Skip to main content
Top

2018 | OriginalPaper | Chapter

Buffering Gene Expression Noise by MicroRNA Based Feedforward Regulation

Authors : Pavol Bokes, Michal Hojcka, Abhyudai Singh

Published in: Computational Methods in Systems Biology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cells use various regulatory motifs, including feedforward loops, to control the intrinsic noise that arises in gene expression at low copy numbers. Here we study one such system, which is broadly inspired by the interaction between an mRNA molecule and an antagonistic microRNA molecule encoded by the same gene. The two reaction species are synchronously produced, individually degraded, and the second species (microRNA) exerts an antagonistic pressure on the first species (mRNA). Using linear-noise approximation, we show that the noise in the first species, which we quantify by the Fano factor, is sub-Poissonian, and exhibits a nonmonotonic response both to the species lifetime ratio and to the strength of the antagonistic interaction. Additionally, we use the Chemical Reaction Network Theory to prove that the first species distribution is Poissonian if the first species is much more stable than the second. Finally, we identify a special parametric regime, supporting a broad range of behaviour, in which the distribution can be analytically described in terms of the confluent hypergeometric limit function. We verify our analysis against large-scale kinetic Monte Carlo simulations. Our results indicate that, subject to specific physiological constraints, optimal parameter values can be found within the mRNA–microRNA motif that can benefit the cell by lowering the gene-expression noise.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abou-Jaoudé, W., Thieffry, D., Feret, J.: Formal derivation of qualitative dynamical models from biochemical networks. Biosystems 149, 70–112 (2016)CrossRef Abou-Jaoudé, W., Thieffry, D., Feret, J.: Formal derivation of qualitative dynamical models from biochemical networks. Biosystems 149, 70–112 (2016)CrossRef
2.
go back to reference Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, D.C. (1972)MATH Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, D.C. (1972)MATH
3.
go back to reference Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007)CrossRef Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007)CrossRef
4.
go back to reference Anderson, D.F., Cotter, S.L.: Product-form stationary distributions for deficiency zero networks with non-mass action kinetics. Bull. Math. Biol. 78, 2390–2407 (2016)MathSciNetCrossRef Anderson, D.F., Cotter, S.L.: Product-form stationary distributions for deficiency zero networks with non-mass action kinetics. Bull. Math. Biol. 78, 2390–2407 (2016)MathSciNetCrossRef
5.
go back to reference Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72, 1947–1970 (2010)MathSciNetCrossRef Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72, 1947–1970 (2010)MathSciNetCrossRef
6.
go back to reference Bleris, L., Xie, Z., Glass, D., Adadey, A., Sontag, E., Benenson, Y.: Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol. Syst. Biol. 7, 519 (2011)CrossRef Bleris, L., Xie, Z., Glass, D., Adadey, A., Sontag, E., Benenson, Y.: Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol. Syst. Biol. 7, 519 (2011)CrossRef
7.
go back to reference Bokes, P., King, J., Wood, A., Loose, M.: Multiscale stochastic modelling of gene expression. J. Math. Biol. 65, 493–520 (2012)MathSciNetCrossRef Bokes, P., King, J., Wood, A., Loose, M.: Multiscale stochastic modelling of gene expression. J. Math. Biol. 65, 493–520 (2012)MathSciNetCrossRef
9.
go back to reference Bokes, P., King, J.R., Wood, A.T., Loose, M.: Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression. J. Math. Biol. 64, 829–854 (2012)MathSciNetCrossRef Bokes, P., King, J.R., Wood, A.T., Loose, M.: Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression. J. Math. Biol. 64, 829–854 (2012)MathSciNetCrossRef
10.
go back to reference Bokes, P., Singh, A.: Gene expression noise is affected differentially by feedback in burst frequency and burst size. J. Math. Biol. 74, 1483–1509 (2017)MathSciNetCrossRef Bokes, P., Singh, A.: Gene expression noise is affected differentially by feedback in burst frequency and burst size. J. Math. Biol. 74, 1483–1509 (2017)MathSciNetCrossRef
11.
go back to reference Bosia, C., Osella, M., Baroudi, M.E., Cora, D., Caselle, M.: Gene autoregulation via intronic microRNAs and its functions. BMC Syst. Biol. 6, 131 (2012)CrossRef Bosia, C., Osella, M., Baroudi, M.E., Cora, D., Caselle, M.: Gene autoregulation via intronic microRNAs and its functions. BMC Syst. Biol. 6, 131 (2012)CrossRef
12.
