Skip to main content
Top
Published in:
Cover of the book

2023 | OriginalPaper | Chapter

1. Basic Principles of Solid-State X-Ray Radiation Detector Operation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The basic principle of operation of an X-ray detector is described through the X-ray interactions with the photoconductor, the ionization energy, and signal formulation mechanisms in photoconductive radiation detectors. Typical X-ray radiation detector materials and structures are also described. The X-ray detectors are classified based on their applications. The spectroscopic detector operation is explained, and its energy resolution is discussed. Flat panel X-ray imagers (FPXIs) are described in detail due to their extensive use in imaging, especially, in medical X-ray imaging. The materials for direct conversion detectors (the absorbed X-ray photons directly create charge carriers in the photoconductor) and various image read-out devices (e.g., a-Si:H TFT and CMOS active-matrix technologies) are discussed. The imaging performance of FPXIs critically depends on the photoconductor material used in the X-ray detector. This chapter discusses the effects of charge carrier transport properties on the imaging performances such as X-ray sensitivity, resolution in terms of modulation transfer function, detective quantum efficiency, image lag, and ghosting. A brief introduction to the X-ray interaction position sensitive semiconductor detector structures and the effects of small pixels on charge collection and resolution are described in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bushberg JT, Seibert JA, Leidholdt EM Jr, Boone JM. The essential physics of medical imaging. 3rd ed. Wolters Kluwer; 2012. p. 19. Bushberg JT, Seibert JA, Leidholdt EM Jr, Boone JM. The essential physics of medical imaging. 3rd ed. Wolters Kluwer; 2012. p. 19.
2.
go back to reference Kasap SO, Kabir MZ. Chapter 20: X-ray detectors. In: Rudan M, et al., editors. Springer handbook of semiconductor devices. Cham: Springer Nature; 2022. Kasap SO, Kabir MZ. Chapter 20: X-ray detectors. In: Rudan M, et al., editors. Springer handbook of semiconductor devices. Cham: Springer Nature; 2022.
3.
4.
go back to reference Kabir MZ. Dark current mechanisms in amorphous selenium-based photoconductive detectors: an overview and re-examination. J Mater Sci Mater Electron. 2015;26:4659–67.CrossRef Kabir MZ. Dark current mechanisms in amorphous selenium-based photoconductive detectors: an overview and re-examination. J Mater Sci Mater Electron. 2015;26:4659–67.CrossRef
5.
go back to reference Martz HE, Logan CM, Schneberk DJ, Shull PJ. X-ray imaging: fundamentals, industrial techniques, and applications. Boca Raton: CRC Press; 2017. Martz HE, Logan CM, Schneberk DJ, Shull PJ. X-ray imaging: fundamentals, industrial techniques, and applications. Boca Raton: CRC Press; 2017.
6.
go back to reference Klein CA. Bandgap dependence and related features of radiation ionization energies in semiconductors. J Appl Phys. 1968;39:2029–38.CrossRefADS Klein CA. Bandgap dependence and related features of radiation ionization energies in semiconductors. J Appl Phys. 1968;39:2029–38.CrossRefADS
7.
go back to reference Que W, Rowlands JA. X-ray photogeneration in amorphous selenium: geminate versus columnar recombination. Phys Rev B. 1995;51:10500–7.CrossRefADS Que W, Rowlands JA. X-ray photogeneration in amorphous selenium: geminate versus columnar recombination. Phys Rev B. 1995;51:10500–7.CrossRefADS
8.
go back to reference Blevis I, Hunt DC, Rowlands JA. Measurement of X-ray photogeneration in amorphous selenium. J Appl Phys. 1999;85:7958–63.CrossRefADS Blevis I, Hunt DC, Rowlands JA. Measurement of X-ray photogeneration in amorphous selenium. J Appl Phys. 1999;85:7958–63.CrossRefADS
9.
go back to reference Mah D, Rowlands JA, Rawlinson JA. Sensitivity of amorphous selenium to x rays from 40 kVp to 18 MV: Measurements and implications for portal imaging. Med Phys. 1998;25:444–56.CrossRef Mah D, Rowlands JA, Rawlinson JA. Sensitivity of amorphous selenium to x rays from 40 kVp to 18 MV: Measurements and implications for portal imaging. Med Phys. 1998;25:444–56.CrossRef
10.
go back to reference Bubon O, Jandieri K, Baranovskii SD, Kasap SO, Reznik A. Columnar recombination for X-ray generated electron-holes in amorphous selenium and its significance in a-Se X-ray detectors. J Appl Phys. 2016;119:124511.CrossRefADS Bubon O, Jandieri K, Baranovskii SD, Kasap SO, Reznik A. Columnar recombination for X-ray generated electron-holes in amorphous selenium and its significance in a-Se X-ray detectors. J Appl Phys. 2016;119:124511.CrossRefADS
11.
go back to reference Kabir MZ, Arnab SM, Hijazi N. Electron-hole pair creation energy in amorphous selenium: geminate versus columnar recombination. J Mater Sci Mater Electron. 2019;30:21059.CrossRef Kabir MZ, Arnab SM, Hijazi N. Electron-hole pair creation energy in amorphous selenium: geminate versus columnar recombination. J Mater Sci Mater Electron. 2019;30:21059.CrossRef
12.
go back to reference Shockley W. Currents to conductors induced by a moving point charge. J Appl Phys. 1938;9:635–6.CrossRefADS Shockley W. Currents to conductors induced by a moving point charge. J Appl Phys. 1938;9:635–6.CrossRefADS
13.
14.
go back to reference He Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl Instr Meth Phys Res A. 2001;463:250–67.CrossRefADS He Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl Instr Meth Phys Res A. 2001;463:250–67.CrossRefADS
15.
go back to reference Kabir MZ, Kasap SO. Charge collection and absorption-limited X-ray sensitivity of pixellated X-ray detectors. J Vac Sci Technol A. 2004;22:975–80.CrossRef Kabir MZ, Kasap SO. Charge collection and absorption-limited X-ray sensitivity of pixellated X-ray detectors. J Vac Sci Technol A. 2004;22:975–80.CrossRef
16.
go back to reference Kasap SO. Optoelectronics and photonics: principles and practices. Upper Saddle River: Prentice-Hall; 2001, Ch. 5. Kasap SO. Optoelectronics and photonics: principles and practices. Upper Saddle River: Prentice-Hall; 2001, Ch. 5.
