is well-known that \(\lnot (\lnot \varphi \wedge \lnot \psi )\) is equivalent to \(\varphi \vee \psi \), but we choose to stick with the first notation, because it more clearly expresses the idea of \(\varphi \) and \(\psi \) being false together.
 
6
It should be clear that we do not view the Aristotelian relations in terms of properties of the formulas they relate such as quantity and quality, as is done in many historical studies on Aristotelian logic (Parry and Hacker 1991). For more about this difference, see Demey (2012c, pp. 328–329).
 
7
So \({\mathsf {S}} \not \models \varphi _i\), \({\mathsf {S}} \not \models \lnot \varphi _i\), and \({\mathsf {S}}\not \models \varphi _i\leftrightarrow \varphi _j\), for \(1 \le i \ne j \le n\).
 
8
It follows immediately from Definition 1 that the first three relations are symmetric, and are therefore represented in Fig. 1 by lines without arrows. We represent \(\varphi \) and \(\psi \) being in subalternation by means of an arrow going from \(\varphi \) to \(\psi \), classically referred to as the ‘superaltern’ and ‘subaltern’, respectively.
 
9
Tautologies are subaltern and subcontrary to any contingent formula. Conversely, contradictions are superaltern and contrary to any contingent formula.
 
10
For a more detailed discussion of the connection between Aristotelian diagrams and Hasse diagrams, see Smessaert (2009) and Demey and Smessaert (2014).
 
11
The operators \({\mathsf {O}}\) and \({\mathsf {P}}\) in the deontic square stand for ‘obligatory’ and ‘permitted’, respectively.
 
12
Note that we will not consider squares for the quantifiers, and thus sidestep the notoriously difficult issue of existential import (Chatti and Schang 2013; Parsons 2006; Read 2012a; Seuren 2012a), since the informativity account to be developed here is entirely independent of it.
 
13
Note that Fig. 3a contains the formula \(\Diamond p\wedge \Diamond \lnot p\), which is usually taken to express the (metaphysical) contingency of \(p\). This notion of contingency is distinct from the logical notion of contingency that is used in Definition 2 of Aristotelian diagram (see Footnote 7). Although the formula \(\Box p\) expresses that \(p\) is metaphysically necessary, it is itself logically contingent (i.e., \({\mathsf {S5}}\not \models \Box p\) and \({\mathsf {S5}}\not \models \lnot \Box p\)), and is thus perfectly allowed to occur in Aristotelian diagrams. Finally, note that the octagon in Fig. 3c can be seen as the ‘sum’ of the hexagons in Fig. 3a and b.
 
14
This does not mean that these extensions do not have any applications at all. For example, Horn (1990) uses various hexagons to study Gricean maxims and conversational implicatures, while Jaspers (2012) uses the Sesmat-Blanché hexagon to analyze the structure of the color categories from a logical, linguistic and cognitive perspective.
 
15
For example, this intuition seems to be implicit in the following remarks: “familiarity with the square is useful for logicians today as a kind of lingua franca, when adapted as a shorthand to express logical relations in specialized applied logics with specialized domains” (Jacquette 2012, p. 81), and “the square [...] is a compact way of representing various logical relations between formulas, and thus serves as an illustration of the underlying logic’s expressive and deductive powers” (Demey 2012c, p. 314).
 
16
Note that both examples involve a non-contingent formula. This is not a coincidence: if we focus on contingent formulas, the Aristotelian relations are mutually exclusive (Demey 2012c, Lemma 3.2).
 
17
Non-contradiction is clearly different from the Aristotelian relation of subalternation. First of all, there exist pairs of formulas—such as \((p,\lnot \lnot p)\) and \((p,q)\)—which are in non-contradiction, but not in subalternation. Furthermore, if two contingent formulas \(\varphi \) and \(\psi \) are in subalternation, they will also be in non-contradiction, but that characterization would miss the key point that the truth values of \(\varphi \) and \(\psi \) are not independent (if \(\varphi \) is true, then \(\psi \) has to be true as well).
 
18
‘Opposition geometry’ (Definition 3) is a technical term, on a par with ‘Aristotelian geometry’ (Definition 1) and ‘implication geometry’ (Definition 4), and should thus not be confused with the general framework of oppositional geometry developed by Moretti (2012b). Furthermore, note that Definition 3 is similar in spirit to Moretti (2009a, 2012a) and Schang (2012)’s ‘question–answer semantics’; however, they propose this as a semantics for the Aristotelian geometry, and thus fail to fully distinguish between the relations of subalternation and non-contradiction (recall Footnote 17). Recently, however, Schang (2012a, 2013) has shown that subalternation can be understood in terms of ‘contradictories of contraries’ (in the sense that \(SA(\varphi ,\psi )\) iff there is a formula \(\theta \) such that \(C(\varphi ,\theta )\) and \( CD (\theta ,\psi )\); see item 6b of our Lemma 3), and used this fact to argue that subalternation is an Aristotelian relation after all.
 
19
Obviously, the indices come from the canonical way of displaying a truth table for a binary connective.
 
20
The contrast within both geometries between (three kinds of) black lines on the one hand and a grey line on the other is motivated by informativity considerations that will be presented later in the paper.
 
21
The arrow’s head indicates the direction of truth propagation. In the case of \( LI \), this direction matches the direction of the arrow itself, but in the case of \( RI \), they differ. For example, \( LI (\Box p, p)\) is visualized as \(\Box p\)\(\blacktriangleright p\), because both the \( LI \)-relation and truth propagation go from \(\Box p\) to \(p\); however, \( RI (\Diamond p, p)\) is visualized as \(\Diamond p\)\(\blacktriangleleft p\), because the \( RI \)-relation goes from \(\Diamond p\) to \(p\), but truth is propagated from \(p\) to \(\Diamond p\).
 