go back to reference Bronstein, L., Koeppl, H.: A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks. J. Chem. Phys. 148, 014105 (2018)CrossRef Bronstein, L., Koeppl, H.: A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks. J. Chem. Phys. 148, 014105 (2018)CrossRef
13.
go back to reference Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149, 26–33 (2016)CrossRef Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149, 26–33 (2016)CrossRef
15.
go back to reference Feinberg, M.: Lectures on chemical reaction networks. Notes of lectures given at the Mathematics Research Center of the University of Wisconsin (1979) Feinberg, M.: Lectures on chemical reaction networks. Notes of lectures given at the Mathematics Research Center of the University of Wisconsin (1979)
16.
go back to reference Ghusinga, K.R., Vargas-Garcia, C.A., Lamperski, A., Singh, A.: Exact lower and upper bounds on stationary moments in stochastic biochemical systems. Phys. Biol. 14, 04LT01 (2017)CrossRef Ghusinga, K.R., Vargas-Garcia, C.A., Lamperski, A., Singh, A.: Exact lower and upper bounds on stationary moments in stochastic biochemical systems. Phys. Biol. 14, 04LT01 (2017)CrossRef
17.
go back to reference Gillespie, D.: A general method for numerically simulating stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRef Gillespie, D.: A general method for numerically simulating stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRef
18.
go back to reference Herath, N., Del Vecchio, D.: Reduced linear noise approximation for biochemical reaction networks with time-scale separation: the stochastic tQSSA+. J. Chem. Phys. 148, 094108 (2018)CrossRef Herath, N., Del Vecchio, D.: Reduced linear noise approximation for biochemical reaction networks with time-scale separation: the stochastic tQSSA+. J. Chem. Phys. 148, 094108 (2018)CrossRef
19.
go back to reference Innocentini, G.C., Forger, M., Radulescu, O., Antoneli, F.: Protein synthesis driven by dynamical stochastic transcription. Bull. Math. Biol. 78, 110–131 (2016)MathSciNetCrossRef Innocentini, G.C., Forger, M., Radulescu, O., Antoneli, F.: Protein synthesis driven by dynamical stochastic transcription. Bull. Math. Biol. 78, 110–131 (2016)MathSciNetCrossRef
20.
go back to reference Innocentini, G.C., Guiziou, S., Bonnet, J., Radulescu, O.: Analytic framework for a stochastic binary biological switch. Phys. Rev. E 94, 062413 (2016)CrossRef Innocentini, G.C., Guiziou, S., Bonnet, J., Radulescu, O.: Analytic framework for a stochastic binary biological switch. Phys. Rev. E 94, 062413 (2016)CrossRef
21.
go back to reference Johnson, N., Kotz, S., Kemp, A.: Univariate Discrete Distributions, 3rd edn. Wiley, Hoboken (2005)CrossRef Johnson, N., Kotz, S., Kemp, A.: Univariate Discrete Distributions, 3rd edn. Wiley, Hoboken (2005)CrossRef
22.
go back to reference van Kampen, N.: Stochastic Processes in Physics and Chemistry. Elsevier, New York (2006)MATH van Kampen, N.: Stochastic Processes in Physics and Chemistry. Elsevier, New York (2006)MATH
23.
go back to reference Kan, X., Lee, C.H., Othmer, H.G.: A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems. J. Math. Biol. 73, 1081–1129 (2016)MathSciNetCrossRef Kan, X., Lee, C.H., Othmer, H.G.: A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems. J. Math. Biol. 73, 1081–1129 (2016)MathSciNetCrossRef
24.
go back to reference Kelly, F.P.: Reversibility and Stochastic Networks. Cambridge University Press, Cambridge (2011)MATH Kelly, F.P.: Reversibility and Stochastic Networks. Cambridge University Press, Cambridge (2011)MATH
25.
go back to reference Kim, J.K., Josić, K., Bennett, M.R.: The validity of quasi-steady-state approximations in discrete stochastic simulations. Biophys. J. 107, 783–793 (2014)CrossRef Kim, J.K., Josić, K., Bennett, M.R.: The validity of quasi-steady-state approximations in discrete stochastic simulations. Biophys. J. 107, 783–793 (2014)CrossRef
26.