17.
go back to reference Kabir MZ. Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors. J Appl Phys. 2008;104:074506.CrossRefADS Kabir MZ. Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors. J Appl Phys. 2008;104:074506.CrossRefADS
18.
go back to reference Kasap SO, Kabir MZ, Ramaswami KO, Johanson RE, Curry RJ. Charge collection efficiency in the presence of non-uniform carrier drift mobilities and lifetimes in photoconductive detectors. J Appl Phys. 2020;128:124501.CrossRefADS Kasap SO, Kabir MZ, Ramaswami KO, Johanson RE, Curry RJ. Charge collection efficiency in the presence of non-uniform carrier drift mobilities and lifetimes in photoconductive detectors. J Appl Phys. 2020;128:124501.CrossRefADS
19.
go back to reference Ramaswami K, Johanson R, Kasap S. Charge collection efficiency in photoconductive detectors under small to large signals. J Appl Phys. 2019;125:244503.CrossRefADS Ramaswami K, Johanson R, Kasap S. Charge collection efficiency in photoconductive detectors under small to large signals. J Appl Phys. 2019;125:244503.CrossRefADS
20.
go back to reference Kasap SO, Kabir MZ, Rowlands JA. Recent advances in X-ray photoconductors for direct conversion X-ray image sensors. Curr Appl Phys. 2006;6:288–92.CrossRefADS Kasap SO, Kabir MZ, Rowlands JA. Recent advances in X-ray photoconductors for direct conversion X-ray image sensors. Curr Appl Phys. 2006;6:288–92.CrossRefADS
21.
go back to reference Mirzaei A, Huh J-S, Kim SS, Kim HW. Room temperature hard radiation detectors based on solid state compound semiconductors: an overview. Electron Mater Lett. 2018;14:261.CrossRefADS Mirzaei A, Huh J-S, Kim SS, Kim HW. Room temperature hard radiation detectors based on solid state compound semiconductors: an overview. Electron Mater Lett. 2018;14:261.CrossRefADS
22.
go back to reference Pennicard D, Pirard B, Tolbanov O, Iniewski K. Semiconductor materials for X-ray detectors. MRS Bull. 2017;42:445–50.CrossRefADS Pennicard D, Pirard B, Tolbanov O, Iniewski K. Semiconductor materials for X-ray detectors. MRS Bull. 2017;42:445–50.CrossRefADS
23.
go back to reference Capasso F. Band-gap engineering: from physics and materials to new semiconductor devices. Science. 1987;235(4785):172–6.CrossRefADS Capasso F. Band-gap engineering: from physics and materials to new semiconductor devices. Science. 1987;235(4785):172–6.CrossRefADS
24.
go back to reference Takahashi T, Watanabe S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans Nucl Sci. 2001;48:950–9.CrossRefADS Takahashi T, Watanabe S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans Nucl Sci. 2001;48:950–9.CrossRefADS
25.
go back to reference Szeles C, Cameron SE, Ndap J-O, Chalmer WC. Advances in the crystal growth of semi-insulating CdZnTe for radiation detector applications. IEEE Trans Nucl Sci. 2002;49:2535.CrossRefADS Szeles C, Cameron SE, Ndap J-O, Chalmer WC. Advances in the crystal growth of semi-insulating CdZnTe for radiation detector applications. IEEE Trans Nucl Sci. 2002;49:2535.CrossRefADS
26.
go back to reference Owens A, Peacock A. Compound semiconductor radiation detectors. Nucl Instr Methods Phys Res A. 2004;531:18–37.CrossRefADS Owens A, Peacock A. Compound semiconductor radiation detectors. Nucl Instr Methods Phys Res A. 2004;531:18–37.CrossRefADS
27.
go back to reference Sellin PJ. Recent advances in compound semiconductor radiation detectors. Nuclear Instr Methods Phys Res A. 2003;513:332–9.CrossRefADS Sellin PJ. Recent advances in compound semiconductor radiation detectors. Nuclear Instr Methods Phys Res A. 2003;513:332–9.CrossRefADS
28.
go back to reference Owens A. Semiconductor materials and radiation detection. J Synchrotron Radiat. 2006;13:143–50.CrossRef Owens A. Semiconductor materials and radiation detection. J Synchrotron Radiat. 2006;13:143–50.CrossRef
29.
go back to reference Sordo SD, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 2009;9:3491–526.CrossRefADS Sordo SD, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 2009;9:3491–526.CrossRefADS
30.
go back to reference Szeles C. CdZnTe and CdTe crystals for medical applications. In: Iwanczyk JS, editor. Radiation detectors for medical imaging. Boca Raton: CRC Press; 2016. p. 1–28. Szeles C. CdZnTe and CdTe crystals for medical applications. In: Iwanczyk JS, editor. Radiation detectors for medical imaging. Boca Raton: CRC Press; 2016. p. 1–28.
31.
go back to reference Owens A. Photonductive materials. In: Kasap SO, editor. Photonductivity and photonductive materials. Chichester: Wiley & Sons; 2022. Owens A. Photonductive materials. In: Kasap SO, editor. Photonductivity and photonductive materials. Chichester: Wiley & Sons; 2022.
32.
go back to reference Kabir MZ, Kasap SO. Photoconductors for direct conversion X-ray image detectors. In: Kasap SO, Capper P, editors. Springer handbook of electronic and photonic materials, 2nd edition. Springer Academic Publishers; 2017. p. 1125–47. Kabir MZ, Kasap SO. Photoconductors for direct conversion X-ray image detectors. In: Kasap SO, Capper P, editors. Springer handbook of electronic and photonic materials, 2nd edition. Springer Academic Publishers; 2017. p. 1125–47.
33.
go back to reference Kabir MZ. X-ray photoconductivity and typical large area X-ray photoconductors. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Chichester: Wiley & Sons; 2022. p. 613–42.CrossRef Kabir MZ. X-ray photoconductivity and typical large area X-ray photoconductors. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Chichester: Wiley & Sons; 2022. p. 613–42.CrossRef
34.
go back to reference Lioliou G, Meng X, Ng JS, Barnett AM. Characterization of gallium arsenide X-ray mesa p-i-n photodiodes at room temperature. Nucl Instr Methods Phys Res A. 2016;813:1–9.CrossRefADS Lioliou G, Meng X, Ng JS, Barnett AM. Characterization of gallium arsenide X-ray mesa p-i-n photodiodes at room temperature. Nucl Instr Methods Phys Res A. 2016;813:1–9.CrossRefADS
35.
go back to reference Owens A, Bavdaz M, Peacock A, Poelaert A. High resolution X-ray spectroscopy using GaAs arrays. J Appl Phys. 2001;90:5376.CrossRefADS Owens A, Bavdaz M, Peacock A, Poelaert A. High resolution X-ray spectroscopy using GaAs arrays. J Appl Phys. 2001;90:5376.CrossRefADS
37.
go back to reference Bertuccioa G, Caccia S, Puglisi D, Macera D. Advances in silicon carbide X-ray detectors. Nucl Instr Methods Phys Res A. 2011;652:193–6.CrossRefADS Bertuccioa G, Caccia S, Puglisi D, Macera D. Advances in silicon carbide X-ray detectors. Nucl Instr Methods Phys Res A. 2011;652:193–6.CrossRefADS
38.
go back to reference Wang J, Mulligan P, Brillson L, Cao LR. Review of using gallium nitride for ionizing radiation detection. Appl Phys Rev. 2015;2:031102.CrossRef Wang J, Mulligan P, Brillson L, Cao LR. Review of using gallium nitride for ionizing radiation detection. Appl Phys Rev. 2015;2:031102.CrossRef
39.
go back to reference Duboz JY, Lauegt M, Schenk D, Beaumont B, Reverchon JL, Wieck AD, Zimmerling T. GaN for X-ray detection. Appl Phys Lett. 2008;92(26):263501.CrossRefADS Duboz JY, Lauegt M, Schenk D, Beaumont B, Reverchon JL, Wieck AD, Zimmerling T. GaN for X-ray detection. Appl Phys Lett. 2008;92(26):263501.CrossRefADS
40.
go back to reference Knoll GF. Radiation detection and measurement. 3rd ed. New York: Wiley; 2000. Knoll GF. Radiation detection and measurement. 3rd ed. New York: Wiley; 2000.
