Skip to main content
Top
Published in: Journal of Iron and Steel Research International 11/2023

09-03-2023 | Original Paper

Banded structure control of low carbon microalloyed steel based on oxide metallurgy

Authors: Yong-kun Yang, Jia-yu Zhu, Xiao-ming Li, Yang Wang, Dong-ping Zhan

Published in: Journal of Iron and Steel Research International | Issue 11/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Banded structure is a common harmful microstructure for low carbon microalloyed steel, which seriously shortens the service life of processed parts. In order to study the effect of oxide metallurgy on improving banded structure, the Ti–Zr deoxidized low carbon microalloyed steel that can play the oxide metallurgical role of inclusion was chosen as the research object, and the inclusion characteristics, microstructure and transverse and longitudinal mechanical properties after hot rolling were analyzed. The results showed the inclusion number density increased in all experimental steels after hot rolling, and a large number of long strip inclusions with aspect ratio greater than 3 appeared along the rolling direction. In addition, after hot rolling, there were element segregation bands in the experimental steels, and granular bainite bands were formed in the element enrichment zone. However, the intragranular ferrite generated in the cooling process destroyed the continuity of granular bainite bands, so that the microstructure anisotropy indexes of experimental steels were small. The mechanical properties analysis showed that the anisotropy of performance was mainly reflected in plasticity and toughness in the experimental steels. Among them, the difference ratio of elongation, section shrinkage and impact energy of No. 2 steel was 1.69%, 3.87% and 1.69%, respectively, which were less than those of No. 1 steel and No. 3 steel. The anisotropy of microstructure and mechanical properties of No. 2 steel that full played the role of oxide metallurgy were improved, and the banded structure control of low carbon microalloyed steel can be realized by oxide metallurgy technology.
Literature
[1]
go back to reference D.L. Liu, W.R. Shao, X.W. Sun, X.D. Huo, X.P. Mao, L.J. Li, J. Univ. Sci. Technol. Beijing 27 (1994) 40–44. D.L. Liu, W.R. Shao, X.W. Sun, X.D. Huo, X.P. Mao, L.J. Li, J. Univ. Sci. Technol. Beijing 27 (1994) 40–44.
[2]
go back to reference E. Ervasti, U. Ståhlberg, J. Mater. Process Technol. 101 (2000) 312–321.CrossRef E. Ervasti, U. Ståhlberg, J. Mater. Process Technol. 101 (2000) 312–321.CrossRef
[3]
[4]
go back to reference S.C. Zhang, J.T. Yu, H.B. Li, Z.H. Jiang, Y.F. Geng, H. Feng, B.B. Zhang, H.C. Zhu, J. Mater. Sci. Technol. 102 (2022) 105–114.CrossRef S.C. Zhang, J.T. Yu, H.B. Li, Z.H. Jiang, Y.F. Geng, H. Feng, B.B. Zhang, H.C. Zhu, J. Mater. Sci. Technol. 102 (2022) 105–114.CrossRef
[6]
go back to reference J.S. Kirkaldy, J.V. Destinon-Forstmann, R.J. Brigham, Can. Metall. Quart. 1 (1962) 59–81.CrossRef J.S. Kirkaldy, J.V. Destinon-Forstmann, R.J. Brigham, Can. Metall. Quart. 1 (1962) 59–81.CrossRef
[7]
[8]
go back to reference T.F. Majka, D.K. Matlock, G. Krauss, Metall. Mater. Trans. A 33 (2002) 1627–1637.CrossRef T.F. Majka, D.K. Matlock, G. Krauss, Metall. Mater. Trans. A 33 (2002) 1627–1637.CrossRef
[9]
