Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Classic Carbon Nanostructures

Authors : Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova

Published in: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The era of carbon-based nanotechnology, as it is well-known, started from 1985 when the fullerene C60 was discovered. The rediscovery of carbon nanotubes and unexpected discovery of graphene gave a powerful impulse to the further development of carbon nanostructures. At present, these nanocarbons, as well as nanodiamonds or nanofibers, can already be considered as “conventional” carbon nanostructures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
See also section below on graphane.
 
2
See also sections on solubilization of carbon allotropes in water and organic solvents.
 
3
See also a generalized book: Optical Properties of Graphene, Edited by R. Binder. World Scientific, 2017, 516 pp.
 
5
See also the state-of-the-art review on ultrasound methods for graphene preparation: Muthoosamy K., Manickam S. State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrason. Sonochem. 2017, 39, 478–493.
 
6
See also sections on coordination chemistry of carbon allotropes.
 
7
Via the “molecular surgical method,” that is, opening a hole on a C60 surface, enlargement of the hole, insertion of a guest species, and enclosure of the hole without loss of the encapsulated guest (Phil. Trans. R. Soc. A, 2013, 371, 20110636)
 
8
Highly recommended recent review
 
9
Image reproduced with permission of Elsevier Science (Modern Electronic Materials, 2016, 2(4), 95–105)
 
10
The high surface area 3D framework of the CNTs coupled with the high edge density of graphene is the fundamental advantage of this integrated graphene-CNT structure.
 
11
which can dissolve carbon to form metal carbides
 
12
See also the section on the MOF-derived nanocarbons.
 
13
See relative information on the decoration of carbon nanotubes in a review: Decoration of carbon nanotubes with metal nanoparticles: Recent trends. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, 46(1), 55–76.
 
14
See related data on the solubilization of carbon nanotubes in: Solubilization and Dispersion of Carbon Nanotubes. Springer-Nature, 2017, 250 pp.
 
15
See the information on CNTs-metal complex composites in: Coordination and organometallic compounds in the functionalization of carbon nanotubes. J. Coord. Chem., 2014, 67(23–24), 3769–3808.
 