41.
go back to reference Tsoulfanidis N, Landsberger S. Measurement and detection of radiation, 4th Edition. Boca Raton: CRC Press; 2015.CrossRef Tsoulfanidis N, Landsberger S. Measurement and detection of radiation, 4th Edition. Boca Raton: CRC Press; 2015.CrossRef
42.
go back to reference Fano U. Ionization yield of radiations. II. The fluctuations of the number of ions. Phys Rev. 1947;72:26.CrossRefADS Fano U. Ionization yield of radiations. II. The fluctuations of the number of ions. Phys Rev. 1947;72:26.CrossRefADS
43.
go back to reference Kabir MZ, Kasap SO. Dependence of the DQE of photoconductive X-ray detectors on charge transport and trapping. SPIE Proc. 2002;4682:42–52.CrossRefADS Kabir MZ, Kasap SO. Dependence of the DQE of photoconductive X-ray detectors on charge transport and trapping. SPIE Proc. 2002;4682:42–52.CrossRefADS
44.
go back to reference Ruzin A, Nemirovsky Y. Statistical models for charge collection efficiency and variance in semiconductor spectrometers. J Appl Phys. 1997;82:2754–8.CrossRefADS Ruzin A, Nemirovsky Y. Statistical models for charge collection efficiency and variance in semiconductor spectrometers. J Appl Phys. 1997;82:2754–8.CrossRefADS
45.
go back to reference Mainprize JG, Hunt DC, Yaffe MJ. Direct conversion detectors: the effect of incomplete charge collection on detective quantum efficiency. Med Phys. 2002;29:976–90.CrossRef Mainprize JG, Hunt DC, Yaffe MJ. Direct conversion detectors: the effect of incomplete charge collection on detective quantum efficiency. Med Phys. 2002;29:976–90.CrossRef
46.
go back to reference Barton P, Amman M, Martin R, Vetter K. Ultra-low noise mechanically cooled germanium detector. Nucl Instr Methods Phys Res A. 2016;812:17–23.CrossRefADS Barton P, Amman M, Martin R, Vetter K. Ultra-low noise mechanically cooled germanium detector. Nucl Instr Methods Phys Res A. 2016;812:17–23.CrossRefADS
47.
go back to reference Markus K, Weber CH, Wirth S, Pfeifer K-J, et al. Advances in digital radiography: physical principles and system overview. Radiographics. 2007;27:675–86.CrossRef Markus K, Weber CH, Wirth S, Pfeifer K-J, et al. Advances in digital radiography: physical principles and system overview. Radiographics. 2007;27:675–86.CrossRef
48.
go back to reference Spahn M. Flat detectors and their clinical applications. Eur Radiol. 2005;15:1934.CrossRef Spahn M. Flat detectors and their clinical applications. Eur Radiol. 2005;15:1934.CrossRef
49.
go back to reference Cowen AR, Kengyelics SM, Davies AG. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics. Clin Radiol. 2008;63:487–98.CrossRef Cowen AR, Kengyelics SM, Davies AG. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics. Clin Radiol. 2008;63:487–98.CrossRef
50.
go back to reference Spahn M. X-ray detectors in medical imaging. Nucl Instr Methods Phys Res A. 2013;731:57–63.CrossRefADS Spahn M. X-ray detectors in medical imaging. Nucl Instr Methods Phys Res A. 2013;731:57–63.CrossRefADS
51.
go back to reference Kasap SO, Frey JB, Belev G, Tousignant O, Mani H, Greenspan J, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors. 2011;11:5112.CrossRefADS Kasap SO, Frey JB, Belev G, Tousignant O, Mani H, Greenspan J, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors. 2011;11:5112.CrossRefADS
52.
go back to reference Yorkston J. Recent developments in digital radiography detectors. Nucl Instr Methods Phys Res A. 2007;580:974–85.CrossRefADS Yorkston J. Recent developments in digital radiography detectors. Nucl Instr Methods Phys Res A. 2007;580:974–85.CrossRefADS
53.
go back to reference Karim K. Active matrix flat panel imagers. In: Iniewski K, editor. Medical imaging. New York: Wiley & Sons Inc; 2009. p. 23–58.CrossRef Karim K. Active matrix flat panel imagers. In: Iniewski K, editor. Medical imaging. New York: Wiley & Sons Inc; 2009. p. 23–58.CrossRef
54.
go back to reference Seco J, Clasie B, Partridge M. Review on the characteristics of radiation detectors for dosimetry and imaging. Phys Med Biol. 2014;59:R303–47.CrossRefADS Seco J, Clasie B, Partridge M. Review on the characteristics of radiation detectors for dosimetry and imaging. Phys Med Biol. 2014;59:R303–47.CrossRefADS
55.
go back to reference Vedantham S, Karellas A, Vijayaraghavan GR, Kopans DB. Digital breast Tomosynthesis: state of the art. Radiology. 2015;277:663–84.CrossRef Vedantham S, Karellas A, Vijayaraghavan GR, Kopans DB. Digital breast Tomosynthesis: state of the art. Radiology. 2015;277:663–84.CrossRef
56.
go back to reference Panetta D. Advances in X-ray detectors for clinical and preclinical computed tomography. Nucl Instr Methods Phys Res A. 2016;809:2–12.CrossRefADS Panetta D. Advances in X-ray detectors for clinical and preclinical computed tomography. Nucl Instr Methods Phys Res A. 2016;809:2–12.CrossRefADS
57.
go back to reference Zhao W. Ch. 3: Detectors for tomosynthesis. In: Reiser I, Glick S, editors. The tomosynthesis imaging. Boca Raton: CRC Press; 2017. Zhao W. Ch. 3: Detectors for tomosynthesis. In: Reiser I, Glick S, editors. The tomosynthesis imaging. Boca Raton: CRC Press; 2017.
58.
go back to reference Fredenberg E. Spectral and dual-energy X-ray imaging for medical applications. Nucl Instr Methods Phys Res A. 2018;878:74–87.CrossRefADS Fredenberg E. Spectral and dual-energy X-ray imaging for medical applications. Nucl Instr Methods Phys Res A. 2018;878:74–87.CrossRefADS
59.
go back to reference Rowlands JA, Yorkston J. Ch.4: Flat panel detector for digital radiography. In: Beutel J, Kundel HL, Van Metter RL, editors. Handbook of medical imaging, vol. 1. Bellingham, Washington: SPIE Press; 2000. p. 225–313. Rowlands JA, Yorkston J. Ch.4: Flat panel detector for digital radiography. In: Beutel J, Kundel HL, Van Metter RL, editors. Handbook of medical imaging, vol. 1. Bellingham, Washington: SPIE Press; 2000. p. 225–313.
60.
go back to reference Jiang H, Zhao Q, Antonuk LE, El-Mohri Y, Gupta T. Development of active-matrix flat panel imagers incorporating thin layers of polycrystalline HgI2 for mammographic X-ray imaging. Phys Med Biol. 2013;58:703–14.CrossRef Jiang H, Zhao Q, Antonuk LE, El-Mohri Y, Gupta T. Development of active-matrix flat panel imagers incorporating thin layers of polycrystalline HgI2 for mammographic X-ray imaging. Phys Med Biol. 2013;58:703–14.CrossRef
61.
go back to reference Veale MC. Ch. 3: CdTe and CdZnTe Small pixel imaging detectors. In: Awadalla S, editor. Solid-state radiation detectors: technology and applications. Boca Raton: CRC Press; 2015. Veale MC. Ch. 3: CdTe and CdZnTe Small pixel imaging detectors. In: Awadalla S, editor. Solid-state radiation detectors: technology and applications. Boca Raton: CRC Press; 2015.
