Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2014

01-03-2014

Buckling Analysis of Chiral Single-Walled Carbon Nanotubes by Using the Nonlocal Timoshenko Beam Theory

Authors: M. Zidour, T. H. Daouadji, K. H. Benrahou, A. Tounsi, El A. Adda Bedia, L. Hadji

Published in: Mechanics of Composite Materials | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

On the basis of the nonlocal elasticity theory, the Timoshenko beam model is utilized to investigate the elastic buckling of chiral single-walled carbon nanotubes (SWCNTs) under axial compression. Based on the governing equations of the nonlocal Timoshenko beam model, an analytical solution for nonlocal critical buckling loads is obtained. The influence of a nonlocal small-scale coefficient, the vibration mode number, the chirality of SWWCNTs, and their aspect ratio on the nonlocal critical buckling loads is studied and discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56-8 (1991).CrossRef S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56-8 (1991).CrossRef
2.
go back to reference S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1 nm diameter,” Nature, 363, 603 (1993).CrossRef S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1 nm diameter,” Nature, 363, 603 (1993).CrossRef
3.
go back to reference M. S. Dresselhaus and P. Avouris, “Carbon nanotubes: synthesis, structure, properties and application,” Top Appl. Phys., 80, 1-11 (2001).CrossRef M. S. Dresselhaus and P. Avouris, “Carbon nanotubes: synthesis, structure, properties and application,” Top Appl. Phys., 80, 1-11 (2001).CrossRef
4.
go back to reference A. Bachtold, P. Hadley, T. Nakanishi, and D. Cees, “Logic circuits with carbon nanotube transistors,” Science, 294, No. 5545, 1317-1321 (2001).CrossRef A. Bachtold, P. Hadley, T. Nakanishi, and D. Cees, “Logic circuits with carbon nanotube transistors,” Science, 294, No. 5545, 1317-1321 (2001).CrossRef
5.
go back to reference H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy,” Nature, 384, 147-150 (1996).CrossRef H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy,” Nature, 384, 147-150 (1996).CrossRef
6.
go back to reference E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites (a review), “Compos. Sci. Technol., 61, 1899-1912 (2001).CrossRef E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites (a review), “Compos. Sci. Technol., 61, 1899-1912 (2001).CrossRef
7.
go back to reference E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, 277, 1971-1975 (1997).CrossRef E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, 277, 1971-1975 (1997).CrossRef
8.
go back to reference C. Q. Ru, “Elastic buckling of single-walled carbon nanotube ropes under high pressure,” Physical Review B, 62, 10405-10408 (2000).CrossRef C. Q. Ru, “Elastic buckling of single-walled carbon nanotube ropes under high pressure,” Physical Review B, 62, 10405-10408 (2000).CrossRef
9.
go back to reference X. Wang and H. Cai, “Effects of initial stress on the non-coaxial resonance of multi-wall carbon nanotubes,” Acta Materialia, 54, 2067-2074 (2006).CrossRef X. Wang and H. Cai, “Effects of initial stress on the non-coaxial resonance of multi-wall carbon nanotubes,” Acta Materialia, 54, 2067-2074 (2006).CrossRef
10.
go back to reference J. N. Reddy and S. D. Pang, “Nonlocal continuum theories of beams for the analysis of carbon nanotubes,” J. Appl. Phys., 103, 023511 (2008).CrossRef J. N. Reddy and S. D. Pang, “Nonlocal continuum theories of beams for the analysis of carbon nanotubes,” J. Appl. Phys., 103, 023511 (2008).CrossRef
11.
go back to reference Q. Wang, V. K. Varadan, and S. T. Quek, “Small-scale effect on the elastic buckling of carbon nanotubes with nonlocal continuum models,” Physics Letters A, 357, 130-135 (2006).CrossRef Q. Wang, V. K. Varadan, and S. T. Quek, “Small-scale effect on the elastic buckling of carbon nanotubes with nonlocal continuum models,” Physics Letters A, 357, 130-135 (2006).CrossRef
12.
go back to reference K. Amara, A. Tounsi, I. Mechab, and E. A. Adda Bedia, “Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field,”, Appl. Mathematical Modelling, 34, 3933-3942 (2010).CrossRef K. Amara, A. Tounsi, I. Mechab, and E. A. Adda Bedia, “Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field,”, Appl. Mathematical Modelling, 34, 3933-3942 (2010).CrossRef
13.
go back to reference Y. Zhang, G. Liu, and X. Han, “Transverse vibrations of double-walled carbon nanotubes under compressive axial load,” Phys. Lett. A, 340, 258-266 (2005).CrossRef Y. Zhang, G. Liu, and X. Han, “Transverse vibrations of double-walled carbon nanotubes under compressive axial load,” Phys. Lett. A, 340, 258-266 (2005).CrossRef