go back to reference Kumar, N., Jia, T., Zarringhalam, K., Kulkarni, R.V.: Frequency modulation of stochastic gene expression bursts by strongly interacting small RNAs. Phys. Rev. E 94, 042419 (2016)CrossRef Kumar, N., Jia, T., Zarringhalam, K., Kulkarni, R.V.: Frequency modulation of stochastic gene expression bursts by strongly interacting small RNAs. Phys. Rev. E 94, 042419 (2016)CrossRef
27.
go back to reference Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978 (1972)CrossRef Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978 (1972)CrossRef
28.
go back to reference Lestas, I., Paulsson, J., Ross, N., Vinnicombe, G.: Noise in gene regulatory networks. IEEE Trans. Circuits-I 53, 189–200 (2008)MathSciNetMATH Lestas, I., Paulsson, J., Ross, N., Vinnicombe, G.: Noise in gene regulatory networks. IEEE Trans. Circuits-I 53, 189–200 (2008)MathSciNetMATH
29.
go back to reference Li, X., Cassidy, J.J., Reinke, C.A., Fischboeck, S., Carthew, R.W.: A microRNA imparts robustness against environmental fluctuation during development. Cell 137, 273–282 (2009)CrossRef Li, X., Cassidy, J.J., Reinke, C.A., Fischboeck, S., Carthew, R.W.: A microRNA imparts robustness against environmental fluctuation during development. Cell 137, 273–282 (2009)CrossRef
30.
go back to reference Maarleveld, T.R., Olivier, B.G., Bruggeman, F.J.: StochPy: a comprehensive, user-friendly tool for simulating stochastic biological processes. PLoS One 8, e79345 (2013)CrossRef Maarleveld, T.R., Olivier, B.G., Bruggeman, F.J.: StochPy: a comprehensive, user-friendly tool for simulating stochastic biological processes. PLoS One 8, e79345 (2013)CrossRef
31.
go back to reference Mastny, E., Haseltine, E., Rawlings, J.: Two classes of quasi-steady-state model reductions for stochastic kinetics. J. Chem. Phys. 127, 094106 (2007)CrossRef Mastny, E., Haseltine, E., Rawlings, J.: Two classes of quasi-steady-state model reductions for stochastic kinetics. J. Chem. Phys. 127, 094106 (2007)CrossRef
32.
go back to reference Nevozhay, D., Adams, R.M., Murphy, K.F., Josic, K., Balazsi, G.: Negative autoregulation linearizes the dose response and suppresses the heterogeneity of gene expression. Proc. Natl. Acad. Sci. U.S.A. 106, 5123–5128 (2009)CrossRef Nevozhay, D., Adams, R.M., Murphy, K.F., Josic, K., Balazsi, G.: Negative autoregulation linearizes the dose response and suppresses the heterogeneity of gene expression. Proc. Natl. Acad. Sci. U.S.A. 106, 5123–5128 (2009)CrossRef
33.
go back to reference Osella, M., Bosia, C., Corá, D., Caselle, M.: The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput. Biol. 7, e1001101 (2011)CrossRef Osella, M., Bosia, C., Corá, D., Caselle, M.: The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput. Biol. 7, e1001101 (2011)CrossRef
34.
go back to reference Paulsson, J.: Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 (2005)CrossRef Paulsson, J.: Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 (2005)CrossRef
35.
go back to reference Platini, T., Jia, T., Kulkarni, R.V.: Regulation by small RNAs via coupled degradation: Mean-field and variational approaches. Phys. Rev. E 84, 021928 (2011)CrossRef Platini, T., Jia, T., Kulkarni, R.V.: Regulation by small RNAs via coupled degradation: Mean-field and variational approaches. Phys. Rev. E 84, 021928 (2011)CrossRef
36.
go back to reference Popovic, N., Marr, C., Swain, P.S.: A geometric analysis of fast-slow models for stochastic gene expression. J. Math. Biol. 72, 87–122 (2016)MathSciNetCrossRef Popovic, N., Marr, C., Swain, P.S.: A geometric analysis of fast-slow models for stochastic gene expression. J. Math. Biol. 72, 87–122 (2016)MathSciNetCrossRef
37.
go back to reference Schmiedel, J.M., et al.: MicroRNA control of protein expression noise. Science 348, 128–132 (2015)CrossRef Schmiedel, J.M., et al.: MicroRNA control of protein expression noise. Science 348, 128–132 (2015)CrossRef
38.
go back to reference Singh, A.: Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Trans. NanoBiosci. 10, 194–200 (2011)CrossRef Singh, A.: Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Trans. NanoBiosci. 10, 194–200 (2011)CrossRef
39.
