Skip to main content
Top
Published in: Glass and Ceramics 3-4/2013

01-07-2013

Broadband luminescence in nanostructured glasses

Authors: N. V. Golubev, E. S. Ignat’eva, R. Lorenzi, A. Paleari, V. N. Sigaev

Published in: Glass and Ceramics | Issue 3-4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanism of broadband near-IR luminescence in the process of nanostructuring of Ni2+-activated glasses in the system R2O–Ga2O3–SiO2–GeO2 (R = Li, Na) at the initial stage of phase separation is described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. N. Sigaev, S. Yu. Stefanovich, B. Champagnon, et al., “Amorphous nanostructuring in potassium niobium silicate glasses by SANS and SHG: a new mechanism for second-order optical non-linearity of glass,” J. Non-Cryst. Solids, 306, 238–248 (2002).CrossRef V. N. Sigaev, S. Yu. Stefanovich, B. Champagnon, et al., “Amorphous nanostructuring in potassium niobium silicate glasses by SANS and SHG: a new mechanism for second-order optical non-linearity of glass,” J. Non-Cryst. Solids, 306, 238–248 (2002).CrossRef
2.
go back to reference Y. Teng, K. Sharafudeen, Sh. Zhou, and J. Qui, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn., 120, 458–466 (2012).CrossRef Y. Teng, K. Sharafudeen, Sh. Zhou, and J. Qui, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn., 120, 458–466 (2012).CrossRef
3.
go back to reference G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc., 82, 5–16 (1999).CrossRef G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc., 82, 5–16 (1999).CrossRef
4.
go back to reference T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO–Al2O3–SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids, 351, 2304–2309 (2005).CrossRef T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO–Al2O3–SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids, 351, 2304–2309 (2005).CrossRef
5.
go back to reference B. Wu, Sh. Zhou, J. Qiu, et al. “Transparent Ni2+-doped MgO–Al2O3–SiO2 glass-ceramics with broadband infrared luminescence,” Chin. Phys. Lett., 23, 2778 (2006).CrossRef B. Wu, Sh. Zhou, J. Qiu, et al. “Transparent Ni2+-doped MgO–Al2O3–SiO2 glass-ceramics with broadband infrared luminescence,” Chin. Phys. Lett., 23, 2778 (2006).CrossRef
6.
go back to reference S. Zhou, N. Jiang, H. Dong, et al., “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology, 19, 015702 (2008).CrossRef S. Zhou, N. Jiang, H. Dong, et al., “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology, 19, 015702 (2008).CrossRef
7.
go back to reference T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O–Ga2O3–SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett., 86, 131903–131906 (2005).CrossRef T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O–Ga2O3–SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett., 86, 131903–131906 (2005).CrossRef
8.
go back to reference T. Suzuki, Y. Arai, and Y. Ohishi, “Crystallization processes of Li2O–Ga2O3–SiO2–NiO system glasses,” J. Non-Cryst. Solids, 353, 36–43 (2007).CrossRef T. Suzuki, Y. Arai, and Y. Ohishi, “Crystallization processes of Li2O–Ga2O3–SiO2–NiO system glasses,” J. Non-Cryst. Solids, 353, 36–43 (2007).CrossRef
9.
go back to reference T. Suzuki, Y. Arai, and Y. Ohishi, “Quantum efficiencies of nearinfrared emission from Ni2+-doped glass-ceramics,” J. Luminescence, 128, 603–609 (2008).CrossRef T. Suzuki, Y. Arai, and Y. Ohishi, “Quantum efficiencies of nearinfrared emission from Ni2+-doped glass-ceramics,” J. Luminescence, 128, 603–609 (2008).CrossRef
10.