14.
go back to reference A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, and L. Boumia, “The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory,” J. Physics D, 41, 225404 (2008).CrossRef A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, and L. Boumia, “The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory,” J. Physics D, 41, 225404 (2008).CrossRef
15.
go back to reference L. Wang and H. Hu, “Flexural wave propagation in single-walled carbon nanotubes,” Phys. Rev. B, 71, 195412 (2005).CrossRef L. Wang and H. Hu, “Flexural wave propagation in single-walled carbon nanotubes,” Phys. Rev. B, 71, 195412 (2005).CrossRef
16.
go back to reference Y. G. Hu, K. M. Liew, and Q. Wang, “Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes,” J. Appl. Phys, 106, 044301 (2009).CrossRef Y. G. Hu, K. M. Liew, and Q. Wang, “Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes,” J. Appl. Phys, 106, 044301 (2009).CrossRef
17.
go back to reference T. Murmu and S. C. Pradhan, “Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory,” Comput. Mater. Sci, 46, 854-859 (2009).CrossRef T. Murmu and S. C. Pradhan, “Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory,” Comput. Mater. Sci, 46, 854-859 (2009).CrossRef
18.
go back to reference T. Murmu and S. C. Pradhan, “Thermal effects on the stability of embedded carbon nanotubes,” Comput. Mater. Sci, 47, 721-726 (2010).CrossRef T. Murmu and S. C. Pradhan, “Thermal effects on the stability of embedded carbon nanotubes,” Comput. Mater. Sci, 47, 721-726 (2010).CrossRef
19.
go back to reference J. Yoon, C. Q. Ru, and A. Mioduchowski, “Vibration of an embedded multiwall carbon nanotubes,” Compos. Sci. Technol, 63, 1533-1545 (2003).CrossRef J. Yoon, C. Q. Ru, and A. Mioduchowski, “Vibration of an embedded multiwall carbon nanotubes,” Compos. Sci. Technol, 63, 1533-1545 (2003).CrossRef
20.
go back to reference T. Murmu and S. Adhikari, “Nonlocal effects in the longitudinal vibration of double-nanorod systems,” Physica E, 43, 415-422 (2010).CrossRef T. Murmu and S. Adhikari, “Nonlocal effects in the longitudinal vibration of double-nanorod systems,” Physica E, 43, 415-422 (2010).CrossRef
21.
go back to reference B. I. Yakobson, C. J. Brabec, and J. Bernholc, “Nanomechanics of carbon tubes: instabilities beyond linear response,” Phys. Rev. Lett, 76, 2511-2514 (1996).CrossRef B. I. Yakobson, C. J. Brabec, and J. Bernholc, “Nanomechanics of carbon tubes: instabilities beyond linear response,” Phys. Rev. Lett, 76, 2511-2514 (1996).CrossRef
22.
go back to reference C. Thomsen, S. Reich, H. Jantoljak, I. Loa, K. Syassen, M. Burghard, G. S. Duesberg, and S. Roth, “Raman spectroscopy on single- and multi-walled nanotubes under high pressure,” Appl. Phys. A, 69, 309-312 (1999).CrossRef C. Thomsen, S. Reich, H. Jantoljak, I. Loa, K. Syassen, M. Burghard, G. S. Duesberg, and S. Roth, “Raman spectroscopy on single- and multi-walled nanotubes under high pressure,” Appl. Phys. A, 69, 309-312 (1999).CrossRef
23.
go back to reference J. A. Elliott, J. K. W. Sandler, A. H. Windle, R. J. Young, and S. P. Shaffer, “Collapse of single-wall carbon nanotubes is diameter dependent,” Phys. Rev. Lett, 92, 095501 (2004).CrossRef J. A. Elliott, J. K. W. Sandler, A. H. Windle, R. J. Young, and S. P. Shaffer, “Collapse of single-wall carbon nanotubes is diameter dependent,” Phys. Rev. Lett, 92, 095501 (2004).CrossRef
24.
go back to reference A. R. Ranjbartoreh, A. Ghorbanpour, and B. Soltani, “Double-walled carbon nanotube with surrounding elastic medium under axial pressure,” Physica E, 39, 230-239 (2007).CrossRef A. R. Ranjbartoreh, A. Ghorbanpour, and B. Soltani, “Double-walled carbon nanotube with surrounding elastic medium under axial pressure,” Physica E, 39, 230-239 (2007).CrossRef
25.
go back to reference A. R. Ranjbartoreh, G. X. Wang, A. A. Ghorbanpour, and A. Loghman, “Comparative consideration of axial stability of single- and double-walled carbon nanotube and its inner and outer tubes,” Physica E, 41, 202-208 (2008).CrossRef A. R. Ranjbartoreh, G. X. Wang, A. A. Ghorbanpour, and A. Loghman, “Comparative consideration of axial stability of single- and double-walled carbon nanotube and its inner and outer tubes,” Physica E, 41, 202-208 (2008).CrossRef
26.
go back to reference G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise, “Equivalent-continuum modeling of nano-structured materials,” Compos. Sci. Technol, 62, 1869-1880 (2002).CrossRef G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise, “Equivalent-continuum modeling of nano-structured materials,” Compos. Sci. Technol, 62, 1869-1880 (2002).CrossRef
27.
