Skip to main content
Erschienen in: Neural Computing and Applications 9/2019

21.04.2018 | S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Civil engineering supervision video retrieval method optimization based on spectral clustering and R-tree

verfasst von: Shifeng Wu, Huazhu Song, Gui Cheng, Xian Zhong

Erschienen in: Neural Computing and Applications | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstracts

The civil engineering supervision video provides the effective method to improve the quality of civil engineering supervision, but its usual retrieval by B+ tree can’t show the efficient performance to meet the real requirements. This paper uses some natural language processing ways, such as word embedding and combines semantic, to let the machine realize the content of supervision video and then focuses on the civil engineering supervision video retrieval annotated by supervision engineer. Firstly, we described the civil engineering supervision video hierarchical model with semantic, its framework and storage. And we proposed a CESVSR-tree data process algorithm to transform the civil engineering supervision video annotation into word vector through Chinese Wikipedia Entries and civil engineering entries, get the word weight value of each word. Secondly further research on video data index, we proposed the spectral clustering-based node split algorithm, it combines the traditional R-tree node splitting algorithm with spectral clustering algorithm, which improves the indexing speed of high-dimensional data such as video and word vector. Finally, in view of the rapid development of solid-state driver, this paper optimized the R-tree with the characteristics of solid-state driver, to improve the index construction speed on the hybrid storage structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fu WM (2015) “Internet+” promote the application of supervision video surveillance system. Constr Superv 9:34–35 Fu WM (2015) “Internet+” promote the application of supervision video surveillance system. Constr Superv 9:34–35
2.
Zurück zum Zitat Meng YQ, Wu JF, Zhang ZL et al (2017) Application of video surveillance system in blasting engineering site supervision. Blast 34(2):148–151 Meng YQ, Wu JF, Zhang ZL et al (2017) Application of video surveillance system in blasting engineering site supervision. Blast 34(2):148–151
3.
Zurück zum Zitat Dai YB (2016) Analysis on key points of civil engineering construction supervision. Build Mater Decor 48:30–31 Dai YB (2016) Analysis on key points of civil engineering construction supervision. Build Mater Decor 48:30–31
4.
Zurück zum Zitat Yu SI, Jiang L, Xu Z, et al. (2015) Content-based video search over 1 million videos with 1 core in 1 second. Shanghai, China. In: Proceedings of the 5th ACM on international conference on multimedia retrieval. ACM, pp 419–426 Yu SI, Jiang L, Xu Z, et al. (2015) Content-based video search over 1 million videos with 1 core in 1 second. Shanghai, China. In: Proceedings of the 5th ACM on international conference on multimedia retrieval. ACM, pp 419–426
5.
Zurück zum Zitat Xiong Z, Zhou X, Tian Q et al (2017) Semantic retrieval of video. IEEE Signal Process Mag 23(2):18–27CrossRef Xiong Z, Zhou X, Tian Q et al (2017) Semantic retrieval of video. IEEE Signal Process Mag 23(2):18–27CrossRef
6.
Zurück zum Zitat Hu W, Xie D, Fu Z et al (2007) Semantic-based surveillance video retrieval. IEEE Transact Image Process 16(4):1168–1181MathSciNetCrossRef Hu W, Xie D, Fu Z et al (2007) Semantic-based surveillance video retrieval. IEEE Transact Image Process 16(4):1168–1181MathSciNetCrossRef
7.
Zurück zum Zitat Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: ACM SIGMOD international conference on management of data, vol 14. ACM, pp. 47–57 Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: ACM SIGMOD international conference on management of data, vol 14. ACM, pp. 47–57
8.
Zurück zum Zitat Arge L, Hinrichs KH, Vahrenhold J et al (2002) Efficient bulk operations on dynamic R-trees. Algorithmica 33(1):104–128MathSciNetCrossRef Arge L, Hinrichs KH, Vahrenhold J et al (2002) Efficient bulk operations on dynamic R-trees. Algorithmica 33(1):104–128MathSciNetCrossRef