go back to reference B. Wu, J. Ruan, J. Ren, et al., “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett., 92, 041110 (2008).CrossRef B. Wu, J. Ruan, J. Ren, et al., “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett., 92, 041110 (2008).CrossRef
11.
go back to reference S. Zhou, G. Feng, B. Wu, et al., “Intense Infrared luminescence in transparent glass-ceramics containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C, 111, 7335–7338 (2007).CrossRef S. Zhou, G. Feng, B. Wu, et al., “Intense Infrared luminescence in transparent glass-ceramics containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C, 111, 7335–7338 (2007).CrossRef
12.
go back to reference N. V. Golubev, V. I. Savinkov, E. S. Ignat’eva, et al., “Nickel activated gallium-containing glasses, luminescing in the near-IR range,” Fiz. Khim. Stekla, 36, 835–842 (2010). N. V. Golubev, V. I. Savinkov, E. S. Ignat’eva, et al., “Nickel activated gallium-containing glasses, luminescing in the near-IR range,” Fiz. Khim. Stekla, 36, 835–842 (2010).
13.
go back to reference V. N. Sigaev, N. V. Golubev. E. S. Ignat’eva, et al., “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology, 23, 015708–015715 (2012).CrossRef V. N. Sigaev, N. V. Golubev. E. S. Ignat’eva, et al., “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology, 23, 015708–015715 (2012).CrossRef
14.
go back to reference V. M. Mashinsky, N. M. Karatun, V. A. Bogatyrev, et al., “Microfluorescence analysis of nanostructuring inhomogeneity in optical fibers with embedded gallium oxide nanocrystals,” Microsc. Microanal., 18, 259–265 (2012). V. M. Mashinsky, N. M. Karatun, V. A. Bogatyrev, et al., “Microfluorescence analysis of nanostructuring inhomogeneity in optical fibers with embedded gallium oxide nanocrystals,” Microsc. Microanal., 18, 259–265 (2012).
15.
go back to reference V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, et al., “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale, 5, 299 (2013).CrossRef V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, et al., “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale, 5, 299 (2013).CrossRef
16.
go back to reference B. Wu, S. Zhou, J. Ren, et al., “Enhanced luminescence from transparent Ni2+-doped MgO–Al2O3–SiO2 glass ceramics by Ga2O3 addition,” J. Phys. Chem. Solids, 69, 891–894 (2008).CrossRef B. Wu, S. Zhou, J. Ren, et al., “Enhanced luminescence from transparent Ni2+-doped MgO–Al2O3–SiO2 glass ceramics by Ga2O3 addition,” J. Phys. Chem. Solids, 69, 891–894 (2008).CrossRef
17.
go back to reference L. A. Reznitskii, Calorimetry of Solids (Structural, Magnetic, Electronic Transformations) [in Russian], Izd. MGU, Moscow (1981). L. A. Reznitskii, Calorimetry of Solids (Structural, Magnetic, Electronic Transformations) [in Russian], Izd. MGU, Moscow (1981).
18.
go back to reference R. Moncorge, J. Thery, and D. Vivien, “Enhancement of fluorescence from octahedrally coordinated Ni2+ in LaMgAl11O19 materials by Al3+/Ga3+ ion substitution,” J. Luminescence, 43, 167–172 (1989).CrossRef R. Moncorge, J. Thery, and D. Vivien, “Enhancement of fluorescence from octahedrally coordinated Ni2+ in LaMgAl11O19 materials by Al3+/Ga3+ ion substitution,” J. Luminescence, 43, 167–172 (1989).CrossRef
19.
go back to reference T. Suzuki, G. S. Murugan, and Y. Ohishi, “Spectroscopic properties of a novel near-infrared tunable laser material Ni: MgGa2O4,” J. Luminescence, 113, 265–270 (2005).CrossRef T. Suzuki, G. S. Murugan, and Y. Ohishi, “Spectroscopic properties of a novel near-infrared tunable laser material Ni: MgGa2O4,” J. Luminescence, 113, 265–270 (2005).CrossRef