22
Note that this set includes the original Aristotelian relations, i.e., \({\fancyscript{AG}} \subseteq {\fancyscript{G}}\).
 
23
For more background on group theory, see Rotman (1995), in particular p. 55ff. and p. 345ff.
 
24
These facts were already known by the thirteenth century logician Peter of Spain, who called them the ‘law of contraries’ (Horn 2010).
 
25
Lemma 3 consists of an a- and a b-series, which describe the effects of negating the first, resp. the second argument of a given relation. The symmetry breaking/creating required to connect the opposition and implication geometries is manifested in the fact that exactly one argument is negated. This is to be contrasted with Lemma 2, in which both arguments are negated, and the geometries are kept apart (opposition relations are connected with opposition relations, implication relations with implication relations).
 
26
It should be emphasized that the rich structure of the opposition and implication geometries does not primarily consist in the individual items of Lemmas 1–3, but rather in the fact that they interact with each other in interesting ways. These interactions can concisely be described using the language of group theory, as illustrated in Remarks 3–4 and Remarks 7–8.
 
27
Definition 6 might look cumbersome, because it involves quantifying over formulas. However, it follows immediately from Definitions 3–4 that if \(R(\varphi ,\psi )\), \(S(\varphi ,\psi )\), \(R(\varphi ',\psi ')\) and \(S(\varphi ',\psi ')\), then for \(1\le i\le 4:\models \lnot \varDelta _i(\varphi ,\psi ) \; \Leftrightarrow \;\; \models \lnot \varDelta _i(\varphi ',\psi ')\). This shows that the quantification over formulas in Definition 6 is ‘innocent’: if there exists at least one pair of formulas \((\varphi ,\psi )\) standing in the relations \(R\) and \(S\) for which it holds that \(\models \lnot \varDelta _i(\varphi ,\psi )\), then this holds for all such pairs of formulas.
 
28
Theorem 1 also has a partial converse, which is of less importance for the sake of our argument; more information about this converse can be found in Lemma 7 and Remark 9 in the Appendix.
 
29
Of course, the \(\models \)- and \(\not \models \)-parts together are sufficient.
 
30
Seuren (2010, p. 49) defines the Aristotelian relations in a similar way. Sanford (1968) compares the usual definition (cf. Definition 1) with that of Bocheński, and judges the former to be preferable.
 
31
The information ordering \(\le _i\) is not antisymmetric, because from \(\sigma \le _i \tau \) and \(\tau \le _i \sigma \) it follows that the statements \(\sigma \) and \(\tau \) are equally informative (i.e., \({\mathbb {I}}(\sigma ) = {\mathbb {I}}(\tau )\)), but not that they are identical (i.e., not \(\sigma = \tau \)).
 
32
Definition 8 involves a universal quantification over \(\varphi \) and \(\psi \), i.e., it makes use of a \(\forall \forall \)-pattern. One might wonder whether other quantification patterns could be used here. A promising candidate seems to be the \(\exists \exists \)-pattern: define \(R \le _i^\exists S\) iff \(\exists \varphi \in {\fancyscript{L}}_{\mathsf {S}}:\exists \psi \in {\fancyscript{L}}_{\mathsf {S}}:R(\varphi ,\psi ) \le _i S(\varphi ,\psi )\). However, one can show that this \(\le _i^\exists \)-ordering fails to make any distinctions within the two geometries, in the sense that for all \(R,S \in {\fancyscript{OG}}\) it holds that \(R \le _i^\exists S\) (and similarly for \({\fancyscript{IG}}\)). To see this, note that by applying Lemma 4 to the formulas \(p\) and \(\lnot p\), we find for all \(R,S \in {\fancyscript{OG}}\) that \({\mathbb {I}}(R(p,\lnot p)) = {\fancyscript{C}}_{\mathsf {S}} \supseteq {\fancyscript{C}}_{\mathsf {S}}= {\mathbb {I}}(S(p,\lnot p))\), and thus \(R(p,\lnot p) \le _i S(p,\lnot p)\), from which it follows that \(R \le _i^\exists S\). Finally, one might consider the \(\forall \exists \)- and \(\exists \forall \)-patterns, but these asymmetrical patterns have even less intuive appeal. Thanks to an anonymous referee for suggesting us to explore this in more depth.
 
33
The only cross-geometry informativity statements that hold are \( NCD \le _i^\forall R\) and \( NI \le _i^\forall R\), for all relations \(R \in {\fancyscript{OG}}\cup {\fancyscript{IG}}\). We will return to such cross-geometry statements in Sect. 5.1; in particular, see Definition 9.
 
34
This is reflected in the code in Fig. 5, which visualizes these two relations in grey instead of black (recall Footnote 20).
 
35
For the notion of ‘level’ in a Boolean algebra, or, more generally, in a poset, see Engel (1997, p. 7).
 
36
More precisely, a formula in level \(L_i\) has 1 contradictory, \(2^{n-i} - 1\) contraries, \(2^i - 1\) subcontraries, and \((2^{n-i} - 1)(2^i - 1)\) noncontradictories. Note that \(1 < \{2^{n-i} - 1, 2^i - 1\} < (2^{n-i}-1)(2^i - 1)\) iff \(1 < i < n - 1\), i.e., a formula yields the right comparative results iff it does not belong to \(L_0, L_1, L_{n-1}\) or \(L_n\). Finally, note that if \(i \approx \frac{n}{2}\), then \(2^{n-i} - 1 \approx 2^{i} - 1\), i.e., formulas sitting (approximately) in the middle level of \({\mathbb {B}}_n\) indeed have (approximately) the same number of contraries and subcontraries.
 