16
See also information in the section of metal-complex composites of CNFs.
 
Literature
1.
go back to reference M.I. Katsnelson, K.S. Novoselov, Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143(1), 3–13 (2007)CrossRef M.I. Katsnelson, K.S. Novoselov, Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143(1), 3–13 (2007)CrossRef
2.
go back to reference A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
3.
go back to reference R. Heyrovska, Atomic structures of graphene, benzene and methane with bond lengths as sums of the single, double and resonance bond radii of carbon. arXiv:0804.4086, 2008, Freely accessible [physics.gen-ph]. R. Heyrovska, Atomic structures of graphene, benzene and methane with bond lengths as sums of the single, double and resonance bond radii of carbon. arXiv:0804.4086, 2008, Freely accessible [physics.gen-ph].
4.
go back to reference O.B. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27(3–4), 227–356 (2002)CrossRef O.B. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27(3–4), 227–356 (2002)CrossRef
5.
go back to reference F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015)CrossRef F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015)CrossRef
6.
go back to reference A.A. Balandin, S. Ghosh, W. Bao, et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRef A.A. Balandin, S. Ghosh, W. Bao, et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRef
7.
go back to reference S. Chen, Q. Wu, C. Mishra, et al., Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–207 (2012)CrossRef S. Chen, Q. Wu, C. Mishra, et al., Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–207 (2012)CrossRef
8.
go back to reference C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–358 (2008)CrossRef C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–358 (2008)CrossRef
9.
go back to reference Y. Talukdar, J.T. Rashkow, G. Lalwani, S. Kanakia, B. Sitharaman, The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials 35(18), 4863–4877 (2014)CrossRef Y. Talukdar, J.T. Rashkow, G. Lalwani, S. Kanakia, B. Sitharaman, The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials 35(18), 4863–4877 (2014)CrossRef
10.
go back to reference Y. Gogotsi, Carbon Nanomaterials (CRC Press, 2006), Boca Raton, FL, USA, p. 344 Y. Gogotsi, Carbon Nanomaterials (CRC Press, 2006), Boca Raton, FL, USA, p. 344
11.
go back to reference A. Jorio, M.S. Dresselhaus, G. Dresselhaus, Y. Gogotsi, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, 1st edn. (Springer, Berlin, 2008), p. 744CrossRef A. Jorio, M.S. Dresselhaus, G. Dresselhaus, Y. Gogotsi, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, 1st edn. (Springer, Berlin, 2008), p. 744CrossRef
12.
go back to reference R. Haug, Advances in Solid State Physics, vol 47, 1st edn. (Springer, Berlin, 2008), p. 363 R. Haug, Advances in Solid State Physics, vol 47, 1st edn. (Springer, Berlin, 2008), p. 363
13.
go back to reference B. Bharat Bhushan, Springer Handbook of Nanotechnology, 1st edn. (Springer, 2008), New York, p. 363 B. Bharat Bhushan, Springer Handbook of Nanotechnology, 1st edn. (Springer, 2008), New York, p. 363
14.
go back to reference C.E. Banks, D.A.C. Brownson, 2D Materials: Characterization, Production and Applications (CRC Press, Boca Raton, 2018), p. 248CrossRef C.E. Banks, D.A.C. Brownson, 2D Materials: Characterization, Production and Applications (CRC Press, Boca Raton, 2018), p. 248CrossRef
15.
go back to reference J. Zhang, Chemically Derived Graphene (Royal Society of Chemistry, Cambridge, 2018), p. 383CrossRef J. Zhang, Chemically Derived Graphene (Royal Society of Chemistry, Cambridge, 2018), p. 383CrossRef
16.
go back to reference A. M. Grumezescu (ed.), Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach (William Andrew, San Diego, 2018), p. 700 A. M. Grumezescu (ed.), Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach (William Andrew, San Diego, 2018), p. 700
17.
go back to reference A. Tiwari, Graphene Bioelectronics (Elsevier Science, Amsterdam, 2017), p. 388 A. Tiwari, Graphene Bioelectronics (Elsevier Science, Amsterdam, 2017), p. 388
18.
go back to reference D.P. Hansora, S. Mishra, Graphene Nanomaterials: Fabrication, Properties, and Applications (Pan Stanford, Singapore, 2017), p. 282 D.P. Hansora, S. Mishra, Graphene Nanomaterials: Fabrication, Properties, and Applications (Pan Stanford, Singapore, 2017), p. 282
19.
go back to reference R. Van Noorden, Moving towards a graphene world. Nature 442, 228–229 (2006)CrossRef R. Van Noorden, Moving towards a graphene world. Nature 442, 228–229 (2006)CrossRef
20.
go back to reference S. Müller, K. Müllen, Expanding benzene to giant graphenes: towards molecular devices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1855), 1453–1472 (2007)CrossRef S. Müller, K. Müllen, Expanding benzene to giant graphenes: towards molecular devices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1855), 1453–1472 (2007)CrossRef
21.
go back to reference T. Ando, Exotic electronic and transport properties of graphene. Physica E. 40(2), 213–227 (2007)CrossRef T. Ando, Exotic electronic and transport properties of graphene. Physica E. 40(2), 213–227 (2007)CrossRef
22.
go back to reference T. Aida, T. Fukushima, Soft materials with graphitic nanostructures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1855), 1539–1552 (2007)CrossRef T. Aida, T. Fukushima, Soft materials with graphitic nanostructures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1855), 1539–1552 (2007)CrossRef
23.
go back to reference A.D. Ghuge, A.R. Shirode, V.J. Kadam, Graphene: a comprehensive review. Curr. Drug Targets. 18(6), 724–733 (2017)CrossRef A.D. Ghuge, A.R. Shirode, V.J. Kadam, Graphene: a comprehensive review. Curr. Drug Targets. 18(6), 724–733 (2017)CrossRef
24.
go back to reference J. Wu, W. Pisula, K. Mullen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)CrossRef J. Wu, W. Pisula, K. Mullen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)CrossRef
25.
go back to reference X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017)CrossRef X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017)CrossRef
26.
go back to reference M. Chen, R.C. Haddon, R. Yan, E. Bekyarova, Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 4, 1054–1063 (2017)CrossRef M. Chen, R.C. Haddon, R. Yan, E. Bekyarova, Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 4, 1054–1063 (2017)CrossRef
27.
go back to reference P. Solís-Fernández, M. Bissett, H. Ago, Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 46, 4572–4613 (2017)CrossRef P. Solís-Fernández, M. Bissett, H. Ago, Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 46, 4572–4613 (2017)CrossRef
28.
go back to reference C. Melios, C.E. Giusca, V. Panchal, O. Kazakova, Water on graphene: review of recent progress. 2D Mater. 5(2), 022001 (2018)CrossRef C. Melios, C.E. Giusca, V. Panchal, O. Kazakova, Water on graphene: review of recent progress. 2D Mater. 5(2), 022001 (2018)CrossRef
29.
go back to reference X. Li, J. Yu, S. Wageh, et al., Graphene in photocatalysis: a review. Small 12(48), 6640–6696 (2016)CrossRef X. Li, J. Yu, S. Wageh, et al., Graphene in photocatalysis: a review. Small 12(48), 6640–6696 (2016)CrossRef
31.
go back to reference A. Azam, N.N. Zulkapli, N. Dorah, et al., Review—critical considerations of high quality graphene synthesized by plasma-enhanced chemical vapor deposition for electronic and energy storage devices. ECS J. Solid State Sci. Technol. 6(6), M3035–M3048 (2017)CrossRef A. Azam, N.N. Zulkapli, N. Dorah, et al., Review—critical considerations of high quality graphene synthesized by plasma-enhanced chemical vapor deposition for electronic and energy storage devices. ECS J. Solid State Sci. Technol. 6(6), M3035–M3048 (2017)CrossRef
33.
go back to reference R.K. Prud’homme, B. Ozbas, I.A. Aksay, R.A. Register, D.H. Adamson, Functional graphene – rubber nanocomposites. U.S. Patent Application Filed – Invention # 07-2323-1, 2006 R.K. Prud’homme, B. Ozbas, I.A. Aksay, R.A. Register, D.H. Adamson, Functional graphene – rubber nanocomposites. U.S. Patent Application Filed – Invention # 07-2323-1, 2006
36.