62.
go back to reference Yin S, Tümer TO, Maeding D, Mainprize J, Mawdsley G, Yaffe MJ, Gordon EE, Hamilton WJ. Direct conversion CdZnTe and CdTe detectors for digital mammography. IEEE Trans Nucl Sci. 2002;49:176–81.CrossRefADS Yin S, Tümer TO, Maeding D, Mainprize J, Mawdsley G, Yaffe MJ, Gordon EE, Hamilton WJ. Direct conversion CdZnTe and CdTe detectors for digital mammography. IEEE Trans Nucl Sci. 2002;49:176–81.CrossRefADS
63.
go back to reference Mainprize JG, Ford NL, Yin S, Gordon EE, Hamilton WJ, Tümer TO, Yaffe MJ. A CdZnTe slot-scanned detector for digital mammography. Med Phys. 2002;29:2767–81.CrossRef Mainprize JG, Ford NL, Yin S, Gordon EE, Hamilton WJ, Tümer TO, Yaffe MJ. A CdZnTe slot-scanned detector for digital mammography. Med Phys. 2002;29:2767–81.CrossRef
64.
go back to reference Hellier K, Benard E, Scott CC, Karim KS, Abbaszadeh S. Recent progress in the development of a-se/CMOS sensors for X-ray detection. Quantum Beam Sci. 2021;5:29.CrossRefADS Hellier K, Benard E, Scott CC, Karim KS, Abbaszadeh S. Recent progress in the development of a-se/CMOS sensors for X-ray detection. Quantum Beam Sci. 2021;5:29.CrossRefADS
65.
go back to reference Farrier M, Achterkirchen TG, Weckler GP, Mrozack A. Very large area CMOS active-pixel sensor for digital radiography. IEEE Trans Electron Devices. 2009;56:2623–31.CrossRefADS Farrier M, Achterkirchen TG, Weckler GP, Mrozack A. Very large area CMOS active-pixel sensor for digital radiography. IEEE Trans Electron Devices. 2009;56:2623–31.CrossRefADS
66.
go back to reference Hartsough NE, Iwanczyk JS, Nygard E, Malakhov N, Barber WC, Gandhi T. Polycrystalline mercuric iodide films on CMOS readout arrays. IEEE Trans Nucl Sci. 2009;56:1810–6.CrossRefADS Hartsough NE, Iwanczyk JS, Nygard E, Malakhov N, Barber WC, Gandhi T. Polycrystalline mercuric iodide films on CMOS readout arrays. IEEE Trans Nucl Sci. 2009;56:1810–6.CrossRefADS
67.
go back to reference Konstantinidis AC, Szafraniec MB, Speller RD, Olivo A. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl Instr Methods Phys Res A. 2012;689:12–21.CrossRefADS Konstantinidis AC, Szafraniec MB, Speller RD, Olivo A. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl Instr Methods Phys Res A. 2012;689:12–21.CrossRefADS
68.
go back to reference Yaffe MJ. Ch. 2: Detectors for digital mammography. In: Bick U, Diekmann F, editors. Digital mammography. Medical radiology. Berlin, Heidelberg: Springer; 2010. Yaffe MJ. Ch. 2: Detectors for digital mammography. In: Bick U, Diekmann F, editors. Digital mammography. Medical radiology. Berlin, Heidelberg: Springer; 2010.
69.
go back to reference Kasap SO, Koughia KV, Fogal B, Belev G, Johanson RE. The influence of deposition conditions and alloying on the electronic properties of amorphous selenium. Semiconductors. 2003;37:789–94.CrossRefADS Kasap SO, Koughia KV, Fogal B, Belev G, Johanson RE. The influence of deposition conditions and alloying on the electronic properties of amorphous selenium. Semiconductors. 2003;37:789–94.CrossRefADS
70.
go back to reference Kasap SO. Doped and stabilized amorphous selenium single and multilayer photoconductive layers for X-ray imaging detector applications. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Chichester: Wiley; 2022. p. 715–80.CrossRef Kasap SO. Doped and stabilized amorphous selenium single and multilayer photoconductive layers for X-ray imaging detector applications. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Chichester: Wiley; 2022. p. 715–80.CrossRef
71.
go back to reference Mahmood SA, Kabir MZ, Tousignant O, Mani H, Greenspan J, Botka P. Dark current in multilayer amorphous selenium X-ray imaging detectors. Appl Phys Lett. 2008;92:223506.CrossRefADS Mahmood SA, Kabir MZ, Tousignant O, Mani H, Greenspan J, Botka P. Dark current in multilayer amorphous selenium X-ray imaging detectors. Appl Phys Lett. 2008;92:223506.CrossRefADS
72.
go back to reference Polischuk BT, Jean A. Multilayer plate for X-ray imaging and method of producing same. US Patent 5,880,472; 1999. Polischuk BT, Jean A. Multilayer plate for X-ray imaging and method of producing same. US Patent 5,880,472; 1999.
73.
go back to reference Frey JB, Belev G, Tousignant O, Mani H, Laperriere L, Kasap SO. Dark current in multilayer stabilized amorphous selenium based photoconductive X-ray detectors. J Appl Phys. 2012;112:014502.CrossRefADS Frey JB, Belev G, Tousignant O, Mani H, Laperriere L, Kasap SO. Dark current in multilayer stabilized amorphous selenium based photoconductive X-ray detectors. J Appl Phys. 2012;112:014502.CrossRefADS
74.
go back to reference Frey JB, Sadasivam K, Belev G, Mani H, Laperriere L, Kasap SO. Dark current–voltage characteristics of vacuum deposited multilayer amorphous selenium-alloy detectors and the effect of X-ray irradiation. J Vac Sci Technol A. 2019;37:061501.CrossRef Frey JB, Sadasivam K, Belev G, Mani H, Laperriere L, Kasap SO. Dark current–voltage characteristics of vacuum deposited multilayer amorphous selenium-alloy detectors and the effect of X-ray irradiation. J Vac Sci Technol A. 2019;37:061501.CrossRef
75.
go back to reference Matsuura N, Zhao W, Huang Z, Rowlands JA. Digital radiology using active matrix readout: amplified pixels for fluoroscopy. Med Phys. 1999;26:672–81.CrossRef Matsuura N, Zhao W, Huang Z, Rowlands JA. Digital radiology using active matrix readout: amplified pixels for fluoroscopy. Med Phys. 1999;26:672–81.CrossRef
76.
go back to reference Pang G, Lee DL, Rowlands JA. Investigation of a direct conversion flat panel imager for portal imaging. Med Phys. 2001;28:2121–8.CrossRef Pang G, Lee DL, Rowlands JA. Investigation of a direct conversion flat panel imager for portal imaging. Med Phys. 2001;28:2121–8.CrossRef
77.