37
The opposition relations are thus typically defined in terms of \(\wedge _{\mathbb {B}}\) and \(\vee _{\mathbb {B}}\), while the implication relations are typically defined in terms of \(\le _{\mathbb {B}}\). This suggests that the distinction between the opposition and implication geometries is analogous to the distinction between the algebraic and order-theoretic perspectives on Boolean algebras (Davey and Priestley 2002, pp. 33–41). Furthermore, it is well-known that both perspectives are equivalent to each other (via \(x \le _{\mathbb {B}} y \Leftrightarrow x \wedge _{\mathbb {B}} y = x\)); this is analogous to the connection between the opposition and implication geometries described in Lemma 3.
 
38
Theorems 3 and 4 apply only ‘locally’ to \({\fancyscript{OG}}\) and \({\fancyscript{IG}}\), respectively; cf. Footnote 33.
 
39
Since this discussion applies to all Aristotelian diagrams, it rightly belongs in this subsection. The next subsection, in contrast, will distinguish between various particular Aristotelian diagrams, e.g. the concrete square, the concrete Sesmat-Blanché hexagon, etc.
 
40
This argument is made fully precise in Definitions 11 and 12 and Lemma 8 in the Appendix.
 
41
From a theoretical perspective, the case of \( LI / RI \) described above (which is based on the equivalence \( LI (\varphi ,\psi ) \Leftrightarrow RI (\psi ,\varphi )\); cf. Lemma 1) seems to be exactly similar to the case of \(C/ SC \) (which is based on the equivalence \(C(\varphi ,\psi ) \Leftrightarrow SC (\lnot \varphi ,\lnot \psi )\); cf. Lemma 2) and to that of \(C/ LI \) (which is based on the equivalence \(C(\varphi ,\psi ) \Leftrightarrow LI (\varphi ,\lnot \psi )\); cf. Lemma 3). This might suggest that \( SC \) and \( LI \) can unproblematically be left out of the Aristotelian diagrams as well. From a visual perspective, however, the latter two cases are entirely different from the first. The \( LI / RI \) case does not require considering formulas other than \(\varphi \) and \(\psi \); hence, in the diagrams, the \( RI \) relations occur in exactly the same place as the original \( LI \) relations (but in the reverse direction). On the other hand, the \(C/ SC \) and \(C/ LI \) cases require considering formulas other than \(\varphi \) and \(\psi \), viz., (\(\lnot \varphi \) and) \(\lnot \psi \); hence, in the diagrams, the \( SC \) and \( LI \) relations occur in other places than the original \(C\) relations.
 
42
Note that Fig. 8 shows the same three diagrams as Fig. 6, but in a different order: we will henceforth put the Aristotelian diagram in between the opposition and implication diagrams, to reflect \({\fancyscript{AG}}\) being hybrid between \({\fancyscript{OG}}\) and \({\fancyscript{IG}}\).
 
43
Although its combinatorial and informational properties have not been systematically explored so far, the notion of unconnectedness as such has surfaced at various places in the literature, usually under the label ‘logical independence’; for example, see Hughes (1987, p. 99), Sion (1996, p. 36), Béziau (2003, p. 226) Karger (2003, p. 435), Seuren (2010, p. 50), Campos-Benítez (2012, pp. 101ff.), Jacquette (2012, p. 86) and Read (2012b, p. 104).
 
44
For example, Campos-Benítez states that “independent sentences [...] are not contrary neither subcontrary nor contradictory or subaltern: they have no relationship at all” (2012, p. 103).
 
45
In other words, Theorem 8 characterizes the absence of any Aristotelian relation in a positive way, viz., as the joint presence of an opposition and an implication relation.
 
46
This might explain why some authors, while acknowledging the existence of this relation, deny its logical relevance. For example, according to Seuren, unconnectedness is “a legitimate relation between L-propositions producing truth under certain conditions, yet [...] plays no role [...] in any logic” (2010, p. 50). Similarly, Béziau thinks that by treating unconnectedness as a ‘real’ logical relation, “we are going too far and confusing here negation with distinction” (2003, p. 226).
 
47
These diagrams fit into an exhaustive typology that is currently being developed (Smessaert and Demey 2014). This typology includes several other types of Aristotelian diagrams, which have various proportions of unconnectedness among their relations.
 
48
Note that \(\fancyscript{F}'_4 = \fancyscript{F}_8 - \fancyscript{F}_{4}\), i.e., the squares in Fig. 13 can be seen as the result of ‘subtracting’ the classical squares in Fig. 9 from the corresponding Béziau octagons in Fig. 12.
 
49
Note that the second problem involves contingent formulas (such as \(p\) and \(\Diamond p\wedge \Diamond \lnot p\)), and thus occurs both in the Aristotelian geometry and its diagrams. In contrast, we showed above that non-contingency is a necessary condition for the first problem, which thus never occurs in the diagrams (since these contain only contingent formulas).
 