go back to reference D.A. Abanin, K.S. Novoselov, U. Zeitler, P.A. Lee, A.K. Geim, L.S. Levitov, Dissipative quantum hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98(19), 196806 (2007)CrossRef D.A. Abanin, K.S. Novoselov, U. Zeitler, P.A. Lee, A.K. Geim, L.S. Levitov, Dissipative quantum hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98(19), 196806 (2007)CrossRef
37.
go back to reference F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRef
38.
go back to reference J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143(1), 101–109 (2007)CrossRef J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143(1), 101–109 (2007)CrossRef
39.
go back to reference K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315(5817), 1379 (2007)CrossRef K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315(5817), 1379 (2007)CrossRef
40.
go back to reference S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6(3), 198–201 (2007)CrossRef S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6(3), 198–201 (2007)CrossRef
41.
go back to reference K.S. Novoselov, Technology: rapid progress in producing graphene. Nature 505, 291 (2014)CrossRef K.S. Novoselov, Technology: rapid progress in producing graphene. Nature 505, 291 (2014)CrossRef
42.
go back to reference J. van den Brink, Graphene: from strength to strength. Nat. Nanotechnol. 2(4), 199–201 (2007)CrossRef J. van den Brink, Graphene: from strength to strength. Nat. Nanotechnol. 2(4), 199–201 (2007)CrossRef
43.
go back to reference F. Hui, E. Grustan-Gutierrez, S. Long, et al., Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 3(8), 1600195 (2017)CrossRef F. Hui, E. Grustan-Gutierrez, S. Long, et al., Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 3(8), 1600195 (2017)CrossRef
44.
go back to reference A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers. Nature 430(7002), 870–873 (2004)CrossRef A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers. Nature 430(7002), 870–873 (2004)CrossRef
45.
go back to reference J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)CrossRef J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)CrossRef
46.
go back to reference C.-T. Lin, C.-Y. Lee, H.-T. Chiu, T.-S. Chin, Graphene structure in carbon nanocones and Nanodiscs. Langmuir 23(26), 12806–12810 (2007)CrossRef C.-T. Lin, C.-Y. Lee, H.-T. Chiu, T.-S. Chin, Graphene structure in carbon nanocones and Nanodiscs. Langmuir 23(26), 12806–12810 (2007)CrossRef
47.
go back to reference Y. Chen, J. Lu, Z. Gao, Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C. 111(4), 1625–1630 (2007)CrossRef Y. Chen, J. Lu, Z. Gao, Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C. 111(4), 1625–1630 (2007)CrossRef
48.
go back to reference X. Li, L. Tao, Z. Chen, et al., Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017)CrossRef X. Li, L. Tao, Z. Chen, et al., Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017)CrossRef
49.
go back to reference Z. Peralta-Inga, J.S. Murray, M. Edward Grice, S. Boyd, C.J. O'Connor, P. Politzer, Computational characterization of surfaces of model graphene systems. THEOCHEM J. Mol. Struct. 549(1), 147–158 (2001)CrossRef Z. Peralta-Inga, J.S. Murray, M. Edward Grice, S. Boyd, C.J. O'Connor, P. Politzer, Computational characterization of surfaces of model graphene systems. THEOCHEM J. Mol. Struct. 549(1), 147–158 (2001)CrossRef
50.
go back to reference K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009)CrossRef K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009)CrossRef
51.
go back to reference Y. Liu, G. Wang, Q. Huang, L. Guo, X. Chen, Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. Phys. Rev. Lett. 108, 225505 (2012)CrossRef Y. Liu, G. Wang, Q. Huang, L. Guo, X. Chen, Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. Phys. Rev. Lett. 108, 225505 (2012)CrossRef
52.
go back to reference A.D. Güçlü, P. Potasz, P. Hawrylak, Electric-field controlled spin in bilayer triangular graphene quantum dots. Phys. Rev. B 84, 035425 (2011)CrossRef A.D. Güçlü, P. Potasz, P. Hawrylak, Electric-field controlled spin in bilayer triangular graphene quantum dots. Phys. Rev. B 84, 035425 (2011)CrossRef
53.
go back to reference L. Tang, R. Ji, X. Cao, et al., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 8(6), 5102–5110 (2012)CrossRef L. Tang, R. Ji, X. Cao, et al., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 8(6), 5102–5110 (2012)CrossRef
54.
go back to reference X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2009)CrossRef X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2009)CrossRef
55.
go back to reference D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)CrossRef D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)CrossRef
57.
go back to reference S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef
58.
go back to reference S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010)CrossRef S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010)CrossRef
59.
go back to reference M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193–13206 (2014)CrossRef M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193–13206 (2014)CrossRef
60.
go back to reference J. Sun, Y. Deng, J. Li, et al., A new graphene derivative: hydroxylated graphene with excellent biocompatibility. ACS Appl. Mater. Interfaces 8(16), 10226–10233 (2016)CrossRef J. Sun, Y. Deng, J. Li, et al., A new graphene derivative: hydroxylated graphene with excellent biocompatibility. ACS Appl. Mater. Interfaces 8(16), 10226–10233 (2016)CrossRef
62.
go back to reference M. Pumera, Z. Sofer, Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 46, 4450–4463 (2017)CrossRef M. Pumera, Z. Sofer, Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 46, 4450–4463 (2017)CrossRef
63.
go back to reference Z. Lin, X. Ye, J. Han, Q. Chen, et al., Precise control of the number of layers of graphene by picosecond laser thinning. Sci. Rep. 5, 11662 (2015)CrossRef Z. Lin, X. Ye, J. Han, Q. Chen, et al., Precise control of the number of layers of graphene by picosecond laser thinning. Sci. Rep. 5, 11662 (2015)CrossRef
64.
go back to reference B. Andonovic, A. Ademi, A. Grozdanov, Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data. Beilstein J. Nanotechnol. 6, 2113–2122 (2015)CrossRef B. Andonovic, A. Ademi, A. Grozdanov, Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data. Beilstein J. Nanotechnol. 6, 2113–2122 (2015)CrossRef
65.
go back to reference H. Shigeo, G. Takuya, F. Masahiro, A. Toru, Y. Tadahiro, M. Yoshio, Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 84, 2403 (2004)CrossRef H. Shigeo, G. Takuya, F. Masahiro, A. Toru, Y. Tadahiro, M. Yoshio, Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 84, 2403 (2004)CrossRef
66.
go back to reference Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7(9), 2758–2763 (2007)CrossRef Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7(9), 2758–2763 (2007)CrossRef
67.
go back to reference C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)CrossRef C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)CrossRef
68.
go back to reference S. Grimme, C. Muck-Lichtenfeld, J. Antony, Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes. J. Phys. Chem. C 111(30), 11199–11207 (2007)CrossRef S. Grimme, C. Muck-Lichtenfeld, J. Antony, Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes. J. Phys. Chem. C 111(30), 11199–11207 (2007)CrossRef
69.
go back to reference M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Atomic structure of graphene on SiO2. Nano Lett. 7(6), 1643–1648 (2007)CrossRef M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Atomic structure of graphene on SiO2. Nano Lett. 7(6), 1643–1648 (2007)CrossRef
70.
go back to reference Y.A. Sitenko, N.D. Vlasii, Electronic properties of graphene with a topological defect. Nucl. Phys. B 787(3), 241–259 (2007)CrossRef Y.A. Sitenko, N.D. Vlasii, Electronic properties of graphene with a topological defect. Nucl. Phys. B 787(3), 241–259 (2007)CrossRef
71.
go back to reference V. Barone, O. Hod, G.E. Scuseria, Electronic structure and stability of semiconducting graphene. Nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)CrossRef V. Barone, O. Hod, G.E. Scuseria, Electronic structure and stability of semiconducting graphene. Nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)CrossRef