9.
Zurück zum Zitat Xu Z, Mei L, Liu Y, Hu C, Chen L (2016) Semantic enhanced cloud environment for surveillance data management using video structural description. Computing 98(1–2):35–54MathSciNetCrossRef Xu Z, Mei L, Liu Y, Hu C, Chen L (2016) Semantic enhanced cloud environment for surveillance data management using video structural description. Computing 98(1–2):35–54MathSciNetCrossRef
10.
Zurück zum Zitat Sleit A, Al-Nsour E (2014) Corner-based splitting: An improved node splitting algorithm for R-tree. J Inf Sci 40(2):222–236CrossRef Sleit A, Al-Nsour E (2014) Corner-based splitting: An improved node splitting algorithm for R-tree. J Inf Sci 40(2):222–236CrossRef
11.
Zurück zum Zitat Ye J, Ding Y (2018) Controllable keyword search scheme supporting multiple users. Future Generation Comp Syst 81:433–442CrossRef Ye J, Ding Y (2018) Controllable keyword search scheme supporting multiple users. Future Generation Comp Syst 81:433–442CrossRef
12.
Zurück zum Zitat Gui L (2009) Research Base on the Improved R-tree Spatial Index. J Wuhan Univ Technol 31(2):97–103 Gui L (2009) Research Base on the Improved R-tree Spatial Index. J Wuhan Univ Technol 31(2):97–103
13.
Zurück zum Zitat Beckmann N, Kriegel HP, Schneider R et al (1990) The R*-tree: an efficient and robust access method for points and rectangles. ACM Sigmod Record 19(2):322–331CrossRef Beckmann N, Kriegel HP, Schneider R et al (1990) The R*-tree: an efficient and robust access method for points and rectangles. ACM Sigmod Record 19(2):322–331CrossRef
14.
Zurück zum Zitat Beckmann N, Seeger BA (2009) revised r*-tree in comparison with related index structures. In: Proceedings of the 2009 ACM SIGMOD international conference on management of data. ACM, pp. 799–812 Beckmann N, Seeger BA (2009) revised r*-tree in comparison with related index structures. In: Proceedings of the 2009 ACM SIGMOD international conference on management of data. ACM, pp. 799–812
15.
Zurück zum Zitat Mikolov T, Chen K, Corrado G, et al. (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 Mikolov T, Chen K, Corrado G, et al. (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:​1301.​3781
16.
Zurück zum Zitat Mikolov T, Sutskever I, Chen K, et al. (2013) Distributed representations of words and phrases and their compositionality. Harrahs and Harveys, Lake Tahoe. In: Advances in neural information processing systems, pp 3111–3119 Mikolov T, Sutskever I, Chen K, et al. (2013) Distributed representations of words and phrases and their compositionality. Harrahs and Harveys, Lake Tahoe. In: Advances in neural information processing systems, pp 3111–3119
17.
Zurück zum Zitat Giordani A, Moschitti A (2009) Semantic mapping between natural language questions and SQL queries via syntactic pairing. Saarbrücken, Germany. In: International conference on application of natural language to information systems. Springer Berlin, pp 207–221 Giordani A, Moschitti A (2009) Semantic mapping between natural language questions and SQL queries via syntactic pairing. Saarbrücken, Germany. In: International conference on application of natural language to information systems. Springer Berlin, pp 207–221
18.
Zurück zum Zitat Wang LP, Pu JC (2015) Image Retrieval based on VA-File and Multi-Resolution BOW. Appl Math Inf Sci 9(1):445–455CrossRef Wang LP, Pu JC (2015) Image Retrieval based on VA-File and Multi-Resolution BOW. Appl Math Inf Sci 9(1):445–455CrossRef
19.
Zurück zum Zitat Hofmann T (1999) Probabilistic latent semantic indexing. Berkeley, CA, USA. In: International ACM SIGIR Conference on research and development in information retrieval. ACM, pp 50–57 Hofmann T (1999) Probabilistic latent semantic indexing. Berkeley, CA, USA. In: International ACM SIGIR Conference on research and development in information retrieval. ACM, pp 50–57
20.
