Skip to main content
Top

2019 | OriginalPaper | Chapter

Cellulose Nanocrystals-Based Nanocomposites

Authors : Malladi Nagalakshmaiah, Malladi Rajinipriya, Sadaf Afrin, Mohd Ayub Ansari, Mohammad Asad, Zoheb Karim

Published in: Bio-based Polymers and Nanocomposites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, an effort has been made to summarize the outstanding research and development related to cellulose nanocrystal-reinforced nanocomposites. A detailed study showed the isolation of crystalline part of cellulose fibers using various chemicals is reported. Furthermore, different functional groups emerged since used chemicals during isolation steps are discussed and their interference during composites production is reported (effect on dispersion, distribution, mechanical properties, etc). Various processing routes are also reported for the production of dimensional nanocomposites. Authors have tried to show a comparative study of various processing routes and impact on final properties. The opted processing routes somehow affect the properties, which someway indicate the possible application in the future. In the last, two emerging applications of cellulose nanocrystal-based nanocomposites have been discussed in short. Water purification and fabrication of scaffold for regeneration of bone are new and budding fields, required biodegradable and biocompatible dimensional structures for green future. Therefore, fabricated cellulose nanocrystal-based composites might be a possible solution of these hurdles, which not only make the process green but also directly convert the waste materials into valuable products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Afrin S, Karim Z (2017) Green catalytic approach for isolation and surface modification of nanocellulose: necessity of enzymes over chemicals. Chem Bio Eng Rev 5:289–303 Afrin S, Karim Z (2017) Green catalytic approach for isolation and surface modification of nanocellulose: necessity of enzymes over chemicals. Chem Bio Eng Rev 5:289–303
go back to reference Alloin F, D’Aprea A, Dufresne A, Kissi NE, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRef Alloin F, D’Aprea A, Dufresne A, Kissi NE, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRef
go back to reference Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149CrossRef Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149CrossRef
go back to reference Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157:1041–1049CrossRef Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157:1041–1049CrossRef
go back to reference Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRef Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRef
go back to reference Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240CrossRef Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240CrossRef
go back to reference Bitinis N, Fortunati E, Verdejo R, Bras J, Kenny JM, Torre L, López-Manchado MA (2013a) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation. Carbohydr Polym 96:621–627CrossRef Bitinis N, Fortunati E, Verdejo R, Bras J, Kenny JM, Torre L, López-Manchado MA (2013a) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation. Carbohydr Polym 96:621–627CrossRef
go back to reference Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, López-Manchado MA (2013b) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydr Polym 96:611–620CrossRef Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, López-Manchado MA (2013b) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydr Polym 96:611–620CrossRef
go back to reference Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf Physicochem Eng Asp 377:297–303CrossRef Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf Physicochem Eng Asp 377:297–303CrossRef
go back to reference Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630CrossRef Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630CrossRef
go back to reference Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334CrossRef Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334CrossRef
go back to reference Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2:251–258CrossRef Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2:251–258CrossRef
go back to reference Corrêa AC, de Morais TE, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192CrossRef Corrêa AC, de Morais TE, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192CrossRef
go back to reference de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef
go back to reference Dufresne A (2012) Processing of polymer nanocomposites reinforced with cellulose nanocrystals: a challenge. Int Polym Process 27:557–564CrossRef Dufresne A (2012) Processing of polymer nanocomposites reinforced with cellulose nanocrystals: a challenge. Int Polym Process 27:557–564CrossRef