go back to reference R Großterlinden, R. Kawalla, U. Lotter, H. Pircher, Steel Res. 63 (1992) 331–336.CrossRef R Großterlinden, R. Kawalla, U. Lotter, H. Pircher, Steel Res. 63 (1992) 331–336.CrossRef
[10]
go back to reference Y. Ji, Y.F. Min, S.P. Li, H.S. Liu, J.Q. Zhang, China Metall. 26 (2016) No. 4, 1–9. Y. Ji, Y.F. Min, S.P. Li, H.S. Liu, J.Q. Zhang, China Metall. 26 (2016) No. 4, 1–9.
[11]
go back to reference B. Krebs, L. Germain, A. Hazotte, M. Gouné, J. Mater. Sci. 46 (2011) 7026–7038.CrossRef B. Krebs, L. Germain, A. Hazotte, M. Gouné, J. Mater. Sci. 46 (2011) 7026–7038.CrossRef
[13]
go back to reference X.J. Di, S.X. Ji, F.J. Cheng, D.P. Wang, J. Chao, Mater. Des. 88 (2015) 505–513.CrossRef X.J. Di, S.X. Ji, F.J. Cheng, D.P. Wang, J. Chao, Mater. Des. 88 (2015) 505–513.CrossRef
[14]
go back to reference Y.K. Yang, D.P. Zhan, H. Lei, Y.L. Li, Z.H. Hua, H.S. Zhang, Metall. Mater. Trans. B 52 (2021) 1839–1853.CrossRef Y.K. Yang, D.P. Zhan, H. Lei, Y.L. Li, Z.H. Hua, H.S. Zhang, Metall. Mater. Trans. B 52 (2021) 1839–1853.CrossRef
[15]
go back to reference J.M. Gregg, H.K.D.H. Bheadeshia, Metall. Mater. Trans. A 25 (1994) 1603–1611.CrossRef J.M. Gregg, H.K.D.H. Bheadeshia, Metall. Mater. Trans. A 25 (1994) 1603–1611.CrossRef
[16]
go back to reference X.L. Wan, B.W. Zhou, K.C. Nune, Y. Li, K. Wu, G. Li, Sci. Technol. Weld. Joining 22 (2017) 343–352.CrossRef X.L. Wan, B.W. Zhou, K.C. Nune, Y. Li, K. Wu, G. Li, Sci. Technol. Weld. Joining 22 (2017) 343–352.CrossRef
[17]
go back to reference Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Y.L. Li, Z.H. Jiang, H.S. Zhang, Metall. Mater. Trans. B 50 (2019) 2536–2546.CrossRef Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Y.L. Li, Z.H. Jiang, H.S. Zhang, Metall. Mater. Trans. B 50 (2019) 2536–2546.CrossRef
[18]
go back to reference Y.K. Yang, D.P. Zhan, Z.H. Jiang, H. Lei, J. Northeast. Univ. Nat. Sci. 42 (2021) 1709–1716. Y.K. Yang, D.P. Zhan, Z.H. Jiang, H. Lei, J. Northeast. Univ. Nat. Sci. 42 (2021) 1709–1716.
[20]
go back to reference Y.K. Yang, D.P. Zhan, H. Lei, Y.L. Li, R.J. Wang, J.X. Wang, Z.H. Jiang, H.S. Zhang, ISIJ Int. 60 (2020) 1948–1956.CrossRef Y.K. Yang, D.P. Zhan, H. Lei, Y.L. Li, R.J. Wang, J.X. Wang, Z.H. Jiang, H.S. Zhang, ISIJ Int. 60 (2020) 1948–1956.CrossRef
[21]
go back to reference A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, X.L. He, Mater. Charact. 59 (2008) 134–139. A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, X.L. He, Mater. Charact. 59 (2008) 134–139.
[22]
go back to reference C. Wang, R.D.K. Misra, M.H. Shi, P.Y. Zhang, Z.D. Wang, F.X. Zhu, G.D. Wang, Mater. Sci. Eng. A 594 (2014) 218–228.CrossRef C. Wang, R.D.K. Misra, M.H. Shi, P.Y. Zhang, Z.D. Wang, F.X. Zhu, G.D. Wang, Mater. Sci. Eng. A 594 (2014) 218–228.CrossRef
[23]
go back to reference Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto, ISIJ Int. 34 (1994) 829–835.CrossRef Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto, ISIJ Int. 34 (1994) 829–835.CrossRef
[25]
[26]
[27]
go back to reference Y.K. Yang, D.P. Zhan, G.X. Qiu, X.M. Li, Z.H. Jiang, H.S. Zhang, J. Mater. Res. Technol. 18 (2022) 5103–5115.CrossRef Y.K. Yang, D.P. Zhan, G.X. Qiu, X.M. Li, Z.H. Jiang, H.S. Zhang, J. Mater. Res. Technol. 18 (2022) 5103–5115.CrossRef
[29]