Zurück zum Zitat Jiang YG, Ngo CW, Yang J, (2007) Towards optimal bag-of-features for object categorization and semantic video retrieval. Amsterdam, Netherlands. In: Proceedings of the 6th ACM international conference on Image and video retrieval. ACM, pp 494–501 Jiang YG, Ngo CW, Yang J, (2007) Towards optimal bag-of-features for object categorization and semantic video retrieval. Amsterdam, Netherlands. In: Proceedings of the 6th ACM international conference on Image and video retrieval. ACM, pp 494–501
21.
Zurück zum Zitat Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Proc Nips 14:849–856 Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Proc Nips 14:849–856
22.
Zurück zum Zitat Brakatsoulas S, Pfoser D, Theodoridis Y (2002) Revisiting R-tree construction principles. Bratislava, Slovakia. In: Advances in databases and information systems. Springer, Berlin, pp 17–24CrossRef Brakatsoulas S, Pfoser D, Theodoridis Y (2002) Revisiting R-tree construction principles. Bratislava, Slovakia. In: Advances in databases and information systems. Springer, Berlin, pp 17–24CrossRef
23.
Zurück zum Zitat Li S, Cui HY, Zhang LP et al (2015) Static R-tree building method based on cure clustering algorithm. Comput Sci 42(10):193–197 Li S, Cui HY, Zhang LP et al (2015) Static R-tree building method based on cure clustering algorithm. Comput Sci 42(10):193–197
24.
Zurück zum Zitat Li Y, He B, Yang RJ et al (2010) Tree indexing on solid state drives. Proc VLDB Endow 3(1–2):1195–1206CrossRef Li Y, He B, Yang RJ et al (2010) Tree indexing on solid state drives. Proc VLDB Endow 3(1–2):1195–1206CrossRef
25.
Zurück zum Zitat Lv Y, Li J, Cui B, et al. (2011) Log-compact R-tree: an efficient spatial index for SSD. Database Syst Adv Appl 202–213 Lv Y, Li J, Cui B, et al. (2011) Log-compact R-tree: an efficient spatial index for SSD. Database Syst Adv Appl 202–213
26.
Zurück zum Zitat Jiang M, Liang Y, Feng X et al (2016) Text classification based on deep belief network and softmax regression. Neural Comput Appl 7:1–10 Jiang M, Liang Y, Feng X et al (2016) Text classification based on deep belief network and softmax regression. Neural Comput Appl 7:1–10
27.
Zurück zum Zitat Wang XY, Wei XX (2016) Semantic retrieval method based on ontology. Comput Eng Des 37(9):2538–2542 Wang XY, Wei XX (2016) Semantic retrieval method based on ontology. Comput Eng Des 37(9):2538–2542
28.
Zurück zum Zitat Jolliffe IT (2002) Principal component analysis and factor analysis. In: Principal component analysis, Springer Series in Statistics, 2nd edn. Springer, XXIX, 487, pp 150–166 Jolliffe IT (2002) Principal component analysis and factor analysis. In: Principal component analysis, Springer Series in Statistics, 2nd edn. Springer, XXIX, 487, pp 150–166
29.
Zurück zum Zitat Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523CrossRef Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523CrossRef
30.
Zurück zum Zitat Liu ZH, Wu PH, Wu YL (2017) Three kinds of research and application of spectral clustering algorithm. Comput Appl Res 34(4):1026–1031 Liu ZH, Wu PH, Wu YL (2017) Three kinds of research and application of spectral clustering algorithm. Comput Appl Res 34(4):1026–1031
31.
Zurück zum Zitat Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Transact Pattern Anal Mach Intell 22(8):888–905CrossRef Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Transact Pattern Anal Mach Intell 22(8):888–905CrossRef
32.
Zurück zum Zitat Zhu Q (2013) Research on Hybrid Structure Storage. Shanghai Jiao Tong University, Shanghai Zhu Q (2013) Research on Hybrid Structure Storage. Shanghai Jiao Tong University, Shanghai
Metadaten
Titel
Civil engineering supervision video retrieval method optimization based on spectral clustering and R-tree
verfasst von
Shifeng Wu
Huazhu Song
Gui Cheng
Xian Zhong
Publikationsdatum
21.04.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2019
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3485-2

Weitere Artikel der Ausgabe 9/2019

Neural Computing and Applications 9/2019 Zur Ausgabe

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Emotion recognition based on physiological signals using brain asymmetry index and echo state network

Premium Partner