Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 3-4/2022

23-08-2022 | ORIGINAL ARTICLE

Chip wave phase difference analysis of robotic milling and chatter dominant mode research

Authors: Shihao Xin, Fangyu Peng, Chen Chen, Xiaowei Tang, Rong Yan, Zepeng Li, Jiawei Wu

Published in: The International Journal of Advanced Manufacturing Technology | Issue 3-4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chatter is a key problem that restricts the quality and efficiency of robotic milling, and the modal characterization of the robotic milling system is an important factor that affects the chatter. Doppler vibration measurement experiment shows that the vibration mode of the robotic milling system changes significantly with different modal frequencies under the sweep frequency excitation. The low-frequency mode shape is mainly manifested as the vibration of the robotic structure, while the high-frequency vibration mode shape is mainly manifested as the vibration of the spindle-tool structure. Therefore, the dominant modes of chatter are different under diverse cutting parameters, and the chatter suppression strategies are also significantly different. In order to provide a theoretical basis for the targeted chatter suppression under different cutting parameters, this paper studies the influence law of the robotic structure modes and spindle-tool structure modes on the chatter in the robotic milling system and establishes the analytical method of the dominant mode for the chatter of the robotic milling system. Firstly, the vibration mode shape of the robotic milling system is measured by a Doppler laser vibrometer, then the type of chatter is determined. Based on the classification of chatter types, the dynamic model considering the chatter dominated by robot mode and spindle-tool mode is established. Then, based on the variation law of chip wave phase difference (CWPD), a chatter participation degree analysis (CPDA) method is proposed to analyze the dominant mode for the chatter. The accuracy of the CPDA method on judging the dominant mode for the chatter is verified through a robotic milling experiment. The analysis results show that the number of teeth, modal parameters, and spindle speed will affect the change of dominant mode for the chatter. Finally, based on the analysis of the CWPD, a rapid evaluation index called the modal influence factor (MIF) for chatter dominant mode is proposed. The MIF proposed in this paper can effectively realize the judgment of the dominant mode for the chatter and provide theoretical support for chatter-free machining of the robotic milling system.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zhu Z, Tang X, Chen C, Peng F, Yan R, Zhou L, Li Z, Wu J (2021) High precision and efficiency robotic milling of complex parts: challenges, approaches and trends. Chinese J Aeronaut Zhu Z, Tang X, Chen C, Peng F, Yan R, Zhou L, Li Z, Wu J (2021) High precision and efficiency robotic milling of complex parts: challenges, approaches and trends. Chinese J Aeronaut
2.
go back to reference Yuan L, Sun S, Pan Z, Ding D, Gienke O, Li W (2019) Mode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorber. Mech Syst Signal Process 117:221–237CrossRef Yuan L, Sun S, Pan Z, Ding D, Gienke O, Li W (2019) Mode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorber. Mech Syst Signal Process 117:221–237CrossRef
3.
go back to reference Chen C, Peng F, Yan R, Tang X, Li Y, Fan Z (2020) Rapid prediction of posture-dependent FRF of the tool tip in robotic milling. Robot Comput-Integr Manuf 64:101906CrossRef Chen C, Peng F, Yan R, Tang X, Li Y, Fan Z (2020) Rapid prediction of posture-dependent FRF of the tool tip in robotic milling. Robot Comput-Integr Manuf 64:101906CrossRef
4.
go back to reference Pan ZX, Zhang H, Zhu ZQ, Wang JJ (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173:301–309CrossRef Pan ZX, Zhang H, Zhu ZQ, Wang JJ (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173:301–309CrossRef
5.
go back to reference Chen C, Peng FY, Yan R, Li YT, Wei DQ, Fan Z, Tang XW, Zhu ZR (2019) Stiffness performance index based posture and feed orientation optimization in robotic milling process. Robot Comput-Integr Manuf 55:29–40CrossRef Chen C, Peng FY, Yan R, Li YT, Wei DQ, Fan Z, Tang XW, Zhu ZR (2019) Stiffness performance index based posture and feed orientation optimization in robotic milling process. Robot Comput-Integr Manuf 55:29–40CrossRef