Literatur
Zurück zum Zitat Allo, P. (2007). Logical pluralism and semantic information. Journal of Philosophical Logic, 36, 659–694.CrossRef Allo, P. (2007). Logical pluralism and semantic information. Journal of Philosophical Logic, 36, 659–694.CrossRef
Zurück zum Zitat Bar-Hillel, Y., Carnap , R. (1952). An outline of a theory of semantic information. Tech. Rep. 247, MIT, Cambridge, MA Bar-Hillel, Y., Carnap , R. (1952). An outline of a theory of semantic information. Tech. Rep. 247, MIT, Cambridge, MA
Zurück zum Zitat Barwise, J. (1997). Information and impossibilities. Notre Dame Journal of Formal Logic, 38, 488–515.CrossRef Barwise, J. (1997). Information and impossibilities. Notre Dame Journal of Formal Logic, 38, 488–515.CrossRef
Zurück zum Zitat Béziau, J. Y. (2003). New light on the square of oppositions and its nameless corner. Logical Investigations, 10, 218–232. Béziau, J. Y. (2003). New light on the square of oppositions and its nameless corner. Logical Investigations, 10, 218–232.
Zurück zum Zitat Béziau, J. Y., & Payette, G. (2012). Preface. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 9–22). Bern: Peter Lang.CrossRef Béziau, J. Y., & Payette, G. (2012). Preface. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 9–22). Bern: Peter Lang.CrossRef
Zurück zum Zitat Blanché, R. (1952). Quantity, modality, and other kindred systems of categories. Mind, 61, 369–375.CrossRef Blanché, R. (1952). Quantity, modality, and other kindred systems of categories. Mind, 61, 369–375.CrossRef
Zurück zum Zitat Blanché, R. (1966). Structures Intellectuelles. Essai sur l’organisation systématique des concepts. Paris: Librairie Philosophique J. Vrin. Blanché, R. (1966). Structures Intellectuelles. Essai sur l’organisation systématique des concepts. Paris: Librairie Philosophique J. Vrin.
Zurück zum Zitat Bocheński, J. M. (1959). A precis of mathematical logic. Dordrecht: Reidel.CrossRef Bocheński, J. M. (1959). A precis of mathematical logic. Dordrecht: Reidel.CrossRef
Zurück zum Zitat Campos-Benítez, J. M. (2012). The medieval modal octagon and the S5 Lewis modal system. In J. Y. Béziau & D. Jacquette (Eds.), The square of opposition. A general framework for cognition (pp. 99–116). Basel: Springer. Campos-Benítez, J. M. (2012). The medieval modal octagon and the S5 Lewis modal system. In J. Y. Béziau & D. Jacquette (Eds.), The square of opposition. A general framework for cognition (pp. 99–116). Basel: Springer.
Zurück zum Zitat Carnap, R. (1947). Meaning and necessity. A study in semantics and modal logic. Chicago, IL: University of Chicago Press. Carnap, R. (1947). Meaning and necessity. A study in semantics and modal logic. Chicago, IL: University of Chicago Press.
Zurück zum Zitat Carnielli, W., & Pizzi, C. (2008). Modalities and multimodalities. Berlin: Springer.CrossRef Carnielli, W., & Pizzi, C. (2008). Modalities and multimodalities. Berlin: Springer.CrossRef
Zurück zum Zitat Chatti, S. (2012). Logical oppositions in Arabic logic: Avicenna and Averroes. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 21–40). Basel: Springer.CrossRef Chatti, S. (2012). Logical oppositions in Arabic logic: Avicenna and Averroes. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 21–40). Basel: Springer.CrossRef
Zurück zum Zitat Chatti, S., & Schang, F. (2013). The cube, the square and the problem of existential import. History and Philosophy of Logic, 32, 101–132.CrossRef Chatti, S., & Schang, F. (2013). The cube, the square and the problem of existential import. History and Philosophy of Logic, 32, 101–132.CrossRef
Zurück zum Zitat Correia, M. (2012). Boethius on the square of opposition. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 41–52). Basel: Springer.CrossRef Correia, M. (2012). Boethius on the square of opposition. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 41–52). Basel: Springer.CrossRef
Zurück zum Zitat Czeżowski, T. (1955). On certain peculiarities of singular propositions. Mind, 64, 392–395.CrossRef Czeżowski, T. (1955). On certain peculiarities of singular propositions. Mind, 64, 392–395.CrossRef
Zurück zum Zitat D’Alfonso, D. (2012). The square of opposition and generalized quantifiers. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 219–227). Basel: Springer.CrossRef D’Alfonso, D. (2012). The square of opposition and generalized quantifiers. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 219–227). Basel: Springer.CrossRef
Zurück zum Zitat Davey, B. A., & Priestley, H. A. (2002). Introduction to lattices and order (2nd ed.). Cambridge: Cambridge University Press.CrossRef Davey, B. A., & Priestley, H. A. (2002). Introduction to lattices and order (2nd ed.). Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat Demey, L. (2012a). Algebraic aspects of duality diagrams. In P. T. Cox, B. Plimmer, & P. Rodgers (Eds.), Diagrammatic representation and inference, Lecture Notes in Computer Science (Vol. 7352, pp. 300–302). Berlin: Springer.CrossRef Demey, L. (2012a). Algebraic aspects of duality diagrams. In P. T. Cox, B. Plimmer, & P. Rodgers (Eds.), Diagrammatic representation and inference, Lecture Notes in Computer Science (Vol. 7352, pp. 300–302). Berlin: Springer.CrossRef