go back to reference Pang G, Rowlands JA. Development of high quantum efficiency flat panel detectors for portal imaging: intrinsic spatial resolution. Med Phys. 2002;29:2274–85.CrossRef Pang G, Rowlands JA. Development of high quantum efficiency flat panel detectors for portal imaging: intrinsic spatial resolution. Med Phys. 2002;29:2274–85.CrossRef
78.
go back to reference Zhao W, Ji W, Debrie A, Rowlands JA. Imaging performance of amorphous selenium based flat panel detectors for mammography: characterization of small area prototype detector. Med Phys. 2003;30:254–63.CrossRef Zhao W, Ji W, Debrie A, Rowlands JA. Imaging performance of amorphous selenium based flat panel detectors for mammography: characterization of small area prototype detector. Med Phys. 2003;30:254–63.CrossRef
79.
go back to reference Hunt DC, Tousignant O, Rowlands JA. Evaluation of the imaging properties of an amorphous selenium-based flat panel detector for digital fluoroscopy. Med Phys. 2004;31:1166–75.CrossRef Hunt DC, Tousignant O, Rowlands JA. Evaluation of the imaging properties of an amorphous selenium-based flat panel detector for digital fluoroscopy. Med Phys. 2004;31:1166–75.CrossRef
80.
go back to reference Zhao W, Hunt DC, Tanioka K, Rowlands JA. Amorphous selenium flat panel detectors for medical applications. Nucl Instr Methods Phys Res A. 2005;549:205–9.CrossRefADS Zhao W, Hunt DC, Tanioka K, Rowlands JA. Amorphous selenium flat panel detectors for medical applications. Nucl Instr Methods Phys Res A. 2005;549:205–9.CrossRefADS
81.
go back to reference Destefano N, Mulato M. Influence of multi-depositions on the final properties of thermally evaporated TlBr films. Nucl Instr Methods Phys Res A. 2010;624:114–7.CrossRefADS Destefano N, Mulato M. Influence of multi-depositions on the final properties of thermally evaporated TlBr films. Nucl Instr Methods Phys Res A. 2010;624:114–7.CrossRefADS
82.
go back to reference Bennett PR, Shah KS, Cirignano LJ, Klugerman MB, Moy LP, Squillante MR. Characterization of polycrystalline TlBr films for radiographic detectors. IEEE Trans Nuclear Sci. 1999;46:689–93.CrossRef Bennett PR, Shah KS, Cirignano LJ, Klugerman MB, Moy LP, Squillante MR. Characterization of polycrystalline TlBr films for radiographic detectors. IEEE Trans Nuclear Sci. 1999;46:689–93.CrossRef
83.
go back to reference Yun M, Cho S, Lee R, Jang G, Kim Y, Shin W, Nam S. Investigation of PbI2 film fabricated by a new sedimentation method as an X-ray conversion material. Jpn J Appl Phys. 2010;49:041801–5.CrossRefADS Yun M, Cho S, Lee R, Jang G, Kim Y, Shin W, Nam S. Investigation of PbI2 film fabricated by a new sedimentation method as an X-ray conversion material. Jpn J Appl Phys. 2010;49:041801–5.CrossRefADS
84.
go back to reference Shah KS, Street RA, Dmitriyev Y, Bennett P, Cirignano L, Klugermaa M, Squillante MR, Entine G. X-ray imaging with PbI2-based a-Si:H flat panel detectors. Nucl Instr Methods Phys Res A. 2001;458:140–7.CrossRefADS Shah KS, Street RA, Dmitriyev Y, Bennett P, Cirignano L, Klugermaa M, Squillante MR, Entine G. X-ray imaging with PbI2-based a-Si:H flat panel detectors. Nucl Instr Methods Phys Res A. 2001;458:140–7.CrossRefADS
85.
go back to reference Zhu X, Sun H, Yang D, Wangyang P, X. Gao: Comparison of electrical properties of X-ray detector based on PbI2 crystal with different bias electric field configuration. J Mater Sci Mater Electron. 2016;27:11798–803.CrossRef Zhu X, Sun H, Yang D, Wangyang P, X. Gao: Comparison of electrical properties of X-ray detector based on PbI2 crystal with different bias electric field configuration. J Mater Sci Mater Electron. 2016;27:11798–803.CrossRef
86.
go back to reference Street RA, Ready SE, Lemmi F, Shah KS, Bennett P, Dmitriyev Y. Electronic transport in polycrystalline Pbl2 films. J Appl Phys. 1999;86:2660–7.CrossRefADS Street RA, Ready SE, Lemmi F, Shah KS, Bennett P, Dmitriyev Y. Electronic transport in polycrystalline Pbl2 films. J Appl Phys. 1999;86:2660–7.CrossRefADS
87.
go back to reference Zhao Q, Antonuk LE, El-Mohri Y, Wang Y, Du H, Sawant A, Su Z, Yamamoto J. Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging. Med Phys. 2010;37:2738–48.CrossRef Zhao Q, Antonuk LE, El-Mohri Y, Wang Y, Du H, Sawant A, Su Z, Yamamoto J. Performance evaluation of polycrystalline HgI2 photoconductors for radiation therapy imaging. Med Phys. 2010;37:2738–48.CrossRef
88.
go back to reference Du H, Antonuk LE, El-Mohri Y, Zhao Q, Su Z, Yamamoto J, Wang Y. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2. Phys Med Biol. 2010;53:1325–51.CrossRef Du H, Antonuk LE, El-Mohri Y, Zhao Q, Su Z, Yamamoto J, Wang Y. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2. Phys Med Biol. 2010;53:1325–51.CrossRef
90.
go back to reference Street RA, Ready SE, van Schuylenbergh K, Ho J, Boyec JB, Nylen P, Shah K, Melekhov L. Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J Appl Phys. 2002;91:3345–55.CrossRefADS Street RA, Ready SE, van Schuylenbergh K, Ho J, Boyec JB, Nylen P, Shah K, Melekhov L. Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J Appl Phys. 2002;91:3345–55.CrossRefADS
91.
go back to reference Park JC, Jeon PJ, Kim JS, Im S. Small-dose-sensitive X-ray image pixel with HgI2 photoconductor and amorphous oxide thin-film transistor. Adv Healthc Mater. 2015;4:51–7.CrossRef Park JC, Jeon PJ, Kim JS, Im S. Small-dose-sensitive X-ray image pixel with HgI2 photoconductor and amorphous oxide thin-film transistor. Adv Healthc Mater. 2015;4:51–7.CrossRef
92.
go back to reference Lee S, Kim JS, Ko KR, Lee GH, Lee DJ, Kim DW, et al. Direct thermal growth of large scale Cl-doped CdTe film for low voltage high resolution X-ray image sensor. Sci Rep. 2018;8:4810.ADS Lee S, Kim JS, Ko KR, Lee GH, Lee DJ, Kim DW, et al. Direct thermal growth of large scale Cl-doped CdTe film for low voltage high resolution X-ray image sensor. Sci Rep. 2018;8:4810.ADS
94.
go back to reference Tokuda S, Kishihara H, Adachi S, T. Sato: preparation and characterization of polycrystalline CdZnTe films for large-area, high-sensitivity X-ray detectors. J Mater Sci Mater Electron. 2004;15:1–8.CrossRef Tokuda S, Kishihara H, Adachi S, T. Sato: preparation and characterization of polycrystalline CdZnTe films for large-area, high-sensitivity X-ray detectors. J Mater Sci Mater Electron. 2004;15:1–8.CrossRef
95.