6.
go back to reference Cen L, Melkote SN (2017) CCT-based mode coupling chatter avoidance in robotic milling. J Manuf Process 29:50–61CrossRef Cen L, Melkote SN (2017) CCT-based mode coupling chatter avoidance in robotic milling. J Manuf Process 29:50–61CrossRef
7.
go back to reference Cen L, Melkote SN, Castle J, Appelman H (2018) A method for mode coupling chatter detection and suppression in robotic milling. J Manuf Sci Eng-Trans Asme 140CrossRef Cen L, Melkote SN, Castle J, Appelman H (2018) A method for mode coupling chatter detection and suppression in robotic milling. J Manuf Sci Eng-Trans Asme 140CrossRef
8.
go back to reference Yamato S, Ito T, Matsuzaki H, Fujita J, Kakinuma Y (2020) Self-acting optimal design of spindle speed variation for regenerative chatter suppression based on novel analysis of internal process energy behavior. Int J Mach Tools Manuf 159CrossRef Yamato S, Ito T, Matsuzaki H, Fujita J, Kakinuma Y (2020) Self-acting optimal design of spindle speed variation for regenerative chatter suppression based on novel analysis of internal process energy behavior. Int J Mach Tools Manuf 159CrossRef
9.
go back to reference Yue CX, Gao HN, Liu XL, Liang SY, Wang LH (2019) A review of chatter vibration research in milling. Chin J Aeronaut 32:215–242CrossRef Yue CX, Gao HN, Liu XL, Liang SY, Wang LH (2019) A review of chatter vibration research in milling. Chin J Aeronaut 32:215–242CrossRef
10.
go back to reference Iglesias A, Munoa J, Ciurana J (2014) Optimisation of face milling operations with structural chatter using a stability model based process planning methodology. Int J Adv Manuf Technol 70:559–571CrossRef Iglesias A, Munoa J, Ciurana J (2014) Optimisation of face milling operations with structural chatter using a stability model based process planning methodology. Int J Adv Manuf Technol 70:559–571CrossRef
11.
go back to reference Sun LJ, Zheng K, Liao WH, Liu JS, Feng JD, Dong S (2020) Investigation on chatter stability of robotic rotary ultrasonic milling. Robot Comput-Integr Manuf 63CrossRef Sun LJ, Zheng K, Liao WH, Liu JS, Feng JD, Dong S (2020) Investigation on chatter stability of robotic rotary ultrasonic milling. Robot Comput-Integr Manuf 63CrossRef
12.
go back to reference Zhang XJ, Xiong CH, Ding Y, Feng MJ, Xiong YL (2012) Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect. Int J Mach Tools Manuf 53:127–140CrossRef Zhang XJ, Xiong CH, Ding Y, Feng MJ, Xiong YL (2012) Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect. Int J Mach Tools Manuf 53:127–140CrossRef
13.
go back to reference Mohammadi Y, Ahmadi K (2019) Effect of axial vibrations on regenerative chatter in robotic milling. In: 17th CIRP Conference on Modelling of Machining Operations (CIRP CMMO), AMRC, Sheffield, England, pp. 503–508 Mohammadi Y, Ahmadi K (2019) Effect of axial vibrations on regenerative chatter in robotic milling. In: 17th CIRP Conference on Modelling of Machining Operations (CIRP CMMO), AMRC, Sheffield, England, pp. 503–508
14.
go back to reference Vinh N, Johnson J, Melkote S (2020) Active vibration suppression in robotic milling using optimal control. Int J Mach Tools Manuf 152 Vinh N, Johnson J, Melkote S (2020) Active vibration suppression in robotic milling using optimal control. Int J Mach Tools Manuf 152
15.
go back to reference Guo YJ, Dong HY, Wang GF, Ke YL (2016) Vibration analysis and suppression in robotic boring process. Int J Mach Tools Manuf 101:102–110CrossRef Guo YJ, Dong HY, Wang GF, Ke YL (2016) Vibration analysis and suppression in robotic boring process. Int J Mach Tools Manuf 101:102–110CrossRef
16.
go back to reference Celikag H, Sims ND, Ozturk E (2019) Chatter Suppression in robotic milling by control of configuration dependent dynamics, in: 17th CIRP Conference on Modelling of Machining Operations (CIRP CMMO), AMRC, Sheffield, England, pp. 521–526 Celikag H, Sims ND, Ozturk E (2019) Chatter Suppression in robotic milling by control of configuration dependent dynamics, in: 17th CIRP Conference on Modelling of Machining Operations (CIRP CMMO), AMRC, Sheffield, England, pp. 521–526
17.