Zurück zum Zitat Demey, L. (2012b). Narrative and information: Comment on Löwe. In P. Allo & G. Primiero (Eds.), Proceedings of the third workshop in the philosophy of information (pp. 29–34). Brussels: KVAB. Demey, L. (2012b). Narrative and information: Comment on Löwe. In P. Allo & G. Primiero (Eds.), Proceedings of the third workshop in the philosophy of information (pp. 29–34). Brussels: KVAB.
Zurück zum Zitat Demey, L. (2012c). Structures of oppositions for public announcement logic. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 313–339). Basel: Springer.CrossRef Demey, L. (2012c). Structures of oppositions for public announcement logic. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 313–339). Basel: Springer.CrossRef
Zurück zum Zitat Demey, L., & Smessaert, H. (2014). The relationship between Aristotelian and Hasse diagrams. In T. Dwyer, H. Purchase, & A. Delaney (Eds.), Diagrammatic representation and inference, Lecture Notes in Computer Science (Vol. 8578, pp. 213–227). Berlin: Springer. Demey, L., & Smessaert, H. (2014). The relationship between Aristotelian and Hasse diagrams. In T. Dwyer, H. Purchase, & A. Delaney (Eds.), Diagrammatic representation and inference, Lecture Notes in Computer Science (Vol. 8578, pp. 213–227). Berlin: Springer.
Zurück zum Zitat Dubois, D., & Prade, H. (2012). From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Logica Universalis, 6, 149–169.CrossRef Dubois, D., & Prade, H. (2012). From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Logica Universalis, 6, 149–169.CrossRef
Zurück zum Zitat Dunn, J. M., & Hardegree, G. M. (2001). Algebraic methods in philosophical logic. Oxford: Oxford University Press. Dunn, J. M., & Hardegree, G. M. (2001). Algebraic methods in philosophical logic. Oxford: Oxford University Press.
Zurück zum Zitat Enderton, H. (2001). A mathematical introduction to logic (2nd ed.). San Diego, CA: Academic Press. Enderton, H. (2001). A mathematical introduction to logic (2nd ed.). San Diego, CA: Academic Press.
Zurück zum Zitat Engel, K. (1997). Sperner theory. Cambridge: Cambridge University Press.CrossRef Engel, K. (1997). Sperner theory. Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat Fitting, M., & Mendelsohn, R. L. (1998). First-order modal logic. Dordrecht: Kluwer.CrossRef Fitting, M., & Mendelsohn, R. L. (1998). First-order modal logic. Dordrecht: Kluwer.CrossRef
Zurück zum Zitat Gamut, L. T. F. (1991). Logic, language, and meaning. Volume 1: Introduction to logic (Vol. 1). Chicago, IL: University of Chicago Press. Gamut, L. T. F. (1991). Logic, language, and meaning. Volume 1: Introduction to logic (Vol. 1). Chicago, IL: University of Chicago Press.
Zurück zum Zitat Gombocz, W. (1990). Apuleius is better still: A correction to the square of opposition. Phronesis, 43, 124–131. Gombocz, W. (1990). Apuleius is better still: A correction to the square of opposition. Phronesis, 43, 124–131.
Zurück zum Zitat Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. Cambridge, MA: MIT Press. Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. Cambridge, MA: MIT Press.
Zurück zum Zitat Harremoës, P., & Topsœ, F. (2008). The quantitative theory of information. In P. Adriaans & J. van Benthem (Eds.), Philosophy of information (pp. 171–216). Amsterdam: Elsevier.CrossRef Harremoës, P., & Topsœ, F. (2008). The quantitative theory of information. In P. Adriaans & J. van Benthem (Eds.), Philosophy of information (pp. 171–216). Amsterdam: Elsevier.CrossRef
Zurück zum Zitat Hintikka, J. (1970). On semantic information. In J. Hintikka & P. Suppes (Eds.), Information and inference (pp. 3–27). Dordrecht: Reidel.CrossRef Hintikka, J. (1970). On semantic information. In J. Hintikka & P. Suppes (Eds.), Information and inference (pp. 3–27). Dordrecht: Reidel.CrossRef
Zurück zum Zitat Horn, L. R. (1989). A natural history of negation. Chicago, IL: University of Chicago Press. Horn, L. R. (1989). A natural history of negation. Chicago, IL: University of Chicago Press.
Zurück zum Zitat Horn, L. R. (1990). Hamburgers and truth: Why Gricean explanation is Gricean. In K. Hall (Ed.), Proceedings of the sixteenth annual meeting of the Berkeley Linguistics Society (pp. 454–471). Berkeley: Berkeley Linguistics Society. Horn, L. R. (1990). Hamburgers and truth: Why Gricean explanation is Gricean. In K. Hall (Ed.), Proceedings of the sixteenth annual meeting of the Berkeley Linguistics Society (pp. 454–471). Berkeley: Berkeley Linguistics Society.
Zurück zum Zitat Horn, L. R. (2010). Contradiction. In E. N. Zalta (ed.) Stanford encyclopedia of philosophy (Summer 2012 edition). CSLI. Horn, L. R. (2010). Contradiction. In E. N. Zalta (ed.) Stanford encyclopedia of philosophy (Summer 2012 edition). CSLI.
Zurück zum Zitat Horn, L. R. (2012). Histoire d’*O: Lexical pragmatics and the geometry of opposition. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 393–426). Bern: Peter Lang. Horn, L. R. (2012). Histoire d’*O: Lexical pragmatics and the geometry of opposition. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 393–426). Bern: Peter Lang.
Zurück zum Zitat Hughes, G. E. (1987). The modal logic of John Buridan. In G. Corsi, C. Mangione, & M. Mugnai (Eds.), Atti del convegno internazionale di storia della logica, le teorie delle modalità (pp. 93–111). CLUEB. Hughes, G. E. (1987). The modal logic of John Buridan. In G. Corsi, C. Mangione, & M. Mugnai (Eds.), Atti del convegno internazionale di storia della logica, le teorie delle modalità (pp. 93–111). CLUEB.