go back to reference Singh, A., Bokes, P.: Consequences of mRNA transport on stochastic variability in protein levels. Biophys. J. 103, 1087–1096 (2012)CrossRef Singh, A., Bokes, P.: Consequences of mRNA transport on stochastic variability in protein levels. Biophys. J. 103, 1087–1096 (2012)CrossRef
40.
go back to reference Singh, A., Vargas-Garcia, C.A., Karmakar, R.: Stochastic analysis and inference of a two-state genetic promoter model. In: Proceedings of the American Control Conference, pp. 4563–4568 (2013) Singh, A., Vargas-Garcia, C.A., Karmakar, R.: Stochastic analysis and inference of a two-state genetic promoter model. In: Proceedings of the American Control Conference, pp. 4563–4568 (2013)
41.
go back to reference Singh, A., Grima, R.: The linear-noise approximation and moment-closure approximations for stochastic chemical kinetics. arXiv preprint arXiv:1711.07383 (2017) Singh, A., Grima, R.: The linear-noise approximation and moment-closure approximations for stochastic chemical kinetics. arXiv preprint arXiv:​1711.​07383 (2017)
42.
go back to reference Singh, A., Hespanha, J.P.: Optimal feedback strength for noise suppression in autoregulatory gene networks. Biophys. J. 96, 4013–4023 (2009)CrossRef Singh, A., Hespanha, J.P.: Optimal feedback strength for noise suppression in autoregulatory gene networks. Biophys. J. 96, 4013–4023 (2009)CrossRef
43.
go back to reference Soltani, M., Platini, T., Singh, A.: Stochastic analysis of an incoherent feedforward genetic motif. In: American Control Conference (ACC), pp. 406–411 (2016) Soltani, M., Platini, T., Singh, A.: Stochastic analysis of an incoherent feedforward genetic motif. In: American Control Conference (ACC), pp. 406–411 (2016)
44.
go back to reference Srivastava, R., Haseltine, E.L., Mastny, E., Rawlings, J.B.: The stochastic quasi-steady-state assumption: reducing the model but not the noise. J. Chem. Phys. 134, 154109 (2011)CrossRef Srivastava, R., Haseltine, E.L., Mastny, E., Rawlings, J.B.: The stochastic quasi-steady-state assumption: reducing the model but not the noise. J. Chem. Phys. 134, 154109 (2011)CrossRef
45.
go back to reference Stewart, A.J., Seymour, R.M., Pomiankowski, A., Reuter, M.: Under-dominance constrains the evolution of negative autoregulation in diploids. PLoS Comput. Biol. 9, e1002992 (2013)CrossRef Stewart, A.J., Seymour, R.M., Pomiankowski, A., Reuter, M.: Under-dominance constrains the evolution of negative autoregulation in diploids. PLoS Comput. Biol. 9, e1002992 (2013)CrossRef
46.
go back to reference Strovas, T.J., Rosenberg, A.B., Kuypers, B.E., Muscat, R.A., Seelig, G.: MicroRNA-based single-gene circuits buffer protein synthesis rates against perturbations. ACS Synth. Biol. 3, 324–331 (2014)CrossRef Strovas, T.J., Rosenberg, A.B., Kuypers, B.E., Muscat, R.A., Seelig, G.: MicroRNA-based single-gene circuits buffer protein synthesis rates against perturbations. ACS Synth. Biol. 3, 324–331 (2014)CrossRef
48.
go back to reference Voliotis, M., Bowsher, C.G.: The magnitude and colour of noise in genetic negative feedback systems. Nucleic Acids Res. 40, 7084–7095 (2012)CrossRef Voliotis, M., Bowsher, C.G.: The magnitude and colour of noise in genetic negative feedback systems. Nucleic Acids Res. 40, 7084–7095 (2012)CrossRef
49.
go back to reference Yang, X., Wu, Y., Yuan, Z.: Characteristics of mRNA dynamics in a multi-on model of stochastic transcription with regulation. Chin. J. Phys. 55, 508–518 (2017)CrossRef Yang, X., Wu, Y., Yuan, Z.: Characteristics of mRNA dynamics in a multi-on model of stochastic transcription with regulation. Chin. J. Phys. 55, 508–518 (2017)CrossRef
Metadata
Title
Buffering Gene Expression Noise by MicroRNA Based Feedforward Regulation
Authors
Pavol Bokes
Michal Hojcka
Abhyudai Singh
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-99429-1_8

Premium Partner