go back to reference Ehmann HMA, Mohan T, Koshanskaya M, Scheicher S, Breitwieser D, Ribitsch V, Stana-Kleinschek K, Spirk S (2014) Design of anticoagulant surfaces based on cellulose nanocrystals. Chem Commun 50:13070–13072CrossRef Ehmann HMA, Mohan T, Koshanskaya M, Scheicher S, Breitwieser D, Ribitsch V, Stana-Kleinschek K, Spirk S (2014) Design of anticoagulant surfaces based on cellulose nanocrystals. Chem Commun 50:13070–13072CrossRef
go back to reference Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef
go back to reference Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605CrossRef Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605CrossRef
go back to reference Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011a) Poly(ε-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52:1532–1538CrossRef Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011a) Poly(ε-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52:1532–1538CrossRef
go back to reference Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011b) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRef Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011b) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRef
go back to reference Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002CrossRef Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002CrossRef
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
go back to reference Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502CrossRef Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502CrossRef
go back to reference Hirota M, Tamura N, Saito T, Isogai A (2010) Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose 17:279–288CrossRef Hirota M, Tamura N, Saito T, Isogai A (2010) Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose 17:279–288CrossRef
go back to reference International EPNOE Junior Scientists Meeting Future Perspectives in Polysaccharide Research, Gericke M, Peršin Z, Kargl R, Cemef, European Polysaccharide Network of Excellence (2015) Book of abstracts. Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Laboratory for Characterisation and Processing of Polymers, Maribor International EPNOE Junior Scientists Meeting Future Perspectives in Polysaccharide Research, Gericke M, Peršin Z, Kargl R, Cemef, European Polysaccharide Network of Excellence (2015) Book of abstracts. Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Laboratory for Characterisation and Processing of Polymers, Maribor
go back to reference Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef
go back to reference Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod 87:287–296CrossRef Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod 87:287–296CrossRef
go back to reference Karim Z, Afrin S (2015) Nanocellulose as novel supportive functional material for growth and development of cells. Cell Devel Biol 4:2–7 Karim Z, Afrin S (2015) Nanocellulose as novel supportive functional material for growth and development of cells. Cell Devel Biol 4:2–7
go back to reference Karim Z, Mathew AP, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Poly 112:668–676CrossRef Karim Z, Mathew AP, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Poly 112:668–676CrossRef
go back to reference Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016a) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Memb Sci 514:418–428CrossRef Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016a) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Memb Sci 514:418–428CrossRef
go back to reference Karim Z, Grahn M, Oksman K, Mathew AP (2016b) High flux affinity membranes based on cellulose nanocomposite for removal of heavy metal ions from industrial effluent. RCS Adv 6:20644–20653 Karim Z, Grahn M, Oksman K, Mathew AP (2016b) High flux affinity membranes based on cellulose nanocomposite for removal of heavy metal ions from industrial effluent. RCS Adv 6:20644–20653
go back to reference Karim Z, Afrin S, Husain Q, Danish R (2017a) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol 6:1–16 Karim Z, Afrin S, Husain Q, Danish R (2017a) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol 6:1–16
go back to reference Karim Z, Hakalahti M, Tammelin T, Mathew A, Oksman K (2017b) Effect of in situ TEMPO surface functionalization of nanocellulose membranes on the adsorption of metal ions from aqueous solution. RSC Adv 7:5232–5241CrossRef Karim Z, Hakalahti M, Tammelin T, Mathew A, Oksman K (2017b) Effect of in situ TEMPO surface functionalization of nanocellulose membranes on the adsorption of metal ions from aqueous solution. RSC Adv 7:5232–5241CrossRef
go back to reference Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
go back to reference Koshizawa T (1960) Degradation of wood and cotton linters in phosphoric acid. Jpn Tappi J 14(7):455–458 Koshizawa T (1960) Degradation of wood and cotton linters in phosphoric acid. Jpn Tappi J 14(7):455–458
go back to reference Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: a review. React Funct Polym 85:97–120CrossRef Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: a review. React Funct Polym 85:97–120CrossRef