Zurück zum Zitat Jacoby, P. (1950). A triangle of opposites for types of propositions in Aristotelian logic. New Scholasticism, 24, 32–56.CrossRef Jacoby, P. (1950). A triangle of opposites for types of propositions in Aristotelian logic. New Scholasticism, 24, 32–56.CrossRef
Zurück zum Zitat Jacoby, P. (1960). Contrariety and the triangle of opposites in valid inferences. New Scholasticism, 34, 141–169.CrossRef Jacoby, P. (1960). Contrariety and the triangle of opposites in valid inferences. New Scholasticism, 34, 141–169.CrossRef
Zurück zum Zitat Jacquette, D. (2012). Thinking outside the square of opposition box. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 73–92). Basel: Springer.CrossRef Jacquette, D. (2012). Thinking outside the square of opposition box. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 73–92). Basel: Springer.CrossRef
Zurück zum Zitat Jaspers, D. (2012). Logic and colour. Logica Universalis, 6, 227–248.CrossRef Jaspers, D. (2012). Logic and colour. Logica Universalis, 6, 227–248.CrossRef
Zurück zum Zitat Jech, T. (2002). Set theory (Third Millenium ed.). Berlin: Springer. Jech, T. (2002). Set theory (Third Millenium ed.). Berlin: Springer.
Zurück zum Zitat Karger, E. (2003). John Buridan’s theory of the logical relations between general modal formulae. In H. A. G. Braakhuis & C. H. Kneepkens (Eds.), Aristotle’s peri hermeneias in the later middle ages (pp. 429–444). Groningen-Haren: Ingenium. Karger, E. (2003). John Buridan’s theory of the logical relations between general modal formulae. In H. A. G. Braakhuis & C. H. Kneepkens (Eds.), Aristotle’s peri hermeneias in the later middle ages (pp. 429–444). Groningen-Haren: Ingenium.
Zurück zum Zitat Kauffman, L. H. (2001). The mathematics of Charles Sanders Peirce. Cybernetics & Human Knowing, 8, 79–110. Kauffman, L. H. (2001). The mathematics of Charles Sanders Peirce. Cybernetics & Human Knowing, 8, 79–110.
Zurück zum Zitat Khomskii, Y. (2012). William of Sherwood, singular propositions and the hexagon of opposition. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 43–60). Bern: Peter Lang. Khomskii, Y. (2012). William of Sherwood, singular propositions and the hexagon of opposition. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 43–60). Bern: Peter Lang.
Zurück zum Zitat Koslow, A. (1992). A structuralist theory of logic. Cambridge: Cambridge University Press.CrossRef Koslow, A. (1992). A structuralist theory of logic. Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat Koslow, A. (1999). The implicational nature of logic: A structural account. European Review of Philosophy, 4, 111–155. Koslow, A. (1999). The implicational nature of logic: A structural account. European Review of Philosophy, 4, 111–155.
Zurück zum Zitat Kretzmann, N. (1966). William of Sherwood’s introduction to logic. Minneapolis, MN: University of Minnesota Press. Kretzmann, N. (1966). William of Sherwood’s introduction to logic. Minneapolis, MN: University of Minnesota Press.
Zurück zum Zitat Lenzen, W. (2012). How to square knowledge and belief. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 305–311). Basel: Springer.CrossRef Lenzen, W. (2012). How to square knowledge and belief. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 305–311). Basel: Springer.CrossRef
Zurück zum Zitat Libert, T. (2012). Hypercubes of duality. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 293–301). Basel: Springer.CrossRef Libert, T. (2012). Hypercubes of duality. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 293–301). Basel: Springer.CrossRef
Zurück zum Zitat Löbner, S. (1989). German schon-erst-noch: An integrated analysis. Linguistics and Philosophy, 12, 167–212.CrossRef Löbner, S. (1989). German schon-erst-noch: An integrated analysis. Linguistics and Philosophy, 12, 167–212.CrossRef
Zurück zum Zitat Löbner, S. (1990). Wahr neben Falsch. Duale Operatoren als die Quantoren natürlicher Sprache. Tübingen: Max Niemeyer Verlag. Löbner, S. (1990). Wahr neben Falsch. Duale Operatoren als die Quantoren natürlicher Sprache. Tübingen: Max Niemeyer Verlag.
Zurück zum Zitat Löbner, S. (2002). Understanding semantics. London: Hodder Arnold. Löbner, S. (2002). Understanding semantics. London: Hodder Arnold.
Zurück zum Zitat Londey, D., & Johanson, C. (1984). Apuleius and the square of opposition. Phronesis, 29, 165–173.CrossRef Londey, D., & Johanson, C. (1984). Apuleius and the square of opposition. Phronesis, 29, 165–173.CrossRef
Zurück zum Zitat Luzeaux, D., Sallantin, J., & Dartnell, C. (2008). Logical extensions of Aristotle’s square. Logica Universalis, 2, 167–187.CrossRef Luzeaux, D., Sallantin, J., & Dartnell, C. (2008). Logical extensions of Aristotle’s square. Logica Universalis, 2, 167–187.CrossRef
Zurück zum Zitat McNamara, P. (2010). Deontic logic. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy (Summer 2012 edition). CSLI. McNamara, P. (2010). Deontic logic. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy (Summer 2012 edition). CSLI.