72.
go back to reference A. Cortijo, M.A.H. Vozmediano, Electronic properties of curved graphene sheets. Europhysics Lett. 77(4), 47002 (2007)CrossRef A. Cortijo, M.A.H. Vozmediano, Electronic properties of curved graphene sheets. Europhysics Lett. 77(4), 47002 (2007)CrossRef
73.
go back to reference F. Lopez-Urias, J.A. Rodriguez-Manzo, E. Munoz-Sandoval, M. Terrones, H. Terrones, Magnetic response in finite carbon graphene sheets and nanotubes. Opt. Mater. 29(1), 110–115 (2006)CrossRef F. Lopez-Urias, J.A. Rodriguez-Manzo, E. Munoz-Sandoval, M. Terrones, H. Terrones, Magnetic response in finite carbon graphene sheets and nanotubes. Opt. Mater. 29(1), 110–115 (2006)CrossRef
74.
go back to reference T. Christensen, Electronic properties of graphene, in From Classical to Quantum Plasmonics in Three and Two Dimensions, (Springer, Cham, 2017), pp. 83–96CrossRef T. Christensen, Electronic properties of graphene, in From Classical to Quantum Plasmonics in Three and Two Dimensions, (Springer, Cham, 2017), pp. 83–96CrossRef
75.
go back to reference J. Zhang, C. Zhao, N. Liu, et al., Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. Sci. Rep. 6, 28330 (2016)CrossRef J. Zhang, C. Zhao, N. Liu, et al., Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. Sci. Rep. 6, 28330 (2016)CrossRef
76.
go back to reference M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10(1), 20–27 (2007)CrossRef M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10(1), 20–27 (2007)CrossRef
78.
go back to reference E. McCann, D.S.L. Abergel, V.I. Fal’ko, Electrons in bilayer graphene. Solid State Commun. 143(1), 110–115 (2007)CrossRef E. McCann, D.S.L. Abergel, V.I. Fal’ko, Electrons in bilayer graphene. Solid State Commun. 143(1), 110–115 (2007)CrossRef
79.
go back to reference O. Hod, V. Barone, J.E. Peralta, G.E. Scuseria, Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7(8), 2295–2299 (2007)CrossRef O. Hod, V. Barone, J.E. Peralta, G.E. Scuseria, Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7(8), 2295–2299 (2007)CrossRef
80.
go back to reference C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7(11), 3499–3503 (2007)CrossRef C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7(11), 3499–3503 (2007)CrossRef
81.
go back to reference W.L. Wang, S. Meng, E. Kaxiras, Graphene nanoflakes with large spin. Nano Lett. 8(1), 241–245 (2008)CrossRef W.L. Wang, S. Meng, E. Kaxiras, Graphene nanoflakes with large spin. Nano Lett. 8(1), 241–245 (2008)CrossRef
82.
go back to reference D.-e. Jiang, B.G. Sumpter, S. Dai, First principles study of magnetism in nanographenes. J. Chem. Phys. 127(12), 124703 (2007)CrossRef D.-e. Jiang, B.G. Sumpter, S. Dai, First principles study of magnetism in nanographenes. J. Chem. Phys. 127(12), 124703 (2007)CrossRef
83.
go back to reference J. Fernández-Rossier, J.J. Palacios, Magnetism in graphene nanoislands. Phys. Rev. Lett. 99, 177204 (2007)CrossRef J. Fernández-Rossier, J.J. Palacios, Magnetism in graphene nanoislands. Phys. Rev. Lett. 99, 177204 (2007)CrossRef
84.
go back to reference S.K. Sarkar, K.K. Raul, S.S. Pradhan, S. Basu, A. Nayak, et al., Magnetic properties of graphite oxide and reduced graphene oxide. Physica E 64, 78–82 (2014)CrossRef S.K. Sarkar, K.K. Raul, S.S. Pradhan, S. Basu, A. Nayak, et al., Magnetic properties of graphite oxide and reduced graphene oxide. Physica E 64, 78–82 (2014)CrossRef
85.
go back to reference A. Jabar, R. Masrour, Magnetic properties of graphene structure: a Monte Carlo simulation. J. Supercond. Nov. Magn. 29(5), 1363–1369 (2016)CrossRef A. Jabar, R. Masrour, Magnetic properties of graphene structure: a Monte Carlo simulation. J. Supercond. Nov. Magn. 29(5), 1363–1369 (2016)CrossRef
86.
go back to reference T. Tang, F. Liu, Y. Liu, et al., Identifying the magnetic properties of graphene oxide. Appl. Phys. Lett. 104, 123104 (2014)CrossRef T. Tang, F. Liu, Y. Liu, et al., Identifying the magnetic properties of graphene oxide. Appl. Phys. Lett. 104, 123104 (2014)CrossRef
87.
go back to reference S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, Solution properties of graphite and graphene. J. Am. Chem. Soc. 128(24), 7720–7721 (2006)CrossRef S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, Solution properties of graphite and graphene. J. Am. Chem. Soc. 128(24), 7720–7721 (2006)CrossRef
88.
go back to reference K.A. Worsley, P. Ramesh, S.K. Mandal, S. Niyogi, M.E. Itkis, R.C. Haddon, Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445(1), 51–56 (2007)CrossRef K.A. Worsley, P. Ramesh, S.K. Mandal, S. Niyogi, M.E. Itkis, R.C. Haddon, Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445(1), 51–56 (2007)CrossRef
89.
go back to reference S. Yu, X. Wang, R. Zhang, et al., Complex roles of solution chemistry on graphene oxide coagulation onto titanium dioxide: batch experiments, spectroscopy analysis and theoretical calculation. Sci. Rep. 7, 39625 (2017)CrossRef S. Yu, X. Wang, R. Zhang, et al., Complex roles of solution chemistry on graphene oxide coagulation onto titanium dioxide: batch experiments, spectroscopy analysis and theoretical calculation. Sci. Rep. 7, 39625 (2017)CrossRef
90.
go back to reference L. Yang, M.L. Cohen, S.G. Louie, Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 7(10), 3112–3115 (2007)CrossRef L. Yang, M.L. Cohen, S.G. Louie, Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 7(10), 3112–3115 (2007)CrossRef
91.
go back to reference I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7(12), 3569–3575 (2007)CrossRef I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7(12), 3569–3575 (2007)CrossRef
92.
go back to reference D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007)CrossRef D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007)CrossRef
93.
go back to reference I. Calizo, F. Miao, W. Bao, C.N. Lau, A.A. Balandin, Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices. Appl. Phys. Lett. 91, 071913 (2007)CrossRef I. Calizo, F. Miao, W. Bao, C.N. Lau, A.A. Balandin, Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices. Appl. Phys. Lett. 91, 071913 (2007)CrossRef
94.
go back to reference I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7(9), 2645–2649 (2007)CrossRef I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7(9), 2645–2649 (2007)CrossRef
95.
go back to reference D.Y. Usachov, V.Y. Davydov, V.S. Levitskii, et al., Raman spectroscopy of lattice-matched graphene on strongly interacting metal surfaces. ACS Nano 11(6), 6336–6345 (2017)CrossRef D.Y. Usachov, V.Y. Davydov, V.S. Levitskii, et al., Raman spectroscopy of lattice-matched graphene on strongly interacting metal surfaces. ACS Nano 11(6), 6336–6345 (2017)CrossRef
96.
go back to reference S. Reichardt, L. Wirtz, Raman Spectroscopy of Graphene. 2017, arXiv:1703.06909, p. 25. S. Reichardt, L. Wirtz, Raman Spectroscopy of Graphene. 2017, arXiv:1703.06909, p. 25.
97.
go back to reference C. Ferrante, A. Virga, L. Benfatto et al. Raman spectroscopy of graphene under ultrafast laser excitation. 2017, arXiv:1704.00186, p .18. C. Ferrante, A. Virga, L. Benfatto et al. Raman spectroscopy of graphene under ultrafast laser excitation. 2017, arXiv:1704.00186, p .18.
98.
go back to reference I. Calizo, W. Bao, F. Miao, C.N. Lau, A.A. Balandin, The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass. Appl. Phys. Lett. 91, 201904 (2007)CrossRef I. Calizo, W. Bao, F. Miao, C.N. Lau, A.A. Balandin, The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass. Appl. Phys. Lett. 91, 201904 (2007)CrossRef
99.
go back to reference S.A. Yerişkin, M. Balbaşı, İ. Orak, Frequency dependent electrical characteristics and origin of anomalous capacitance–voltage (C–V) peak in Au/(graphene-doped PVA)/n-Si capacitors. J. Mater. Sci. Mater. Electron. V28(11), 7819–7826 (2017)CrossRef S.A. Yerişkin, M. Balbaşı, İ. Orak, Frequency dependent electrical characteristics and origin of anomalous capacitance–voltage (C–V) peak in Au/(graphene-doped PVA)/n-Si capacitors. J. Mater. Sci. Mater. Electron. V28(11), 7819–7826 (2017)CrossRef