go back to reference Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305CrossRef Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305CrossRef
go back to reference Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99CrossRef Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99CrossRef
go back to reference Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583CrossRef Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583CrossRef
go back to reference Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393CrossRef Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393CrossRef
go back to reference Ludueña LN, Fortunati E, Morán JI, Alvarez VA, Cyras VP, Puglia D, Manfredi LB, Pracella M (2016) Preparation and characterization of polybutylene-succinate/poly(ethylene-glycol)/cellulose nanocrystals ternary composites. J Appl Polym Sci 133:n/a-n/aCrossRef Ludueña LN, Fortunati E, Morán JI, Alvarez VA, Cyras VP, Puglia D, Manfredi LB, Pracella M (2016) Preparation and characterization of polybutylene-succinate/poly(ethylene-glycol)/cellulose nanocrystals ternary composites. J Appl Polym Sci 133:n/a-n/aCrossRef
go back to reference Ma H, Burger C, Hsiao BS, Chu B (2011a) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mat Chem 21:7507–7510CrossRef Ma H, Burger C, Hsiao BS, Chu B (2011a) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mat Chem 21:7507–7510CrossRef
go back to reference Ma H, Burger C, Hsiao BS, Chu B (2011b) Ultrafine polysaccharide nanofibrous membrane for water purification. Biomacromolecules 12:970–976CrossRef Ma H, Burger C, Hsiao BS, Chu B (2011b) Ultrafine polysaccharide nanofibrous membrane for water purification. Biomacromolecules 12:970–976CrossRef
go back to reference Ma H, Burger C, Hsiao BS, Chu B (2012) Highly permeable polymer membranes containing channels for water purification. ACS Macro Let 1:723–726CrossRef Ma H, Burger C, Hsiao BS, Chu B (2012) Highly permeable polymer membranes containing channels for water purification. ACS Macro Let 1:723–726CrossRef
go back to reference Mariano M, El Kissi N, Dufresne A (2015) Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur Polym J 69:208–223CrossRef Mariano M, El Kissi N, Dufresne A (2015) Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur Polym J 69:208–223CrossRef
go back to reference Mathew AP, Gong G, Bjorngrim N, Wixe D, Oksman K (2011) Moisture absorption behavior and its impact on the mechanical properties of cellulose whiskers-based polyvinylacetate nanocomposites. Polym Eng Sci 51:2136–2142CrossRef Mathew AP, Gong G, Bjorngrim N, Wixe D, Oksman K (2011) Moisture absorption behavior and its impact on the mechanical properties of cellulose whiskers-based polyvinylacetate nanocomposites. Polym Eng Sci 51:2136–2142CrossRef
go back to reference Mathew AP, Oksman K, Karim Z, Liu P, Khan SA, Naseri N (2014) Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Indus Crop Produc 58:212–219CrossRef Mathew AP, Oksman K, Karim Z, Liu P, Khan SA, Naseri N (2014) Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Indus Crop Produc 58:212–219CrossRef
go back to reference Mautner A, Maple HA, Kobkeatthawin T, Kokol V, Karim Z, Li K, Bismark A (2016) Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int J Environ Sci Technol 13:1861–1872CrossRef Mautner A, Maple HA, Kobkeatthawin T, Kokol V, Karim Z, Li K, Bismark A (2016) Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int J Environ Sci Technol 13:1861–1872CrossRef
go back to reference Mokhena TC, Luyt AS (2014) Investigation of polyethylene/sisal whiskers nanocomposites prepared under different conditions. Polym Compos 35:2221–2233CrossRef Mokhena TC, Luyt AS (2014) Investigation of polyethylene/sisal whiskers nanocomposites prepared under different conditions. Polym Compos 35:2221–2233CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941CrossRef
go back to reference Nagalakshmaiah M, El Kissi N, Dufresne A (2016a) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8:8755–8764CrossRef Nagalakshmaiah M, El Kissi N, Dufresne A (2016a) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8:8755–8764CrossRef
go back to reference Nagalakshmaiah M, kissi NE, Mortha G, Dufresne A (2016b) Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydr Polym 136:945–954CrossRef Nagalakshmaiah M, kissi NE, Mortha G, Dufresne A (2016b) Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydr Polym 136:945–954CrossRef
go back to reference Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A (2016c) Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232CrossRef Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A (2016c) Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232CrossRef