Zurück zum Zitat Mélès, B. (2012). No group of opposition for constructive logic: The intuitionistic and linear cases. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 201–217). Basel: Springer.CrossRef Mélès, B. (2012). No group of opposition for constructive logic: The intuitionistic and linear cases. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 201–217). Basel: Springer.CrossRef
Zurück zum Zitat Moretti, A. (2009a). The geometry of logical opposition. Ph.D. thesis, University of Neuchâtel. Moretti, A. (2009a). The geometry of logical opposition. Ph.D. thesis, University of Neuchâtel.
Zurück zum Zitat Moretti, A. (2009b). The geometry of standard deontic logic. Logica Universalis, 3, 19–57.CrossRef Moretti, A. (2009b). The geometry of standard deontic logic. Logica Universalis, 3, 19–57.CrossRef
Zurück zum Zitat Moretti, A. (2012a). From the “logical square” to the “logical poly-simplexes”. A quick survey of what happened in between. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 119–156). Bern: Peter Lang. Moretti, A. (2012a). From the “logical square” to the “logical poly-simplexes”. A quick survey of what happened in between. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 119–156). Bern: Peter Lang.
Zurück zum Zitat Moretti, A. (2012b). Why the logical hexagon? Logica Universalis, 6, 69–107.CrossRef Moretti, A. (2012b). Why the logical hexagon? Logica Universalis, 6, 69–107.CrossRef
Zurück zum Zitat Parry, W. T., & Hacker, E. E. (1991). Aristotelian logic. Albany, NY: State University of New York Press. Parry, W. T., & Hacker, E. E. (1991). Aristotelian logic. Albany, NY: State University of New York Press.
Zurück zum Zitat Parsons, T. (2006). The traditional square of opposition. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy (Summer 2012 edition). CSLI. Parsons, T. (2006). The traditional square of opposition. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy (Summer 2012 edition). CSLI.
Zurück zum Zitat Peckhaus, V. (2012). Algebra of logic, quantification theory, and the square of opposition. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 25–41). Bern: Peter Lang. Peckhaus, V. (2012). Algebra of logic, quantification theory, and the square of opposition. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 25–41). Bern: Peter Lang.
Zurück zum Zitat Read, S. (2012b). John Buridan’s theory of consequence and his octagons of opposition. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 93–110). Basel: Springer.CrossRef Read, S. (2012b). John Buridan’s theory of consequence and his octagons of opposition. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 93–110). Basel: Springer.CrossRef
Zurück zum Zitat Rini, A. A., & Cresswell, M. J. (2012). The world-time parallel. Tense and modality in logic and metaphysics. Cambridge: Cambridge University Press.CrossRef Rini, A. A., & Cresswell, M. J. (2012). The world-time parallel. Tense and modality in logic and metaphysics. Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat Rotman, J. J. (1995). An introduction to the theory of groups (4th ed.). New York, NY: Springer.CrossRef Rotman, J. J. (1995). An introduction to the theory of groups (4th ed.). New York, NY: Springer.CrossRef
Zurück zum Zitat Sanford, D. H. (1968). Contraries and subcontraries. Noûs, 2, 95–96.CrossRef Sanford, D. H. (1968). Contraries and subcontraries. Noûs, 2, 95–96.CrossRef
Zurück zum Zitat Sauriol, P. (1968). Remarques sur la théorie de l’hexagone logique de Blanché. Dialogue, 7, 374–390.CrossRef Sauriol, P. (1968). Remarques sur la théorie de l’hexagone logique de Blanché. Dialogue, 7, 374–390.CrossRef
Zurück zum Zitat Schang, F. (2012a). Abstract logic of opposition. Logic and logical philosophy, 21, 415–438. Schang, F. (2012a). Abstract logic of opposition. Logic and logical philosophy, 21, 415–438.
Zurück zum Zitat Schang, F. (2012b). Oppositions and opposites. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 147–173). Basel: Springer.CrossRef Schang, F. (2012b). Oppositions and opposites. In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 147–173). Basel: Springer.CrossRef
Zurück zum Zitat Schang, F. (2012c). Questions and answers about oppositions. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 289–320). Bern: Peter Lang. Schang, F. (2012c). Questions and answers about oppositions. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 289–320). Bern: Peter Lang.
Zurück zum Zitat Schang, F. (2013). Logic in opposition. Studia Humana, 2, 31–45. Schang, F. (2013). Logic in opposition. Studia Humana, 2, 31–45.
Zurück zum Zitat Sesmat, A. (1951). Logique II. La syllogistique. Hermann, Paris: Les Raisonnements. Sesmat, A. (1951). Logique II. La syllogistique. Hermann, Paris: Les Raisonnements.
Zurück zum Zitat Seuren, P. (2010). The logic of language. Language from within (Vol. II). Oxford: Oxford University Press. Seuren, P. (2010). The logic of language. Language from within (Vol. II). Oxford: Oxford University Press.
Zurück zum Zitat Seuren, P. (2012a). Does a leaking O-corner save the square? In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 129–138). Basel: Springer.CrossRef Seuren, P. (2012a). Does a leaking O-corner save the square? In J. Y. Béziau & D. Jacquette (Eds.), Around and beyond the square of opposition (pp. 129–138). Basel: Springer.CrossRef