100.
go back to reference G. Luongo, F. Giubileo, L. Genovese, et al., I-V and C-V characterization of a high-responsivity graphene/silicon photodiode with embedded MOS capacitor. Nanomaterials (Basel) 7(7), 158 (2017)CrossRef G. Luongo, F. Giubileo, L. Genovese, et al., I-V and C-V characterization of a high-responsivity graphene/silicon photodiode with embedded MOS capacitor. Nanomaterials (Basel) 7(7), 158 (2017)CrossRef
101.
go back to reference J. Guo, Y. Yoon, Y. Ouyang, Gate electrostatics and quantum capacitance of graphene nanoribbons. Nano Lett. 7(7), 1935–1940 (2007)CrossRef J. Guo, Y. Yoon, Y. Ouyang, Gate electrostatics and quantum capacitance of graphene nanoribbons. Nano Lett. 7(7), 1935–1940 (2007)CrossRef
102.
go back to reference Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)CrossRef Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)CrossRef
103.
go back to reference Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444, 347 (2006)CrossRef Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444, 347 (2006)CrossRef
104.
go back to reference L. Yang, C.H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Quasiparticle energies and band gaps of graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)CrossRef L. Yang, C.H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Quasiparticle energies and band gaps of graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)CrossRef
105.
go back to reference T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007)CrossRef T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007)CrossRef
106.
go back to reference P. Shemella, Y. Zhang, M. Mailman, P.M. Ajayan, S.K. Nayak, Energy gaps in zero-dimensional graphene nanoribbons. Appl. Phys. Lett. 91, 042101 (2007)CrossRef P. Shemella, Y. Zhang, M. Mailman, P.M. Ajayan, S.K. Nayak, Energy gaps in zero-dimensional graphene nanoribbons. Appl. Phys. Lett. 91, 042101 (2007)CrossRef
107.
go back to reference G. Liang, N. Neophytou, M.S. Lundstrom, D.E. Nikonov, Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: a full real-space quantum transport simulation. J. Appl. Phys. 102, 054307 (2007)CrossRef G. Liang, N. Neophytou, M.S. Lundstrom, D.E. Nikonov, Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: a full real-space quantum transport simulation. J. Appl. Phys. 102, 054307 (2007)CrossRef
108.
go back to reference D.-e. Jiang, B.G. Sumpter, S. Dai, Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007)CrossRef D.-e. Jiang, B.G. Sumpter, S. Dai, Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007)CrossRef
112.
go back to reference H.C. Lee, W.-W. Liu, S.-P. Chai, et al., Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7, 15644–15693 (2017)CrossRef H.C. Lee, W.-W. Liu, S.-P. Chai, et al., Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7, 15644–15693 (2017)CrossRef
113.
go back to reference N. Woehrl, O. Ochedowski, S. Gottlieb, K. Shibasaki, S. Schulz, Plasma-enhanced chemical vapor deposition of graphene on copper substrates. AIP Adv. 4, 047128 (2014)CrossRef N. Woehrl, O. Ochedowski, S. Gottlieb, K. Shibasaki, S. Schulz, Plasma-enhanced chemical vapor deposition of graphene on copper substrates. AIP Adv. 4, 047128 (2014)CrossRef
114.
go back to reference P.R. Somani, S.P. Somani, M. Umeno, Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430(1), 56–59 (2006)CrossRef P.R. Somani, S.P. Somani, M. Umeno, Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430(1), 56–59 (2006)CrossRef
115.
go back to reference E. Rollings, G.H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Fedorov, P.N. First, W.A. de Heer, A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Sol. 67(9), 2172–2177 (2006)CrossRef E. Rollings, G.H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Fedorov, P.N. First, W.A. de Heer, A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Sol. 67(9), 2172–2177 (2006)CrossRef
117.
go back to reference Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)CrossRef Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)CrossRef
118.
go back to reference S. Cai, X. Liu, J. Huang, Z. Liu, Feasibility of polyethylene film as both supporting material for transfer and target substrate for flexible strain sensor of CVD graphene grown on Cu foil. RSC Adv. 7, 48333–48340 (2017)CrossRef S. Cai, X. Liu, J. Huang, Z. Liu, Feasibility of polyethylene film as both supporting material for transfer and target substrate for flexible strain sensor of CVD graphene grown on Cu foil. RSC Adv. 7, 48333–48340 (2017)CrossRef
119.
go back to reference T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006)CrossRef T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006)CrossRef
120.
go back to reference W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene. Solid State Commun. 143(1), 92–100 (2007)CrossRef W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene. Solid State Commun. 143(1), 92–100 (2007)CrossRef
121.
go back to reference C. Riedl, U. Starke, Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 76, 245406 (2007)CrossRef C. Riedl, U. Starke, Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 76, 245406 (2007)CrossRef
122.
go back to reference J. Hass, R. Feng, T. Li, X. Li, Z. Zong, W.A. de Heer, P.N. First, E.H. Conrad, C.A. Jeffrey, C. Berger, Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106 (2006)CrossRef J. Hass, R. Feng, T. Li, X. Li, Z. Zong, W.A. de Heer, P.N. First, E.H. Conrad, C.A. Jeffrey, C. Berger, Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106 (2006)CrossRef
124.
go back to reference Z. Osvath, A.L. Darabont, P. Nemes-Incze, E. Horvath, Z.E. Horvath, L.P. Biro, Graphene layers from thermal oxidation of exfoliated graphite plates. Carbon 45(15), 3022–3026 (2007)CrossRef Z. Osvath, A.L. Darabont, P. Nemes-Incze, E. Horvath, Z.E. Horvath, L.P. Biro, Graphene layers from thermal oxidation of exfoliated graphite plates. Carbon 45(15), 3022–3026 (2007)CrossRef
125.
go back to reference S. Eigler, M. Enzelberger-Heim, S. Grimm, et al., Wet chemical synthesis of graphene. Adv. Mater. 25(26), 3583–3587 (2013)CrossRef S. Eigler, M. Enzelberger-Heim, S. Grimm, et al., Wet chemical synthesis of graphene. Adv. Mater. 25(26), 3583–3587 (2013)CrossRef
126.
go back to reference M. Antonietti, K. Müllen (eds.), Chemical Synthesis and Applications of Graphene and Carbon Materials (Wiley-VCH, Weinheim, 2017), p. 256 M. Antonietti, K. Müllen (eds.), Chemical Synthesis and Applications of Graphene and Carbon Materials (Wiley-VCH, Weinheim, 2017), p. 256
127.
go back to reference W. Wei, B. Hu, F. Jin, et al., Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance in HTM-free perovskite solar cells. J. Mater. Chem. A 5, 7749–7752 (2017)CrossRef W. Wei, B. Hu, F. Jin, et al., Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance in HTM-free perovskite solar cells. J. Mater. Chem. A 5, 7749–7752 (2017)CrossRef
128.
go back to reference Z. Zhu, D. Su, G. Weinberg, R. Schlogl, Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett. 4(11), 2255–2259 (2004)CrossRef Z. Zhu, D. Su, G. Weinberg, R. Schlogl, Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett. 4(11), 2255–2259 (2004)CrossRef
129.
go back to reference S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRef S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRef
130.
go back to reference H. Cui, Z. Zhou, D. Jia, Heteroatom-doped graphene as electrocatalysts for air cathodes. Mater. Horiz. 4, 7–19 (2017)CrossRef H. Cui, Z. Zhou, D. Jia, Heteroatom-doped graphene as electrocatalysts for air cathodes. Mater. Horiz. 4, 7–19 (2017)CrossRef
131.
go back to reference J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5(9), 5207–5234 (2015)CrossRef J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5(9), 5207–5234 (2015)CrossRef
132.
go back to reference D.J. Gregg, E. Bothe, P. Höfer, P. Passaniti, S.M. Draper, Extending the nitrogen-heterosuperbenzene family: the spectroscopic, redox, and photophysical properties of “half-cyclized” N-1/2HSB and its Ru(II) complex. Inorg. Chem. 44(16), 5654–5660 (2005)CrossRef D.J. Gregg, E. Bothe, P. Höfer, P. Passaniti, S.M. Draper, Extending the nitrogen-heterosuperbenzene family: the spectroscopic, redox, and photophysical properties of “half-cyclized” N-1/2HSB and its Ru(II) complex. Inorg. Chem. 44(16), 5654–5660 (2005)CrossRef