20.
go back to reference T. Wang, Sh. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc., 132, 9250–9252 (2010).CrossRef T. Wang, Sh. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc., 132, 9250–9252 (2010).CrossRef
21.
go back to reference S. K. Dubrovo and I. S. Lileev, “Glassy gallosilicates and their properties,” Zh. Prikl. Khim., 33, 1471–1476 (1960). S. K. Dubrovo and I. S. Lileev, “Glassy gallosilicates and their properties,” Zh. Prikl. Khim., 33, 1471–1476 (1960).
22.
go back to reference J. H. Campbell, T. I. Suratwala, C. B. Thorsness, et al., “Continuous melting of phosphate laser glasses,” J. Non-Cryst. Solids, 263–264, 342–357 (2000).CrossRef J. H. Campbell, T. I. Suratwala, C. B. Thorsness, et al., “Continuous melting of phosphate laser glasses,” J. Non-Cryst. Solids, 263–264, 342–357 (2000).CrossRef
23.
go back to reference M. K. Murphy and K. Emery, “Properties and structure of glasses in the system M2O–Ga2O3–GeO2 (M = Li, Na, K),” Phys. Chem. Glasses, 8, 26–29 (1967). M. K. Murphy and K. Emery, “Properties and structure of glasses in the system M2O–Ga2O3–GeO2 (M = Li, Na, K),” Phys. Chem. Glasses, 8, 26–29 (1967).
24.
go back to reference K. Tanaka, T. Mukai, Ts. Ishiham, et al., “Preparation and optical properties of transparent glass-ceramics containing cobalt (II) ions,” J. Am. Ceram. Soc., 76, 2839–2845 (1993).CrossRef K. Tanaka, T. Mukai, Ts. Ishiham, et al., “Preparation and optical properties of transparent glass-ceramics containing cobalt (II) ions,” J. Am. Ceram. Soc., 76, 2839–2845 (1993).CrossRef
25.
go back to reference N. S. Andreev, O. V. Mazurin, E. A. Porai-Koshits, et al., Liquation Phenomena in Glasses [in Russian], Nauka, Leningrad (1974). N. S. Andreev, O. V. Mazurin, E. A. Porai-Koshits, et al., Liquation Phenomena in Glasses [in Russian], Nauka, Leningrad (1974).
26.
go back to reference V. V. Golubkov, O. S. Dymshits, and A. A. Zhilin, “Effect of nickel oxide addition on phase decomposition in lithium-aluminum-silicate glasses containing titanium dioxide,” Fiz. Khim. Stekla, 10, 155–161 (1984). V. V. Golubkov, O. S. Dymshits, and A. A. Zhilin, “Effect of nickel oxide addition on phase decomposition in lithium-aluminum-silicate glasses containing titanium dioxide,” Fiz. Khim. Stekla, 10, 155–161 (1984).
27.
go back to reference V. V. Golubkov, O. S. Dymshits, and A. A. Zhilin, “On phase separation and crystallization of glasses in the system MgO–Al2O3–SiO2–TiO2,” Fiz. Khim. Stekla, 29, 359–377 (2003). V. V. Golubkov, O. S. Dymshits, and A. A. Zhilin, “On phase separation and crystallization of glasses in the system MgO–Al2O3–SiO2–TiO2,” Fiz. Khim. Stekla, 29, 359–377 (2003).
28.
go back to reference N. V. Kuleshova, V. G. Shcherbitsky, V. P. Mikhailov, et al., “Spectroscopy and excited-state absorption of Ni2+-doped MgA12O4,” J. Luminescence, 71, 265–268 (1997).CrossRef N. V. Kuleshova, V. G. Shcherbitsky, V. P. Mikhailov, et al., “Spectroscopy and excited-state absorption of Ni2+-doped MgA12O4,” J. Luminescence, 71, 265–268 (1997).CrossRef
Metadata
Title
Broadband luminescence in nanostructured glasses
Authors
N. V. Golubev
E. S. Ignat’eva
R. Lorenzi
A. Paleari
V. N. Sigaev
Publication date
01-07-2013
Publisher
Springer US
Published in
Glass and Ceramics / Issue 3-4/2013
Print ISSN: 0361-7610
Electronic ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-013-9524-7

Other articles of this Issue 3-4/2013

Glass and Ceramics 3-4/2013 Go to the issue

Premium Partners