Skip to main content
Top
Published in: Journal of Iron and Steel Research International 11/2023

29-08-2023 | Original Paper

Design of a submerged entry nozzle for optimizing continuous casting of stainless steel slab

Authors: Jia-chen Pang, Guo-yu Qian, Sheng Pang, Wen-hui Ma, Guo-guang Cheng

Published in: Journal of Iron and Steel Research International | Issue 11/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To solve slag entrapment and casting slab defects in the process of stainless steel continuous casting, submerged entry nozzle (SEN) for slab casters operating at casting speed of 1 m/min was developed based on 3D numerical simulation and water modeling experiments by controlling the outlet shape and angle of original SEN with oval and 15° angle outlet under current industrial use. Mathematical simulations of fluid velocity at outlets with different shapes and angles of SENs have been carried out. The results showed that oval outlet with 5° and 15° angle led to asymmetric rotating flow pattern at outlet, as well as square outlet with 15° angle, but symmetric flow pattern formed at square outlet with 5° angle. The effect of these SENs on meniscus stability, flow field and slag entrapment behavior of stainless steel slab casting mold was further studied by water modeling experiments. The results showed that difficult floating fine droplets formed when the angle of outlet was 15° under the dual effect of vortex convection and shear force due to the strong swirling flow from outlet and rotating flow of outlet. However, outlet with 5° angle could lead to the formation of larger slag droplets, while the oval outlet with 5° angle could result in the scour to the mold wall. Thus, the square outlet with 5° angle was a relatively ideal solution for the submerged entry nozzle from the aspects of the stability of the mold and the slag entrapment behavior. After the design of a new SEN according to the experimental result, the solidification structure of continuous casting slab was obviously improved by industrial test.
Literature
[1]
go back to reference J. Yuan, Z. Ou, Adv. Civ. Eng. Mater. 2021 (2021) e9228493. J. Yuan, Z. Ou, Adv. Civ. Eng. Mater. 2021 (2021) e9228493.
[2]
[3]
go back to reference Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang, W. Mao, Metall. Mater. Trans. B 47 (2016) 1024–1034.CrossRef Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang, W. Mao, Metall. Mater. Trans. B 47 (2016) 1024–1034.CrossRef
[4]
go back to reference M. Venkatraman, K. Pavitra, V. Jana, T. Kachwala, Adv. Mater. Res. 794 (2013) 163–173.CrossRef M. Venkatraman, K. Pavitra, V. Jana, T. Kachwala, Adv. Mater. Res. 794 (2013) 163–173.CrossRef
[6]
go back to reference K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. R Rep. 65 (2009) 39–104.CrossRef K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. R Rep. 65 (2009) 39–104.CrossRef
[7]
go back to reference T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112–224.CrossRef T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112–224.CrossRef
[8]
go back to reference T. Klaus, E. Sven, G. Gunter, S. Frank, W. Thomas, ISIJ Int. 50 (2010) 1134–1141.CrossRef T. Klaus, E. Sven, G. Gunter, S. Frank, W. Thomas, ISIJ Int. 50 (2010) 1134–1141.CrossRef
[9]
go back to reference J. Gonzalez-Trejo, J. Miranda-Tello, F. Cervantes-de-la-Torre, I. Carvajal-Mariscal, F. Sanchez-Silva, R. Gabbasov, C. Real-Ramirez, Metals 12 (2022) 1097.CrossRef J. Gonzalez-Trejo, J. Miranda-Tello, F. Cervantes-de-la-Torre, I. Carvajal-Mariscal, F. Sanchez-Silva, R. Gabbasov, C. Real-Ramirez, Metals 12 (2022) 1097.CrossRef
[10]
go back to reference K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, T. Wondrak, ISIJ Int. 50 (2010) 1134–1141.CrossRef K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, T. Wondrak, ISIJ Int. 50 (2010) 1134–1141.CrossRef
[12]
[13]
go back to reference D.M. Rodolfo, T. Yong, N. Gerald, E. Cristoph, H. Gernot, ISIJ Int. 52 (2012) 1607–1615.CrossRef D.M. Rodolfo, T. Yong, N. Gerald, E. Cristoph, H. Gernot, ISIJ Int. 52 (2012) 1607–1615.CrossRef
[14]
go back to reference P. Hu, H. Zhang, M. Wang, M. Zhu, X. Zhang, Y. Zhang, Z. Zhang, Metall. Res. Technol. 112 (2015) 104.CrossRef P. Hu, H. Zhang, M. Wang, M. Zhu, X. Zhang, Y. Zhang, Z. Zhang, Metall. Res. Technol. 112 (2015) 104.CrossRef