go back to reference Simon M, Ford RA, Franklin AR, Grabowski SP, Mensor B, Much G, et al. Analysis of lead oxide (PbO) layers for direct conversion X-ray detection. IEEE Trans Nucl Sci. 2005;52:2035–40.CrossRefADS Simon M, Ford RA, Franklin AR, Grabowski SP, Mensor B, Much G, et al. Analysis of lead oxide (PbO) layers for direct conversion X-ray detection. IEEE Trans Nucl Sci. 2005;52:2035–40.CrossRefADS
96.
go back to reference Semeniuk O, Grynko O, Decrescenzo G, Juska G, Wang K, Reznik A. Characterization of polycrystalline lead oxide for application in direct conversion X-ray detectors. Sci Rep. 2017;7:8659.CrossRefADS Semeniuk O, Grynko O, Decrescenzo G, Juska G, Wang K, Reznik A. Characterization of polycrystalline lead oxide for application in direct conversion X-ray detectors. Sci Rep. 2017;7:8659.CrossRefADS
97.
go back to reference Reznik A, Semeniuk O. Ch. 7: Lead oxide as material of choice for direct conversion detectors. In: Ray A, editor. Oxide electronics. Chichester: Wiley; 2021. Reznik A, Semeniuk O. Ch. 7: Lead oxide as material of choice for direct conversion detectors. In: Ray A, editor. Oxide electronics. Chichester: Wiley; 2021.
98.
go back to reference Grynko O, Reznik A. Ch. 17: Progress in Lead oxide X-ray photoconductive layers. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Chichester: Wiley; 2022. Grynko O, Reznik A. Ch. 17: Progress in Lead oxide X-ray photoconductive layers. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Chichester: Wiley; 2022.
99.
go back to reference Gill HS, Elshahat B, Kokila A, Li L, Mosurkald R, Zygmanskie P, Sajob E, Kumar J. Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Phys Med. 2018;5:20–3.CrossRef Gill HS, Elshahat B, Kokila A, Li L, Mosurkald R, Zygmanskie P, Sajob E, Kumar J. Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Phys Med. 2018;5:20–3.CrossRef
100.
go back to reference Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt GJ, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics. 2015;9:444–9.CrossRefADS Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt GJ, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics. 2015;9:444–9.CrossRefADS
101.
go back to reference Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H, Wang C, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics. 2016;10:333–9.CrossRefADS Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H, Wang C, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics. 2016;10:333–9.CrossRefADS
102.
go back to reference Kim Y, Kim KH, Son DY, Jeong DN, Seo JY, Choi YS, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature. 2017;550:88–92.CrossRefADS Kim Y, Kim KH, Son DY, Jeong DN, Seo JY, Choi YS, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature. 2017;550:88–92.CrossRefADS
103.
go back to reference Lin Q. Metal halide perovskites for photodetection. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Wiley; 2022. p. 781–806.CrossRef Lin Q. Metal halide perovskites for photodetection. In: Kasap SO, editor. Photoconductivity and photoconductive materials. Wiley; 2022. p. 781–806.CrossRef
104.
go back to reference Shrestha S, Fischer R, Matt G, Feldner P, Michel T, Osvet A, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photonics. 2017;11:436–40.CrossRefADS Shrestha S, Fischer R, Matt G, Feldner P, Michel T, Osvet A, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photonics. 2017;11:436–40.CrossRefADS
105.
go back to reference Li Y, Adeagbo E, Koughia C, Simonson B, Pettipas RD, Mishchenko A, et al. Direct conversion X-ray detectors with 70 pA cm−2 dark currents coated from an alcohol-based perovskite ink. J Mater Chem C. 2022;10:1228–35.CrossRef Li Y, Adeagbo E, Koughia C, Simonson B, Pettipas RD, Mishchenko A, et al. Direct conversion X-ray detectors with 70 pA cm−2 dark currents coated from an alcohol-based perovskite ink. J Mater Chem C. 2022;10:1228–35.CrossRef
106.
107.
go back to reference Deumel S, Breemen A, Gelinck G, Peeters B, et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat Electron. 2021;4:681–8.CrossRef Deumel S, Breemen A, Gelinck G, Peeters B, et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat Electron. 2021;4:681–8.CrossRef
108.
go back to reference Wang H, Kim DH. Perovskite-based photodetectors: materials and devices. Chem Soc Rev. 2017;46:5204–36.CrossRef Wang H, Kim DH. Perovskite-based photodetectors: materials and devices. Chem Soc Rev. 2017;46:5204–36.CrossRef
109.
go back to reference Greuter F, Blatter G. Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond Sci Technol. 1990;5:111.CrossRefADS Greuter F, Blatter G. Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond Sci Technol. 1990;5:111.CrossRefADS
110.
go back to reference Chowdhury MH, Kabir MZ. Electrical properties of grain boundaries in polycrystalline materials under intrinsic or low doping. J Phys D Appl Phys. 2011;44:015102.CrossRefADS Chowdhury MH, Kabir MZ. Electrical properties of grain boundaries in polycrystalline materials under intrinsic or low doping. J Phys D Appl Phys. 2011;44:015102.CrossRefADS
111.
go back to reference Sellin PJ. Thick film compound semiconductors for X-ray imaging applications. Nucl Instr Methods Phys Res A. 2006;563:1–8.CrossRefADS Sellin PJ. Thick film compound semiconductors for X-ray imaging applications. Nucl Instr Methods Phys Res A. 2006;563:1–8.CrossRefADS
112.
go back to reference Kasap SO. X-ray sensitivity of photoconductors: application to stabilized a-Se. J Phys D Appl Phys. 2000;33:2853–65.CrossRefADS Kasap SO. X-ray sensitivity of photoconductors: application to stabilized a-Se. J Phys D Appl Phys. 2000;33:2853–65.CrossRefADS
113.
go back to reference Que W, Rowlands JA. X-ray imaging using amorphous selenium: inherent spatial resolution. Med Phys. 1995;22:365–74.CrossRef Que W, Rowlands JA. X-ray imaging using amorphous selenium: inherent spatial resolution. Med Phys. 1995;22:365–74.CrossRef
114.
go back to reference Panneerselvam D, Kabir MZ. Evaluation of organic perovskite photoconductors for direct conversion X-ray imaging detectors. J Mater Sci Mater Electron. 2017;28:7083–90.CrossRef Panneerselvam D, Kabir MZ. Evaluation of organic perovskite photoconductors for direct conversion X-ray imaging detectors. J Mater Sci Mater Electron. 2017;28:7083–90.CrossRef
115.
go back to reference Kabir MZ, Kasap SO, Zhao W, J.A. Rowlands: direct conversion X-ray sensors: sensitivity, DQE & MTF. IEE Proc. (CDS: Special Issue on Amorphous and Microcrystalline Semiconductors). 2003;150:258–66. Kabir MZ, Kasap SO, Zhao W, J.A. Rowlands: direct conversion X-ray sensors: sensitivity, DQE & MTF. IEE Proc. (CDS: Special Issue on Amorphous and Microcrystalline Semiconductors). 2003;150:258–66.