133.
go back to reference M.S. Draper, D.J. Gregg, E.R. Schofield, W.R. Browne, M. Duati, J.G. Vos, P. Passaniti, J. Am. Chem. Soc. 126, 8694 (2004)CrossRef M.S. Draper, D.J. Gregg, E.R. Schofield, W.R. Browne, M. Duati, J.G. Vos, P. Passaniti, J. Am. Chem. Soc. 126, 8694 (2004)CrossRef
134.
go back to reference S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano Lett. 7(11), 3394–3398 (2007)CrossRef S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano Lett. 7(11), 3394–3398 (2007)CrossRef
135.
go back to reference M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRef M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRef
136.
go back to reference H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)CrossRef H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)CrossRef
137.
go back to reference S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15), 3342–3347 (2006)CrossRef S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15), 3342–3347 (2006)CrossRef
138.
go back to reference L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRef L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRef
140.
go back to reference Y. Sun, J. Tang, K. Zhang, et al., Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9, 2585–2595 (2017)CrossRef Y. Sun, J. Tang, K. Zhang, et al., Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9, 2585–2595 (2017)CrossRef
141.
go back to reference A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998)CrossRef A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998)CrossRef
143.
go back to reference A.N. Sidorov, M.M. Yazdanpanah, R. Jalilian, P.J. Ouseph, R.W. Cohn, G.U. Sumanasekera, Electrostatic deposition of graphene. Nanotechnology 18(13), 135301 (2007)CrossRef A.N. Sidorov, M.M. Yazdanpanah, R. Jalilian, P.J. Ouseph, R.W. Cohn, G.U. Sumanasekera, Electrostatic deposition of graphene. Nanotechnology 18(13), 135301 (2007)CrossRef
144.
go back to reference B.H. Northrop, J.E. Norton, K.N. Houk, On the mechanism of peripentacene formation from pentacene: computational studies of a prototype for graphene formation from smaller acenes. J. Am. Chem. Soc. 129(20), 6536–6546 (2007)CrossRef B.H. Northrop, J.E. Norton, K.N. Houk, On the mechanism of peripentacene formation from pentacene: computational studies of a prototype for graphene formation from smaller acenes. J. Am. Chem. Soc. 129(20), 6536–6546 (2007)CrossRef
145.
go back to reference A.M. Dimiev, S. Eigler, 2. Mechanism of formation and chemical structure of graphene oxide, in Graphene Oxide: Fundamentals and Applications, (John Wiley & Sons, Ltd, Chichester, 2016)CrossRef A.M. Dimiev, S. Eigler, 2. Mechanism of formation and chemical structure of graphene oxide, in Graphene Oxide: Fundamentals and Applications, (John Wiley & Sons, Ltd, Chichester, 2016)CrossRef
146.
go back to reference H. Cui, J. Zheng, P. Yang, et al., Understanding the formation mechanism of graphene frameworks synthesized by solvothermal and rapid pyrolytic processes based on an alcohol–sodium hydroxide system. ACS Appl. Mater. Interfaces 7(21), 11230–11238 (2015)CrossRef H. Cui, J. Zheng, P. Yang, et al., Understanding the formation mechanism of graphene frameworks synthesized by solvothermal and rapid pyrolytic processes based on an alcohol–sodium hydroxide system. ACS Appl. Mater. Interfaces 7(21), 11230–11238 (2015)CrossRef
147.
go back to reference A.M. Dimiev, J.M. Tour, Mechanism of graphene oxide formation. ACS Nano 8(3), 3060–3068 (2014)CrossRef A.M. Dimiev, J.M. Tour, Mechanism of graphene oxide formation. ACS Nano 8(3), 3060–3068 (2014)CrossRef
148.
go back to reference R. Whitesides, A.C. Kollias, D. Domin, W.A. Lester, M. Frenklach, Graphene layer growth: collision of migrating five-member rings. Proc. Combust. Inst. 31(1), 539–546 (2007)CrossRef R. Whitesides, A.C. Kollias, D. Domin, W.A. Lester, M. Frenklach, Graphene layer growth: collision of migrating five-member rings. Proc. Combust. Inst. 31(1), 539–546 (2007)CrossRef
149.
go back to reference Y. Carissan, W. Klopper, Growing graphene sheets from reactions with methyl radicals: a quantum chemical study. Chemphyschem 7(8), 1770–1778 (2006)CrossRef Y. Carissan, W. Klopper, Growing graphene sheets from reactions with methyl radicals: a quantum chemical study. Chemphyschem 7(8), 1770–1778 (2006)CrossRef
150.
go back to reference M. Frenklach, J. Ping, On the role of surface migration in the growth and structure of graphene layers. Carbon 42(7), 1209–1212 (2004)CrossRef M. Frenklach, J. Ping, On the role of surface migration in the growth and structure of graphene layers. Carbon 42(7), 1209–1212 (2004)CrossRef
151.
go back to reference E. Cappelli, S. Orlando, V. Morandi, M. Servidori, C. Scilletta, Nano-graphene growth and texturing by Nd:YAG pulsed laser ablation of graphite on silicon. J. Phys. Conf. Ser. 59(1), 616–624 (2007)CrossRef E. Cappelli, S. Orlando, V. Morandi, M. Servidori, C. Scilletta, Nano-graphene growth and texturing by Nd:YAG pulsed laser ablation of graphite on silicon. J. Phys. Conf. Ser. 59(1), 616–624 (2007)CrossRef
153.
go back to reference Y. Miura, H. Kasai, W. Diño, H. Nakanishi, T. Sugimoto, First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 93, 3395 (2003)CrossRef Y. Miura, H. Kasai, W. Diño, H. Nakanishi, T. Sugimoto, First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 93, 3395 (2003)CrossRef
154.
go back to reference R. Nagar, B.P. Vinayan, S.S. Samantaray, S. Ramaprabhu, Recent advances in hydrogen storage using catalytically and chemically modified graphene nanocomposites. J. Mater. Chem. A 5, 22897–22912 (2017)CrossRef R. Nagar, B.P. Vinayan, S.S. Samantaray, S. Ramaprabhu, Recent advances in hydrogen storage using catalytically and chemically modified graphene nanocomposites. J. Mater. Chem. A 5, 22897–22912 (2017)CrossRef
155.
go back to reference Y. Hao, X. Zhao, X. Song, H. Li, X. Zhu, C. Hao, The interaction between graphene and oxygen atom. Open Phys. 14, 690–694 (2016)CrossRef Y. Hao, X. Zhao, X. Song, H. Li, X. Zhu, C. Hao, The interaction between graphene and oxygen atom. Open Phys. 14, 690–694 (2016)CrossRef
156.
go back to reference K. Takeuchi, S. Yamamoto, Y. Hamamoto, et al., Adsorption of CO2 on graphene: a combined TPD, XPS, and vdW-DF study. J. Phys. Chem. C 121(5), 2807–2814 (2017)CrossRef K. Takeuchi, S. Yamamoto, Y. Hamamoto, et al., Adsorption of CO2 on graphene: a combined TPD, XPS, and vdW-DF study. J. Phys. Chem. C 121(5), 2807–2814 (2017)CrossRef
157.
go back to reference B. Kerkeni, D.C. Clary, Quantum dynamics study of the Langmuir–Hinshelwood H + H recombination mechanism and H2 formation on a graphene model surface. Chem. Phys. 338(1), 1–10 (2007)CrossRef B. Kerkeni, D.C. Clary, Quantum dynamics study of the Langmuir–Hinshelwood H + H recombination mechanism and H2 formation on a graphene model surface. Chem. Phys. 338(1), 1–10 (2007)CrossRef
158.
go back to reference L.A. Chernozatonskii, P.B. Sorokin, Two-dimensional semiconducting nanostructures based on single graphene sheets with lines of adsorbed hydrogen atoms. Appl. Phys. Lett. 91, 183103 (2007)CrossRef L.A. Chernozatonskii, P.B. Sorokin, Two-dimensional semiconducting nanostructures based on single graphene sheets with lines of adsorbed hydrogen atoms. Appl. Phys. Lett. 91, 183103 (2007)CrossRef
159.
go back to reference Y. Okamoto, Y. Miyamoto, Ab Initio investigation of physisorption of molecular hydrogen on planar and curved graphenes. J. Phys. Chem. B 105(17), 3470–3474 (2001)CrossRef Y. Okamoto, Y. Miyamoto, Ab Initio investigation of physisorption of molecular hydrogen on planar and curved graphenes. J. Phys. Chem. B 105(17), 3470–3474 (2001)CrossRef
160.
go back to reference I. Cabria, M.J. López, J.A. Alonso, Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. J. Chem. Phys. 123, 204721 (2005)CrossRef I. Cabria, M.J. López, J.A. Alonso, Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. J. Chem. Phys. 123, 204721 (2005)CrossRef