go back to reference Yang K, Yang WY, Wang CM (2018) Inverse dynamic analysis and position error evaluation of the heavy-duty industrial robot with elastic joints: an efficient approach based on Lie group. Nonlinear Dyn 93:487–504CrossRef Yang K, Yang WY, Wang CM (2018) Inverse dynamic analysis and position error evaluation of the heavy-duty industrial robot with elastic joints: an efficient approach based on Lie group. Nonlinear Dyn 93:487–504CrossRef
18.
go back to reference Rognant M, Courteille E, Maurine P (2010) A systematic procedure for the elastodynamic modeling and identification of robot manipulators. IEEE Trans Robot 26:1085–1093CrossRef Rognant M, Courteille E, Maurine P (2010) A systematic procedure for the elastodynamic modeling and identification of robot manipulators. IEEE Trans Robot 26:1085–1093CrossRef
19.
go back to reference Ruderman M, Hoffmann F, Bertram T (2009) Modeling and identification of elastic robot joints with hysteresis and backlash. IEEE Trans Industr Electron 56:3840–3847CrossRef Ruderman M, Hoffmann F, Bertram T (2009) Modeling and identification of elastic robot joints with hysteresis and backlash. IEEE Trans Industr Electron 56:3840–3847CrossRef
20.
go back to reference Cordes M, Hintze W, Altintas Y (2019) Chatter stability in robotic milling. Robot Comput-Integr Manuf 55:11–18CrossRef Cordes M, Hintze W, Altintas Y (2019) Chatter stability in robotic milling. Robot Comput-Integr Manuf 55:11–18CrossRef
21.
go back to reference Hao D, Wang W, Liu Z, Yun C (2020) Experimental study of stability prediction for high-speed robotic milling of aluminum. J Vib Control 26:387–398CrossRef Hao D, Wang W, Liu Z, Yun C (2020) Experimental study of stability prediction for high-speed robotic milling of aluminum. J Vib Control 26:387–398CrossRef
22.
go back to reference Celikag H, Ozturk E, Sims ND (2021) Can mode coupling chatter happen in milling? Int of Mach Tools Manuf 165 Celikag H, Ozturk E, Sims ND (2021) Can mode coupling chatter happen in milling? Int of Mach Tools Manuf 165
23.
go back to reference Tang XW, Peng FY, Yan R, Gong YH, Li YT, Jiang LL (2017) Accurate and efficient prediction of milling stability with updated full-discretization method. Int J Adv Manuf Technol 88:2357–2368CrossRef Tang XW, Peng FY, Yan R, Gong YH, Li YT, Jiang LL (2017) Accurate and efficient prediction of milling stability with updated full-discretization method. Int J Adv Manuf Technol 88:2357–2368CrossRef
24.
go back to reference Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50:502–509CrossRef Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50:502–509CrossRef
25.
go back to reference Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50:926–932CrossRef Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50:926–932CrossRef
26.
go back to reference Qin CJ, Tao JF, Shi HT, Xiao DY, Li BC, Liu CL (2020) A novel Chebyshev-wavelet-based approach for accurate and fast prediction of milling stability. Precis Eng-J Int Soc Precis Eng Nanotechnol 62:244–255 Qin CJ, Tao JF, Shi HT, Xiao DY, Li BC, Liu CL (2020) A novel Chebyshev-wavelet-based approach for accurate and fast prediction of milling stability. Precis Eng-J Int Soc Precis Eng Nanotechnol 62:244–255
27.
go back to reference Feng J, Wan M, Dong Z-Y, Zhang W-H (2019) A unified process damping model considering the varying stiffness of the milling system. Int J Mach Tools Manuf 147:103470CrossRef Feng J, Wan M, Dong Z-Y, Zhang W-H (2019) A unified process damping model considering the varying stiffness of the milling system. Int J Mach Tools Manuf 147:103470CrossRef
28.
go back to reference Brown DL, Allemang RJ, Zimmerman RD, Mergeay MJSP (1979) Parameter estimation techniques for modal analysis 88:299–305 Brown DL, Allemang RJ, Zimmerman RD, Mergeay MJSP (1979) Parameter estimation techniques for modal analysis 88:299–305
Metadata
Title
Chip wave phase difference analysis of robotic milling and chatter dominant mode research
Authors
Shihao Xin
Fangyu Peng
Chen Chen
Xiaowei Tang
Rong Yan
Zepeng Li
Jiawei Wu
Publication date
23-08-2022
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 3-4/2022
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-09966-8

Other articles of this Issue 3-4/2022

The International Journal of Advanced Manufacturing Technology 3-4/2022 Go to the issue

Premium Partners