go back to reference Nagalakshmaiah M, Nechyporchuk O, El Kissi N, Dufresne A (2017) Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly[(styrene)-co-(2-ethylhexyl acrylate)] latex particles. Eur Polym J 91:297–306CrossRef Nagalakshmaiah M, Nechyporchuk O, El Kissi N, Dufresne A (2017) Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly[(styrene)-co-(2-ethylhexyl acrylate)] latex particles. Eur Polym J 91:297–306CrossRef
go back to reference Naseri N, Mathew AP, Girandon L, Fröhlich M, Oksman K (2015) Porous electrospun nanocomposite mats based on chitosan-cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22:521–534CrossRef Naseri N, Mathew AP, Girandon L, Fröhlich M, Oksman K (2015) Porous electrospun nanocomposite mats based on chitosan-cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22:521–534CrossRef
go back to reference Naseri N, Mathew AP, Oksman K (2016a) Electrospinnability of bionanocomposites with high nanocrystal loadings: the effect of nanocrystal surface characteristics. Carbohydr Polym 147:464–472CrossRef Naseri N, Mathew AP, Oksman K (2016a) Electrospinnability of bionanocomposites with high nanocrystal loadings: the effect of nanocrystal surface characteristics. Carbohydr Polym 147:464–472CrossRef
go back to reference Naseri N, Deepa B, Mathew AP, Girandon L, Oksman K (2016b) Nanocellulose based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules 14:3714–3723CrossRef Naseri N, Deepa B, Mathew AP, Girandon L, Oksman K (2016b) Nanocellulose based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules 14:3714–3723CrossRef
go back to reference Nge TT, Lee S-H, Endo T (2013) Preparation of nanoscale cellulose materials with different morphologies by mechanical treatments and their characterization. Cellulose 20:1841–1852CrossRef Nge TT, Lee S-H, Endo T (2013) Preparation of nanoscale cellulose materials with different morphologies by mechanical treatments and their characterization. Cellulose 20:1841–1852CrossRef
go back to reference Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A 83:2–18CrossRef Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A 83:2–18CrossRef
go back to reference Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRef Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRef
go back to reference Pereda M, Kissi NE, Dufresne A (2014) Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide). ACS Appl Mater Interfaces 6:9365–9375CrossRef Pereda M, Kissi NE, Dufresne A (2014) Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide). ACS Appl Mater Interfaces 6:9365–9375CrossRef
go back to reference Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRef Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRef
go back to reference Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10:9–16 Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10:9–16
go back to reference Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164CrossRef Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164CrossRef
go back to reference Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92CrossRef Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92CrossRef
go back to reference Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355CrossRef Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355CrossRef
go back to reference Sonia A, Priya Dasan K, Alex R (2013) Celluloses microfibres (CMF) reinforced poly(ethylene-co-vinyl acetate) (EVA) composites: dynamic mechanical, gamma and thermal ageing studies. Chem Eng J 228:1214–1222CrossRef Sonia A, Priya Dasan K, Alex R (2013) Celluloses microfibres (CMF) reinforced poly(ethylene-co-vinyl acetate) (EVA) composites: dynamic mechanical, gamma and thermal ageing studies. Chem Eng J 228:1214–1222CrossRef
go back to reference Spinella S, Samuel C, Raquez J-M, McCallum SA, Gross R, Dubois P (2016) Green and efficient synthesis of dispersible cellulose nanocrystals in biobased polyesters for engineering applications. ACS Sustain Chem Eng 4:2517–2527CrossRef Spinella S, Samuel C, Raquez J-M, McCallum SA, Gross R, Dubois P (2016) Green and efficient synthesis of dispersible cellulose nanocrystals in biobased polyesters for engineering applications. ACS Sustain Chem Eng 4:2517–2527CrossRef
go back to reference Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef
go back to reference Yang W, Dominici F, Fortunati E, Kenny JM, Puglia D (2015) Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly(lactic) acid films: effect of cellulose nanocrystals and a masterbatch process. RSC Adv 5:32350–32357CrossRef Yang W, Dominici F, Fortunati E, Kenny JM, Puglia D (2015) Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly(lactic) acid films: effect of cellulose nanocrystals and a masterbatch process. RSC Adv 5:32350–32357CrossRef
go back to reference Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938CrossRef Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938CrossRef
Metadata
Title
Cellulose Nanocrystals-Based Nanocomposites
Authors
Malladi Nagalakshmaiah
Malladi Rajinipriya
Sadaf Afrin
Mohd Ayub Ansari
Mohammad Asad
Zoheb Karim
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05825-8_3

Premium Partners