161.
go back to reference V.G. Zavodinsky, E.A. Mikhailenko, Quantum-mechanics simulation of carbon nanoclusters and their activities in reactions with molecular oxygen. Comput. Mater. Sci. 36(1), 159–165 (2006)CrossRef V.G. Zavodinsky, E.A. Mikhailenko, Quantum-mechanics simulation of carbon nanoclusters and their activities in reactions with molecular oxygen. Comput. Mater. Sci. 36(1), 159–165 (2006)CrossRef
162.
go back to reference F. Cataldo, Ozone reaction with carbon nanostructures. 2: The reaction of ozone with milled graphite and different carbon black grades. J. Nanosci. Nanotech. 7(4–5), 1446–1454 (2007)CrossRef F. Cataldo, Ozone reaction with carbon nanostructures. 2: The reaction of ozone with milled graphite and different carbon black grades. J. Nanosci. Nanotech. 7(4–5), 1446–1454 (2007)CrossRef
163.
go back to reference M.T. Hasan, B.J. Senger, C. Ryan, et al., Optical band gap alteration of graphene oxide via ozone treatment. Sci. Rep. 7, 6411 (2017)CrossRef M.T. Hasan, B.J. Senger, C. Ryan, et al., Optical band gap alteration of graphene oxide via ozone treatment. Sci. Rep. 7, 6411 (2017)CrossRef
164.
go back to reference P.A. Gauden, M. Wisniewski, CO2 sorption on substituted carbon materials. Appl. Surf. Sci. 253(13), 5726–5731 (2007)CrossRef P.A. Gauden, M. Wisniewski, CO2 sorption on substituted carbon materials. Appl. Surf. Sci. 253(13), 5726–5731 (2007)CrossRef
165.
go back to reference R. Strzelczyk, C.E. Giusca, F. Perrozzi, et al., Role of substrate on interaction of water molecules with graphene oxide and reduced graphene oxide. Carbon 122, 168–175 (2017)CrossRef R. Strzelczyk, C.E. Giusca, F. Perrozzi, et al., Role of substrate on interaction of water molecules with graphene oxide and reduced graphene oxide. Carbon 122, 168–175 (2017)CrossRef
166.
go back to reference E. Rangel Cortes, L.F. Magana Solıs, J.S. Arellano, Interaction of a water molecule with a graphene layer. Rev. Mex. Fís. S59(1), 118–125 (2013) E. Rangel Cortes, L.F. Magana Solıs, J.S. Arellano, Interaction of a water molecule with a graphene layer. Rev. Mex. Fís. S59(1), 118–125 (2013)
167.
go back to reference M.K. Kostov, E.E. Santiso, A.M. George, K.E. Gubbins, M.B. Nardelli, Dissociation of water on defective carbon substrates. Phys. Rev. Lett. 95(13), 136105 (2005)CrossRef M.K. Kostov, E.E. Santiso, A.M. George, K.E. Gubbins, M.B. Nardelli, Dissociation of water on defective carbon substrates. Phys. Rev. Lett. 95(13), 136105 (2005)CrossRef
168.
go back to reference N.A. Cordero, J.A. Alonso, The interaction of sulfuric acid with graphene and formation of adsorbed crystals. Nanotechnology 18(48), 485705 (2007)CrossRef N.A. Cordero, J.A. Alonso, The interaction of sulfuric acid with graphene and formation of adsorbed crystals. Nanotechnology 18(48), 485705 (2007)CrossRef
169.
go back to reference D.-E. Jiang, B.G. Sumpter, S. Dai, How do aryl groups attach to a graphene sheet? J. Phys. Chem. B 110(47), 23628–23632 (2006)CrossRef D.-E. Jiang, B.G. Sumpter, S. Dai, How do aryl groups attach to a graphene sheet? J. Phys. Chem. B 110(47), 23628–23632 (2006)CrossRef
170.
go back to reference P.A. Denis, On the addition of aryl radicals to graphene: the importance of nonbonded interactions. Chem. Phys. Chem. 14(14), 3271–3277 (2013)CrossRef P.A. Denis, On the addition of aryl radicals to graphene: the importance of nonbonded interactions. Chem. Phys. Chem. 14(14), 3271–3277 (2013)CrossRef
171.
go back to reference X. Liu, C.-Z. Wang, M. Hupalo, et al., Metals on graphene: interactions, growth morphology, and thermal stability. Crystals 3, 79–111 (2013)CrossRef X. Liu, C.-Z. Wang, M. Hupalo, et al., Metals on graphene: interactions, growth morphology, and thermal stability. Crystals 3, 79–111 (2013)CrossRef
172.
go back to reference A.R. Cadore, E. Mania, E.A. de Morais, et al., Metal-graphene heterojunction modulation via H2 interaction. Appl. Phys. Lett. 109, 033109 (2016)CrossRef A.R. Cadore, E. Mania, E.A. de Morais, et al., Metal-graphene heterojunction modulation via H2 interaction. Appl. Phys. Lett. 109, 033109 (2016)CrossRef
173.
go back to reference M. Manolata Devi, S.R. Sahu, P. Mukherjee, P. Sen, K. Biswas, Graphene–metal nanoparticle hybrids: electronic interaction between graphene and nanoparticles. Trans. Indian Inst. Metals 69(4), 839–844 (2016)CrossRef M. Manolata Devi, S.R. Sahu, P. Mukherjee, P. Sen, K. Biswas, Graphene–metal nanoparticle hybrids: electronic interaction between graphene and nanoparticles. Trans. Indian Inst. Metals 69(4), 839–844 (2016)CrossRef
174.
go back to reference J. Lee, K.S. Novoselov, H.S. Shin, Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano. 5(1), 608–612 (2011)CrossRef J. Lee, K.S. Novoselov, H.S. Shin, Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano. 5(1), 608–612 (2011)CrossRef
175.
go back to reference Y. Okamoto, Density-functional calculations of icosahedral M13 (M=Pt and Au) clusters on graphene sheets and flakes. Chem. Phys. Lett. 420(4), 382–386 (2006)CrossRef Y. Okamoto, Density-functional calculations of icosahedral M13 (M=Pt and Au) clusters on graphene sheets and flakes. Chem. Phys. Lett. 420(4), 382–386 (2006)CrossRef
176.
go back to reference M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 44(13), 2681–2688 (2006)CrossRef M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 44(13), 2681–2688 (2006)CrossRef
177.
go back to reference S. Masatsugu, I.S. Suzuki, W. Jürgen, Superconductivity and magnetic short-range order in the system with a Pd sheet sandwiched between graphene sheets. J. Phys.: Condens. Matter 16(6), 903–918 (2004) S. Masatsugu, I.S. Suzuki, W. Jürgen, Superconductivity and magnetic short-range order in the system with a Pd sheet sandwiched between graphene sheets. J. Phys.: Condens. Matter 16(6), 903–918 (2004)
178.
go back to reference P.R. Unwin, A.G. Güell, G. Zhang, Nanoscale electrochemistry of sp(2) carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49(9), 2041–2048 (2016)CrossRef P.R. Unwin, A.G. Güell, G. Zhang, Nanoscale electrochemistry of sp(2) carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49(9), 2041–2048 (2016)CrossRef
179.
go back to reference J.-g. Zhao, B.-y. Xing, H. Yang, et al., Growth of carbon nanotubes on graphene by chemical vapor deposition. New Carbon Mater. 31(1), 31–36 (2016)CrossRef J.-g. Zhao, B.-y. Xing, H. Yang, et al., Growth of carbon nanotubes on graphene by chemical vapor deposition. New Carbon Mater. 31(1), 31–36 (2016)CrossRef
180.
go back to reference D. Yu, F. Liu, Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 7(10), 3046–3050 (2007)CrossRef D. Yu, F. Liu, Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 7(10), 3046–3050 (2007)CrossRef
181.
go back to reference A.J. Du, S.C. Smith, G.Q. Lu, Formation of single-walled carbon nanotube via the interaction of graphene nanoribbons: ab initio density functional calculations. Nano Lett. 7(11), 3349–3354 (2007)CrossRef A.J. Du, S.C. Smith, G.Q. Lu, Formation of single-walled carbon nanotube via the interaction of graphene nanoribbons: ab initio density functional calculations. Nano Lett. 7(11), 3349–3354 (2007)CrossRef
182.
go back to reference M. Nagatsu, T. Yoshida, M. Mesko, A. Ogino, T. Matsuda, T. Tanaka, H. Tatsuoka, K. Murakami, Narrow multi-walled carbon nanotubes produced by chemical vapor deposition using graphene layer encapsulated catalytic metal particles. Carbon 44(15), 3336–3341 (2006)CrossRef M. Nagatsu, T. Yoshida, M. Mesko, A. Ogino, T. Matsuda, T. Tanaka, H. Tatsuoka, K. Murakami, Narrow multi-walled carbon nanotubes produced by chemical vapor deposition using graphene layer encapsulated catalytic metal particles. Carbon 44(15), 3336–3341 (2006)CrossRef
183.
go back to reference S. Enouz, O. Stéphan, J.-L. Cochon, C. Colliex, A. Loiseau, C-BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett. 7(7), 1856–1862 (2007)CrossRef S. Enouz, O. Stéphan, J.-L. Cochon, C. Colliex, A. Loiseau, C-BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett. 7(7), 1856–1862 (2007)CrossRef
184.