[15]
[16]
go back to reference J. Zeng, W. Chen, G. Wang, C. Cao, Y. Gao, Metall. Res. Technol. 112 (2015) 403.CrossRef J. Zeng, W. Chen, G. Wang, C. Cao, Y. Gao, Metall. Res. Technol. 112 (2015) 403.CrossRef
[17]
go back to reference T. Yuichi, N. Osamu, J. Pär, Y. Shinichiro, T. Toshihiro, H. Shigeta. ISIJ Int. 47 (2007) 1436–1443.CrossRef T. Yuichi, N. Osamu, J. Pär, Y. Shinichiro, T. Toshihiro, H. Shigeta. ISIJ Int. 47 (2007) 1436–1443.CrossRef
[18]
[19]
go back to reference C.R. Ismael, D.M. Rodolfo, G.H. Saúl, C.H. Ariana. ISIJ Int. 54 (2014) 1797–1806.CrossRef C.R. Ismael, D.M. Rodolfo, G.H. Saúl, C.H. Ariana. ISIJ Int. 54 (2014) 1797–1806.CrossRef
[20]
go back to reference B. Zhao, B.G. Thomas, S.P. Vanka, R.J. O’Malley, Metall. Mater. Trans. B 36 (2005) 801–823.CrossRef B. Zhao, B.G. Thomas, S.P. Vanka, R.J. O’Malley, Metall. Mater. Trans. B 36 (2005) 801–823.CrossRef
[21]
go back to reference Q. Xie, P. Ni, M. Ersson, P.G. Jönsson, Y. Li, Metall. Mater. Trans. B 53 (2022) 3197–3214.CrossRef Q. Xie, P. Ni, M. Ersson, P.G. Jönsson, Y. Li, Metall. Mater. Trans. B 53 (2022) 3197–3214.CrossRef
[22]
[23]
go back to reference Y. Wu, Z. Liu, F. Wang, B. Li, Y. Gan, Powder Technol. 387 (2021) 325–335.CrossRef Y. Wu, Z. Liu, F. Wang, B. Li, Y. Gan, Powder Technol. 387 (2021) 325–335.CrossRef
[24]
go back to reference Z. Khan, H.U. Rasheed, I. Khan, H. Abu-Zinadah, M.A. Aldahlan, Materials 15 (2022) 747.CrossRef Z. Khan, H.U. Rasheed, I. Khan, H. Abu-Zinadah, M.A. Aldahlan, Materials 15 (2022) 747.CrossRef
[25]
go back to reference Zeeshan, Adv. Mech. Eng. 14 (2022) 16878140221075295. Zeeshan, Adv. Mech. Eng. 14 (2022) 16878140221075295.
[28]
go back to reference R. Miroslav, A.T. Ampere, H. Jaroslav, K. Jan, Metall. Res. Technol. 113 (2016) 1–24. R. Miroslav, A.T. Ampere, H. Jaroslav, K. Jan, Metall. Res. Technol. 113 (2016) 1–24.
[29]
go back to reference T. Honeyands, J. Lucas, J. Chambers, Atlanta 75 (1992) 451–459. T. Honeyands, J. Lucas, J. Chambers, Atlanta 75 (1992) 451–459.
[30]
go back to reference H. Lei, M. Zhu, W. Wang, H. Xu, W. Wang, The Chinese Journal of Nonferrous Metals 8 (1998) S468–S471. H. Lei, M. Zhu, W. Wang, H. Xu, W. Wang, The Chinese Journal of Nonferrous Metals 8 (1998) S468–S471.
[31]
go back to reference W. Han, Wide and Heavy Plate 9 (2003) 4–5. W. Han, Wide and Heavy Plate 9 (2003) 4–5.
[32]
go back to reference X. Wan, C. Han, K. Cai, S. Yang, X. Yan, W. Gu, Iron and Steel 35 (2000) No. 9, 20–23. X. Wan, C. Han, K. Cai, S. Yang, X. Yan, W. Gu, Iron and Steel 35 (2000) No. 9, 20–23.
[33]
go back to reference H. Lei, M. Zhu, T. Qiu, Z. Luo, Steelmaking 16 (2000) 9–31. H. Lei, M. Zhu, T. Qiu, Z. Luo, Steelmaking 16 (2000) 9–31.
[34]
go back to reference N. Tsukamoto, K. Ichikawa, E. Iida, in: Steelmaking Conference Proceedings, Washington, USA, 1991, pp. 803–808. N. Tsukamoto, K. Ichikawa, E. Iida, in: Steelmaking Conference Proceedings, Washington, USA, 1991, pp. 803–808.
[35]
go back to reference F.G. Jaicks, L.E. Kraay, M. Tenenbaum, JOM 9 (1957) 1057–1072. F.G. Jaicks, L.E. Kraay, M. Tenenbaum, JOM 9 (1957) 1057–1072.
[36]
go back to reference G.H. Geiger, D.R. Poirier, Welding J. 61 (1982) 258–268. G.H. Geiger, D.R. Poirier, Welding J. 61 (1982) 258–268.
[37]
go back to reference S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, Washington, USA, 1980.MATH S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, Washington, USA, 1980.MATH
[39]
go back to reference B.E. Launder, D.B. Spalding, Mathematical models of turbulence, Academic Press, New York, USA, 1972.MATH B.E. Launder, D.B. Spalding, Mathematical models of turbulence, Academic Press, New York, USA, 1972.MATH
Metadata
Title
Design of a submerged entry nozzle for optimizing continuous casting of stainless steel slab
Authors
Jia-chen Pang
Guo-yu Qian
Sheng Pang
Wen-hui Ma
Guo-guang Cheng
Publication date
29-08-2023
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 11/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-01042-z

Other articles of this Issue 11/2023

Journal of Iron and Steel Research International 11/2023 Go to the issue

Premium Partners