116.
go back to reference Kabir MZ, Rahman MW, Shen WY. Modelling of DQE of direct conversion X-ray imaging detectors incorporating charge carrier trapping and K-fluorescence. IET Circuits Devices Syst. 2011;5:222–31.CrossRef Kabir MZ, Rahman MW, Shen WY. Modelling of DQE of direct conversion X-ray imaging detectors incorporating charge carrier trapping and K-fluorescence. IET Circuits Devices Syst. 2011;5:222–31.CrossRef
118.
go back to reference Pang G, Zhao W, Rowlands JA. Digital radiology using active matrix readout of amorphous selenium: geometric and effective fill factors. Med Phys. 1998;25:1636–46.CrossRef Pang G, Zhao W, Rowlands JA. Digital radiology using active matrix readout of amorphous selenium: geometric and effective fill factors. Med Phys. 1998;25:1636–46.CrossRef
119.
go back to reference Kabir MZ, Kasap SO. Modulation transfer function of photoconductive X-ray image detectors: effects of charge carrier trapping. J Phys D Appl Phys. 2003;36:2352–8.CrossRefADS Kabir MZ, Kasap SO. Modulation transfer function of photoconductive X-ray image detectors: effects of charge carrier trapping. J Phys D Appl Phys. 2003;36:2352–8.CrossRefADS
120.
go back to reference Zhao W, Rowlands JA. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Med Phys. 1997;24:1819–33.CrossRef Zhao W, Rowlands JA. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Med Phys. 1997;24:1819–33.CrossRef
121.
go back to reference Kabir MZ. Effects of blocking layers on image resolution in multilayer photoconductive imaging detectors: application to amorphous selenium X-ray detectors. Radiation 2022;2:91–99.CrossRef Kabir MZ. Effects of blocking layers on image resolution in multilayer photoconductive imaging detectors: application to amorphous selenium X-ray detectors. Radiation 2022;2:91–99.CrossRef
122.
go back to reference Rabbani M, Shaw R, Van Metter R. Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms. J Opt Soc Am A. 1987;4:895–901.CrossRefADS Rabbani M, Shaw R, Van Metter R. Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms. J Opt Soc Am A. 1987;4:895–901.CrossRefADS
123.
go back to reference Cunningham I. Ch. 2: Applied linear systems theory. In: Beutel J, Kundel HL, Van Metter RL, editors. Handbook of imaging, vol. 1. Bellingham: SPIE Press; 2000. Cunningham I. Ch. 2: Applied linear systems theory. In: Beutel J, Kundel HL, Van Metter RL, editors. Handbook of imaging, vol. 1. Bellingham: SPIE Press; 2000.
124.
go back to reference Kabir MZ, Kasap SO. DQE of photoconductive X-ray image detectors: application to a-se. J Phys D Appl Phys. 2002;35:2735–43.CrossRefADS Kabir MZ, Kasap SO. DQE of photoconductive X-ray image detectors: application to a-se. J Phys D Appl Phys. 2002;35:2735–43.CrossRefADS
125.
go back to reference Cunningham IA. Linear-systems Modeling of parallel cascaded Stochastic processes: the NPS of radiographic screens with reabsorption of characteristic X radiation. Proc SPIE. 1998;3336:220–30.CrossRefADS Cunningham IA. Linear-systems Modeling of parallel cascaded Stochastic processes: the NPS of radiographic screens with reabsorption of characteristic X radiation. Proc SPIE. 1998;3336:220–30.CrossRefADS
126.
go back to reference Sengupta A, Zhao C, Konstantinidis A, Kanicki J. Cascaded systems analysis of a-se/a-Si and a-InGaZnO TFT passive and active pixel sensors for Tomosynthesis. Phys Med Biol. 2019;64:025012.CrossRef Sengupta A, Zhao C, Konstantinidis A, Kanicki J. Cascaded systems analysis of a-se/a-Si and a-InGaZnO TFT passive and active pixel sensors for Tomosynthesis. Phys Med Biol. 2019;64:025012.CrossRef
127.
go back to reference Arnab SM, Kabir MZ. Impact of charge carrier trapping on amorphous selenium direct conversion avalanche X-ray detectors. J Appl Phys. 2017;112:134502.CrossRefADS Arnab SM, Kabir MZ. Impact of charge carrier trapping on amorphous selenium direct conversion avalanche X-ray detectors. J Appl Phys. 2017;112:134502.CrossRefADS
128.
go back to reference Parsafar A, Scott CC, El-Falou A, Levine PM, Karim KS. Direct-conversion CMOS X-ray imager with 5.6 μm × 6.25 μm pixels. IEEE Trans Electron Devices. 2015;36(5):481–3.CrossRef Parsafar A, Scott CC, El-Falou A, Levine PM, Karim KS. Direct-conversion CMOS X-ray imager with 5.6 μm × 6.25 μm pixels. IEEE Trans Electron Devices. 2015;36(5):481–3.CrossRef
129.
go back to reference Arvanitis CD, Bohndiek SE, Royle G, Blue A, Liang HX, Clark A, et al. Empirical electro-optical and X-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution X-ray medical imaging. Med Phys. 2007;34(12):4612–25.CrossRef Arvanitis CD, Bohndiek SE, Royle G, Blue A, Liang HX, Clark A, et al. Empirical electro-optical and X-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution X-ray medical imaging. Med Phys. 2007;34(12):4612–25.CrossRef
130.
go back to reference Hunt DC, Kenkichi Tanioka JA, Rowlands. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of depth dependent avalanche noise. Med Phys. 2007;34(3):976–86.CrossRef Hunt DC, Kenkichi Tanioka JA, Rowlands. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of depth dependent avalanche noise. Med Phys. 2007;34(3):976–86.CrossRef
131.
go back to reference Scheuermann JR, Miranda Y, Liu H, Zhao W. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design. J Appl Phys. 2016;119:024508.CrossRefADS Scheuermann JR, Miranda Y, Liu H, Zhao W. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design. J Appl Phys. 2016;119:024508.CrossRefADS
132.
go back to reference Arnab SM, Kabir MZ. Impact of Lubberts effect on amorphous selenium indirect conversion avalanche detector for medical X-ray imaging. IEEE Trans Radiat Plasma Med Sci. 2017;1(3):221–8.CrossRef Arnab SM, Kabir MZ. Impact of Lubberts effect on amorphous selenium indirect conversion avalanche detector for medical X-ray imaging. IEEE Trans Radiat Plasma Med Sci. 2017;1(3):221–8.CrossRef
133.
go back to reference Imura S, Mineo K, Honda Y, Arai T, Miyakawa K, Watabe T, Kubota M, Nishimoto K, Sugiyama M, Nanba M. Enhanced image sensing with avalanche multiplication in hybrid structure of crystalline selenium photoconversion layer and CMOSFETs. Sci Rep. 2020;10:21888.CrossRefADS Imura S, Mineo K, Honda Y, Arai T, Miyakawa K, Watabe T, Kubota M, Nishimoto K, Sugiyama M, Nanba M. Enhanced image sensing with avalanche multiplication in hybrid structure of crystalline selenium photoconversion layer and CMOSFETs. Sci Rep. 2020;10:21888.CrossRefADS
134.
go back to reference Arnab SM, Kabir MZ. A novel amorphous selenium direct conversion avalanche detector structure for low dose medical X-ray imaging. IEEE Trans Radiat Plasma Med Sci. 2020;4:319–26.CrossRef Arnab SM, Kabir MZ. A novel amorphous selenium direct conversion avalanche detector structure for low dose medical X-ray imaging. IEEE Trans Radiat Plasma Med Sci. 2020;4:319–26.CrossRef
135.