go back to reference K. Miao, M. Nabeel, N. Dogan, S. Sun, Metall. Mater. Trans. B 52 (2021) 3151–3166.CrossRef K. Miao, M. Nabeel, N. Dogan, S. Sun, Metall. Mater. Trans. B 52 (2021) 3151–3166.CrossRef
[30]
go back to reference Z.H. Wu, W. Zheng, G.Q. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 46 (2015) 1226–1241.CrossRef Z.H. Wu, W. Zheng, G.Q. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 46 (2015) 1226–1241.CrossRef
[31]
go back to reference N. Matsuoka, M. Terano, T. Ishiguro, E. Abe, N. Yukawa, T. Ishikawa, K. Isobe, Proced. Eng. 81 (2014) 120–125.CrossRef N. Matsuoka, M. Terano, T. Ishiguro, E. Abe, N. Yukawa, T. Ishikawa, K. Isobe, Proced. Eng. 81 (2014) 120–125.CrossRef
[33]
go back to reference C.H. Ren, X.C. Zhang, H.W. Ji, N. Zhan, Z. Qiao, Mater. Sci. Eng. A 705 (2017) 394–401.CrossRef C.H. Ren, X.C. Zhang, H.W. Ji, N. Zhan, Z. Qiao, Mater. Sci. Eng. A 705 (2017) 394–401.CrossRef
[34]
go back to reference M.V. Li, D.V. Niebuhr, L.L. Meekisho, D.G. Atteridge, Metall. Mater. Trans. B 29 (1998) 661–672.CrossRef M.V. Li, D.V. Niebuhr, L.L. Meekisho, D.G. Atteridge, Metall. Mater. Trans. B 29 (1998) 661–672.CrossRef
[35]
go back to reference F.G. Caballero, A. García-Junceda, C. Capdevila, C. García de Andrés, Mater. Trans. 47 (2006) 2269–2276. F.G. Caballero, A. García-Junceda, C. Capdevila, C. García de Andrés, Mater. Trans. 47 (2006) 2269–2276.
[36]
go back to reference L.E. Samuels, Light microscopy of carbon steel, ASM Internaitonal, Ohio, USA, 1999. L.E. Samuels, Light microscopy of carbon steel, ASM Internaitonal, Ohio, USA, 1999.
[37]
go back to reference Q.C. Ma, X.M. Zhao, D.X. Meng, C. Dong, Z. Hou, R. Misra, Steel Res. Int. 90 (2019) 1800332.CrossRef Q.C. Ma, X.M. Zhao, D.X. Meng, C. Dong, Z. Hou, R. Misra, Steel Res. Int. 90 (2019) 1800332.CrossRef
[38]
[39]
[40]
go back to reference S.K. Kim, Y.M. Kim, Y.J. Lim, N.J. Kim, Met. Mater. Int. 12 (2006) 131–135.CrossRef S.K. Kim, Y.M. Kim, Y.J. Lim, N.J. Kim, Met. Mater. Int. 12 (2006) 131–135.CrossRef
[41]
go back to reference Y.F. Li, Q.Y. Huang, Y.C. Wu, Z. Yi, S. Zhu, Fusion Eng. Des. 82 (2007) 2683–2688.CrossRef Y.F. Li, Q.Y. Huang, Y.C. Wu, Z. Yi, S. Zhu, Fusion Eng. Des. 82 (2007) 2683–2688.CrossRef
[43]
go back to reference F.A. Khalid, M. Farooque, A. ul Haq, A.Q. Khan, Mater. Sci. Technol. 15 (1999) 1209–1215. F.A. Khalid, M. Farooque, A. ul Haq, A.Q. Khan, Mater. Sci. Technol. 15 (1999) 1209–1215.
[44]
go back to reference X.C. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren, C. Chen, Opt. Laser. Eng. 84 (2016) 24–28.CrossRef X.C. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren, C. Chen, Opt. Laser. Eng. 84 (2016) 24–28.CrossRef
[45]
go back to reference R.A. Ricks, P.R. Howell, G.S. Barritte, J. Mater. Sci. 17 (1982) 732–740.CrossRef R.A. Ricks, P.R. Howell, G.S. Barritte, J. Mater. Sci. 17 (1982) 732–740.CrossRef
Metadata
Title
Banded structure control of low carbon microalloyed steel based on oxide metallurgy
Authors
Yong-kun Yang
Jia-yu Zhu
Xiao-ming Li
Yang Wang
Dong-ping Zhan
Publication date
09-03-2023
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 11/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-00916-6

Other articles of this Issue 11/2023

Journal of Iron and Steel Research International 11/2023 Go to the issue

Premium Partners