go back to reference H. W. Zhang, L. Wang, and J. B. Wang, “Computer simulation of buckling behaviour of double-walled carbon nanotubes with abnormal interlayer distances,” Comput. Mater. Sci, 39, 664 (2007).CrossRef H. W. Zhang, L. Wang, and J. B. Wang, “Computer simulation of buckling behaviour of double-walled carbon nanotubes with abnormal interlayer distances,” Comput. Mater. Sci, 39, 664 (2007).CrossRef
28.
go back to reference Y. Jin and F. G. Yuan, “Simulation of elastic properties of single-walled carbon nanotubes,” Compos. Sci. Technol, 63, 1507-1515 (2003).CrossRef Y. Jin and F. G. Yuan, “Simulation of elastic properties of single-walled carbon nanotubes,” Compos. Sci. Technol, 63, 1507-1515 (2003).CrossRef
29.
go back to reference C. F. Cornwell and L. T. Wille, “Elastic properties of single-walled carbon nanotubes in compression,” Solid. State. Commun, 101, 555-558 (1997).CrossRef C. F. Cornwell and L. T. Wille, “Elastic properties of single-walled carbon nanotubes in compression,” Solid. State. Commun, 101, 555-558 (1997).CrossRef
30.
go back to reference D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Phys. Rev. B, 42, 9458-9471 (1990).CrossRef D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Phys. Rev. B, 42, 9458-9471 (1990).CrossRef
31.
go back to reference W. X. Bao, C. C. Zhu, and W. Z. Cui, “Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics,” Physica B, 352, 156-163 (2004).CrossRef W. X. Bao, C. C. Zhu, and W. Z. Cui, “Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics,” Physica B, 352, 156-163 (2004).CrossRef
32.
go back to reference J. Z. Liu, Q. S. Zheng, and Q. Jiang, “Effect of a rippling mode on resonances of carbon nanotubes,” Phys. Rev. Lett, 86, 4843-4846 (2001).CrossRef J. Z. Liu, Q. S. Zheng, and Q. Jiang, “Effect of a rippling mode on resonances of carbon nanotubes,” Phys. Rev. Lett, 86, 4843-4846 (2001).CrossRef
33.
go back to reference T. W. Tombler, C. W. Zhou, L. Alexseyev, et al, “Reversible nanotube electro-mechanical characteristics under local probe manipulation,” Nature, 405, 769 (2000).CrossRef T. W. Tombler, C. W. Zhou, L. Alexseyev, et al, “Reversible nanotube electro-mechanical characteristics under local probe manipulation,” Nature, 405, 769 (2000).CrossRef
34.
go back to reference M. Michele, and R. Marco, “Prediction of Young’s modulus of single-wall carbon nanotubes by molecular mechanics,” Compos. Sci. and Technol., 66, 1597-1605 (2006).CrossRef M. Michele, and R. Marco, “Prediction of Young’s modulus of single-wall carbon nanotubes by molecular mechanics,” Compos. Sci. and Technol., 66, 1597-1605 (2006).CrossRef
35.
go back to reference Y. Tokio, “Recent development of carbon nanotube,” Synth. Met, 70, 1511-1518 (1995).CrossRef Y. Tokio, “Recent development of carbon nanotube,” Synth. Met, 70, 1511-1518 (1995).CrossRef
36.
go back to reference A. C. Eringen, Nonlocal Polar Field Models, Academic Press, New York, (1976). A. C. Eringen, Nonlocal Polar Field Models, Academic Press, New York, (1976).
37.
go back to reference A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys, 54, 4703-4710 (1983).CrossRef A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” J. Appl. Phys, 54, 4703-4710 (1983).CrossRef
38.
go back to reference J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Pub. Company, Amsterdam, (1973). J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Pub. Company, Amsterdam, (1973).
39.
go back to reference Yi-Ze. Wang, Li. Feng-Ming, and K. Kishimoto, “Scale effects on the thermal buckling properties of carbon nanotubes,” Physics Letters A, 374, 4890-4893 (2010). Yi-Ze. Wang, Li. Feng-Ming, and K. Kishimoto, “Scale effects on the thermal buckling properties of carbon nanotubes,” Physics Letters A, 374, 4890-4893 (2010).
40.
go back to reference Y. Q. Zhang, G. R. Liu, H. F. Qiang, and G. Y. Li, “Investigation of buckling of double-walled carbon nanotubes embedded in an elastic medium using the energy method,” Int. J. Mech. Sci., 48, 53-61 (2006).CrossRef Y. Q. Zhang, G. R. Liu, H. F. Qiang, and G. Y. Li, “Investigation of buckling of double-walled carbon nanotubes embedded in an elastic medium using the energy method,” Int. J. Mech. Sci., 48, 53-61 (2006).CrossRef
Metadata
Title
Buckling Analysis of Chiral Single-Walled Carbon Nanotubes by Using the Nonlocal Timoshenko Beam Theory
Authors
M. Zidour
T. H. Daouadji
K. H. Benrahou
A. Tounsi
El A. Adda Bedia
L. Hadji
Publication date
01-03-2014
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2014
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-014-9396-0

Other articles of this Issue 1/2014

Mechanics of Composite Materials 1/2014 Go to the issue

Premium Partners