Zurück zum Zitat Seuren, P. (2012b). From logical intuitions to natural logic. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 231–288). Bern: Peter Lang. Seuren, P. (2012b). From logical intuitions to natural logic. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 231–288). Bern: Peter Lang.
Zurück zum Zitat Sion, A. (1996). Future logic. Geneva: Lulu.com. Sion, A. (1996). Future logic. Geneva: Lulu.com.
Zurück zum Zitat Smessaert, H. (2009). On the 3D visualisation of logical relations. Logica Universalis, 3, 303–332.CrossRef Smessaert, H. (2009). On the 3D visualisation of logical relations. Logica Universalis, 3, 303–332.CrossRef
Zurück zum Zitat Smessaert, H. (2012a). Boolean differences between two hexagonal extensions of the logical square of oppositions. In P. T. Cox, B. Plimmer, & P. Rodgers (Eds.), Diagrammatic representation and inference, Lecture Notes in Computer Science (Vol. 7352, pp. 193–199). Berlin: Springer.CrossRef Smessaert, H. (2012a). Boolean differences between two hexagonal extensions of the logical square of oppositions. In P. T. Cox, B. Plimmer, & P. Rodgers (Eds.), Diagrammatic representation and inference, Lecture Notes in Computer Science (Vol. 7352, pp. 193–199). Berlin: Springer.CrossRef
Zurück zum Zitat Smessaert, H. (2012b). The classical Aristotelian hexagon versus the modern duality hexagon. Logica Universalis, 6, 171–199.CrossRef Smessaert, H. (2012b). The classical Aristotelian hexagon versus the modern duality hexagon. Logica Universalis, 6, 171–199.CrossRef
Zurück zum Zitat Smessaert, H., & Demey, L. (2014). The logical geometry of the Aristotelian rhombic dodecahedron. Smessaert, H., & Demey, L. (2014). The logical geometry of the Aristotelian rhombic dodecahedron.
Zurück zum Zitat Uckelman, S. (2009). Anselm’s logic of agency. Logical Analysis and History of Philosophy, 12, 248–268. Uckelman, S. (2009). Anselm’s logic of agency. Logical Analysis and History of Philosophy, 12, 248–268.
Zurück zum Zitat van Benthem, J. (1991). Linguistic universals in logical semantics. In D. Zaefferer (Ed.), Semantic universals and universal semantics, Groningen-Amsterdam studies in semantics (Vol. 12, pp. 17–36). Berlin: Foris. van Benthem, J. (1991). Linguistic universals in logical semantics. In D. Zaefferer (Ed.), Semantic universals and universal semantics, Groningen-Amsterdam studies in semantics (Vol. 12, pp. 17–36). Berlin: Foris.
Zurück zum Zitat van Benthem, J. (2011). Logical dynamics of information and interaction. Cambridge: Cambridge University Press.CrossRef van Benthem, J. (2011). Logical dynamics of information and interaction. Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat van Benthem, J., & Martinez, M. (2008). The stories of logic and information. In P. Adriaans & J. van Benthem (Eds.), Philosophy of information (pp. 217–280). Amsterdam: Elsevier.CrossRef van Benthem, J., & Martinez, M. (2008). The stories of logic and information. In P. Adriaans & J. van Benthem (Eds.), Philosophy of information (pp. 217–280). Amsterdam: Elsevier.CrossRef
Zurück zum Zitat van der Auwera, J. (1996). Modality: The three-layered scalar square. Journal of Semantics, 13, 181–195.CrossRef van der Auwera, J. (1996). Modality: The three-layered scalar square. Journal of Semantics, 13, 181–195.CrossRef
Zurück zum Zitat Veloso, S. R. M., Veloso, P. A. S., & Veloso, P. P. (2011). A tool for analysing logics. Electronic Notes in Theoretical Computer Science, 269, 125–137.CrossRef Veloso, S. R. M., Veloso, P. A. S., & Veloso, P. P. (2011). A tool for analysing logics. Electronic Notes in Theoretical Computer Science, 269, 125–137.CrossRef
Zurück zum Zitat Westerståhl, D. (2012). Classical vs. modern squares of opposition, and beyond. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 195–229). Basel: Peter Lang. Westerståhl, D. (2012). Classical vs. modern squares of opposition, and beyond. In J. Y. Béziau & G. Payette (Eds.), The square of opposition. A general framework for cognition (pp. 195–229). Basel: Peter Lang.
Zurück zum Zitat Williamson, C. (1972). Squares of opposition: Comparisons between syllogistic and propositional logic. Notre Dame Journal of Formal Logic, 13, 497–500.CrossRef Williamson, C. (1972). Squares of opposition: Comparisons between syllogistic and propositional logic. Notre Dame Journal of Formal Logic, 13, 497–500.CrossRef
Zurück zum Zitat Zellweger, S. (1997). Untapped potential in Peirce’s iconic notation for the sixteen binary connectives. In N. Houser & D. D. Roberts (Eds.), Studies in the logic of Charles Peirce (pp. 334–386). Bloomington: Indiana University Press. Zellweger, S. (1997). Untapped potential in Peirce’s iconic notation for the sixteen binary connectives. In N. Houser & D. D. Roberts (Eds.), Studies in the logic of Charles Peirce (pp. 334–386). Bloomington: Indiana University Press.
Metadaten
Titel
Logical Geometries and Information in the Square of Oppositions
verfasst von
Hans Smessaert
Lorenz Demey
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Logic, Language and Information / Ausgabe 4/2014
Print ISSN: 0925-8531
Elektronische ISSN: 1572-9583
DOI
https://doi.org/10.1007/s10849-014-9207-y

Weitere Artikel der Ausgabe 4/2014

Journal of Logic, Language and Information 4/2014 Zur Ausgabe