go back to reference Matsuura N, Zhao W, Huang Z, Rowlands JA. Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy. Med Phys. 1999;26:672–81.CrossRef Matsuura N, Zhao W, Huang Z, Rowlands JA. Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy. Med Phys. 1999;26:672–81.CrossRef
136.
go back to reference Karim K, Nathan A, Rowlands JA. Amorphous silicon active pixel sensor readout circuit for digital imaging. IEEE Trans Electron Devices. 2003;50:200–8.CrossRefADS Karim K, Nathan A, Rowlands JA. Amorphous silicon active pixel sensor readout circuit for digital imaging. IEEE Trans Electron Devices. 2003;50:200–8.CrossRefADS
137.
go back to reference Koniczek M, Antonuk LE, El-Mohri Y, Liang AK, Zhao Q. Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors. Med Phys. 2017;39:3491–503.CrossRef Koniczek M, Antonuk LE, El-Mohri Y, Liang AK, Zhao Q. Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors. Med Phys. 2017;39:3491–503.CrossRef
138.
go back to reference Zha C, Kanicki J. Amorphous in-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis. Med Phys. 2014;41:091902.CrossRef Zha C, Kanicki J. Amorphous in-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis. Med Phys. 2014;41:091902.CrossRef
139.
go back to reference Bogaerts J, Bart D, Guy M, Dirk U. Total dose and displacement damage effects in a radiation-hardened CMOS APS. IEEE Trans Electron Devices. 2003;50(1):84–90.CrossRefADS Bogaerts J, Bart D, Guy M, Dirk U. Total dose and displacement damage effects in a radiation-hardened CMOS APS. IEEE Trans Electron Devices. 2003;50(1):84–90.CrossRefADS
140.
go back to reference Loustauneau V, Bissonnettea M, Cadieuxa S, Hansroula M, Massona E, Savarda S, Polischuk B, Lehtimaki M. Proc SPIE. 2003;5030:1011.ADS Loustauneau V, Bissonnettea M, Cadieuxa S, Hansroula M, Massona E, Savarda S, Polischuk B, Lehtimaki M. Proc SPIE. 2003;5030:1011.ADS
141.
go back to reference Mahmood SA, Kabir MZ, Tousignant O, Greenspan J. Investigation of ghosting recovery mechanisms in selenium X-ray detector structures for mammography. IEEE Trans Nucl Sci. 2012;59:597.CrossRefADS Mahmood SA, Kabir MZ, Tousignant O, Greenspan J. Investigation of ghosting recovery mechanisms in selenium X-ray detector structures for mammography. IEEE Trans Nucl Sci. 2012;59:597.CrossRefADS
142.
go back to reference Siddiquee S, Kabir MZ. Modeling of photocurrent and lag signals in amorphous selenium X-ray detectors. J Vac Sci Tech A. 2015;33:041514.CrossRef Siddiquee S, Kabir MZ. Modeling of photocurrent and lag signals in amorphous selenium X-ray detectors. J Vac Sci Tech A. 2015;33:041514.CrossRef
144.
go back to reference Manouchehri F, Kabir MZ, Tousignant O, Mani H, Devabhaktuni VK. Time and exposure dependent X-ray sensitivity in multilayer amorphous selenium detectors. J Phys D Appl Phys. 2008;41:235106.CrossRefADS Manouchehri F, Kabir MZ, Tousignant O, Mani H, Devabhaktuni VK. Time and exposure dependent X-ray sensitivity in multilayer amorphous selenium detectors. J Phys D Appl Phys. 2008;41:235106.CrossRefADS
145.
go back to reference Kabir MZ, Chowdhury L, DeCrescenzo G, Tousignant O, Kasap SO, Rowlands JA. Effect of repeated X-ray exposure on the resolution of amorphous selenium based X -ray imagers. Med Phys. 2010;37:1339–49.CrossRef Kabir MZ, Chowdhury L, DeCrescenzo G, Tousignant O, Kasap SO, Rowlands JA. Effect of repeated X-ray exposure on the resolution of amorphous selenium based X -ray imagers. Med Phys. 2010;37:1339–49.CrossRef
146.
go back to reference Kasap SO, Yang J, Simonson B, Adeagbo E, Walornyj M, Belev G, Bradley MP, Johanson RE. Effects of X-ray irradiation on charge transport and charge collection efficiency in stabilized a-Se photoconductors. J Appl Phys. 2020;127:084502.CrossRefADS Kasap SO, Yang J, Simonson B, Adeagbo E, Walornyj M, Belev G, Bradley MP, Johanson RE. Effects of X-ray irradiation on charge transport and charge collection efficiency in stabilized a-Se photoconductors. J Appl Phys. 2020;127:084502.CrossRefADS
147.
go back to reference Simonson B, Johanson RE, Kasap SO. Effects of high-dose X-ray irradiation on the hole lifetime in vacuum-deposited Stabilized a-Se photoconductive films: implications to the quality control of a-Se used in X-ray detectors. IEEE Trans Nucl Sci. 2020;67:2445.CrossRefADS Simonson B, Johanson RE, Kasap SO. Effects of high-dose X-ray irradiation on the hole lifetime in vacuum-deposited Stabilized a-Se photoconductive films: implications to the quality control of a-Se used in X-ray detectors. IEEE Trans Nucl Sci. 2020;67:2445.CrossRefADS
148.
go back to reference Hoq A, Panneerselvam D, Kabir MZ. Sensitivity reduction mechanisms in organic perovskite X-ray detectors. J Mater Sci. 2021;32:16824. Hoq A, Panneerselvam D, Kabir MZ. Sensitivity reduction mechanisms in organic perovskite X-ray detectors. J Mater Sci. 2021;32:16824.
149.
go back to reference McGregor DS, He Z, Seifert HA, Wehe DK, Rojeski RA. Single charge carrier type sensing with a parallel strip pseudo-Frisch-grid CdZnTe semiconductor radiation detector. Appl Phys Lett. 1998;72(7):792–5.CrossRefADS McGregor DS, He Z, Seifert HA, Wehe DK, Rojeski RA. Single charge carrier type sensing with a parallel strip pseudo-Frisch-grid CdZnTe semiconductor radiation detector. Appl Phys Lett. 1998;72(7):792–5.CrossRefADS
150.
go back to reference Luke PN. Unipolar charge sensing with coplanar electrodes – application to semiconductor detectors. IEEE Trans Nucl Sci. 1995;NS-42:207–13.CrossRefADS Luke PN. Unipolar charge sensing with coplanar electrodes – application to semiconductor detectors. IEEE Trans Nucl Sci. 1995;NS-42:207–13.CrossRefADS
151.
go back to reference Barrett HH, Eskin JD, Barber HB. Charge transport in arrays of semiconductor gamma-ray detectors. Phys Rev Lett. 1995;75:156–9.CrossRefADS Barrett HH, Eskin JD, Barber HB. Charge transport in arrays of semiconductor gamma-ray detectors. Phys Rev Lett. 1995;75:156–9.CrossRefADS
Metadata
Title
Basic Principles of Solid-State X-Ray Radiation Detector Operation
Author
M. Zahangir Kabir
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_1

Premium Partners