Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-04-2018 | S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems | Issue 9/2019

Neural Computing and Applications 9/2019

Civil engineering supervision video retrieval method optimization based on spectral clustering and R-tree

Journal:
Neural Computing and Applications > Issue 9/2019
Authors:
Shifeng Wu, Huazhu Song, Gui Cheng, Xian Zhong

Abstracts

The civil engineering supervision video provides the effective method to improve the quality of civil engineering supervision, but its usual retrieval by B+ tree can’t show the efficient performance to meet the real requirements. This paper uses some natural language processing ways, such as word embedding and combines semantic, to let the machine realize the content of supervision video and then focuses on the civil engineering supervision video retrieval annotated by supervision engineer. Firstly, we described the civil engineering supervision video hierarchical model with semantic, its framework and storage. And we proposed a CESVSR-tree data process algorithm to transform the civil engineering supervision video annotation into word vector through Chinese Wikipedia Entries and civil engineering entries, get the word weight value of each word. Secondly further research on video data index, we proposed the spectral clustering-based node split algorithm, it combines the traditional R-tree node splitting algorithm with spectral clustering algorithm, which improves the indexing speed of high-dimensional data such as video and word vector. Finally, in view of the rapid development of solid-state driver, this paper optimized the R-tree with the characteristics of solid-state driver, to improve the index construction speed on the hybrid storage structure.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2019

Neural Computing and Applications 9/2019 Go to the issue

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

The prediction model of worsted yarn quality based on CNN–GRNN neural network

Premium Partner

    Image Credits