go back to reference N.A. Koratkar, Graphene in Composite Materials: Synthesis, Characterization and Applications (DEStech Publications, Inc., Lancaster, 2013), p. 198 N.A. Koratkar, Graphene in Composite Materials: Synthesis, Characterization and Applications (DEStech Publications, Inc., Lancaster, 2013), p. 198
185.
go back to reference S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
186.
go back to reference X. Gong, G. Liu, Y. Li, et al., Functionalized-graphene composites: fabrication and applications in sustainable energy and environment. Chem. Mater. 28(22), 8082–8118 (2016)CrossRef X. Gong, G. Liu, Y. Li, et al., Functionalized-graphene composites: fabrication and applications in sustainable energy and environment. Chem. Mater. 28(22), 8082–8118 (2016)CrossRef
187.
go back to reference H. Zhang, Y. Yuan, Y. Sun, et al., An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 143, 175–181 (2018)CrossRef H. Zhang, Y. Yuan, Y. Sun, et al., An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 143, 175–181 (2018)CrossRef
188.
go back to reference B.C. Marin, J. Liu, E. Aklile, et al., SERS-enhanced piezoplasmonic graphene composite for biological and structural strain mapping. Nanoscale 9, 1292–1298 (2017)CrossRef B.C. Marin, J. Liu, E. Aklile, et al., SERS-enhanced piezoplasmonic graphene composite for biological and structural strain mapping. Nanoscale 9, 1292–1298 (2017)CrossRef
189.
go back to reference S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, S.T. Nguyen, R.S. Ruoff, Graphene-silica composite thin films as transparent conductors. Nano Lett. 7(7), 1888–1892 (2007)CrossRef S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, S.T. Nguyen, R.S. Ruoff, Graphene-silica composite thin films as transparent conductors. Nano Lett. 7(7), 1888–1892 (2007)CrossRef
190.
go back to reference C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)CrossRef C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)CrossRef
191.
192.
go back to reference D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.B.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007)CrossRef D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.B.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007)CrossRef
193.
go back to reference Y. Huang, M. Zhu, W. Meng, et al., Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015)CrossRef Y. Huang, M. Zhu, W. Meng, et al., Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015)CrossRef
194.
go back to reference J. Gao, C. Liu, L. Miao, X. Wang, Y. Chen, Free-standing reduced graphene oxide paper with high electrical conductivity. J. Electron. Mater. 45(3), 1290–1295 (2016)CrossRef J. Gao, C. Liu, L. Miao, X. Wang, Y. Chen, Free-standing reduced graphene oxide paper with high electrical conductivity. J. Electron. Mater. 45(3), 1290–1295 (2016)CrossRef
195.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
196.
go back to reference Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)CrossRef Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)CrossRef
197.
go back to reference H. Raza (ed.), Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, Berlin, 2012), p. 586 H. Raza (ed.), Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, Berlin, 2012), p. 586
198.
go back to reference X. Liang, Z. Fu, S.Y. Chou, D.A. Areshkin, C.T. White, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)CrossRef X. Liang, Z. Fu, S.Y. Chou, D.A. Areshkin, C.T. White, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)CrossRef
199.
go back to reference Y.G. Semenov, K.W. Kim, J.M. Zavada, Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91, 153105 (2007)CrossRef Y.G. Semenov, K.W. Kim, J.M. Zavada, Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91, 153105 (2007)CrossRef
200.
go back to reference Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)CrossRef Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)CrossRef
201.
go back to reference R.C. Ordonez, C.K. Hayashi, C.M. Torres, et al., Rapid fabrication of graphene field-effect transistors with liquid-metal interconnects and electrolytic gate dielectric made of honey. Sci. Rep. 7, 10171 (2017)CrossRef R.C. Ordonez, C.K. Hayashi, C.M. Torres, et al., Rapid fabrication of graphene field-effect transistors with liquid-metal interconnects and electrolytic gate dielectric made of honey. Sci. Rep. 7, 10171 (2017)CrossRef
202.
go back to reference P. Aydogan, O. Balci, C. Kocabas, S. Suzer, et al., Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org. Electron. 37, 178–182 (2016)CrossRef P. Aydogan, O. Balci, C. Kocabas, S. Suzer, et al., Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org. Electron. 37, 178–182 (2016)CrossRef
203.
go back to reference Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan, Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 7(6), 1469–1473 (2007)CrossRef Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan, Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 7(6), 1469–1473 (2007)CrossRef
204.
go back to reference T. Jayasekera, J.W. Mintmire, Transport in multiterminal graphene nanodevices. Nanotechnology 18(42), 424033 (2007)CrossRef T. Jayasekera, J.W. Mintmire, Transport in multiterminal graphene nanodevices. Nanotechnology 18(42), 424033 (2007)CrossRef
205.
go back to reference N. Staley, H. Wang, C. Puls, J. Forster, T.N. Jackson, K. McCarthy, B. Clouser, Y. Liu, Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 90, 143518 (2007)CrossRef N. Staley, H. Wang, C. Puls, J. Forster, T.N. Jackson, K. McCarthy, B. Clouser, Y. Liu, Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 90, 143518 (2007)CrossRef
206.
go back to reference S.J. Heerema, C. Dekker, Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)CrossRef S.J. Heerema, C. Dekker, Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)CrossRef
207.
go back to reference M. Balcioglu, B. Zafer Buyukbekar, M. Selman Yavuz, M.V. Yigit, Smart-polymer-functionalized graphene nanodevices for thermo-switch-controlled biodetection. ACS Biomater Sci. Eng. 1(1), 27–36 (2015)CrossRef M. Balcioglu, B. Zafer Buyukbekar, M. Selman Yavuz, M.V. Yigit, Smart-polymer-functionalized graphene nanodevices for thermo-switch-controlled biodetection. ACS Biomater Sci. Eng. 1(1), 27–36 (2015)CrossRef
208.
go back to reference D. Gunlycke, D.A. Areshkin, J. Li, J.W. Mintmire, C.T. White, Graphene nanostrip digital memory device. Nano Lett. 7(12), 3608–3611 (2007)CrossRef D. Gunlycke, D.A. Areshkin, J. Li, J.W. Mintmire, C.T. White, Graphene nanostrip digital memory device. Nano Lett. 7(12), 3608–3611 (2007)CrossRef
209.
go back to reference S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, F. Beltram, The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett. 7(9), 2707–2710 (2007)CrossRef S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, F. Beltram, The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett. 7(9), 2707–2710 (2007)CrossRef
210.
go back to reference P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)CrossRef P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)CrossRef
211.
go back to reference X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef
212.
go back to reference M. Fahad Bhopal, D. Won Lee, A. ur Rehman, S. Hong Lee, Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C 5, 10701–10714 (2017)CrossRef M. Fahad Bhopal, D. Won Lee, A. ur Rehman, S. Hong Lee, Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C 5, 10701–10714 (2017)CrossRef
213.
go back to reference J. Yoon, H. Sung, G. Lee, W. Cho, et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017)CrossRef J. Yoon, H. Sung, G. Lee, W. Cho, et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017)CrossRef
214.
go back to reference N. Park, S. Hong, G. Kim, S.-H. Jhi, Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc. 129(29), 8999–9003 (2007)CrossRef N. Park, S. Hong, G. Kim, S.-H. Jhi, Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc. 129(29), 8999–9003 (2007)CrossRef
215.
go back to reference C. Zhou, J.A. Szpunar, X. Cui, Synthesis of Ni/Graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces 8(24), 15232–15241 (2016)CrossRef C. Zhou, J.A. Szpunar, X. Cui, Synthesis of Ni/Graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces 8(24), 15232–15241 (2016)CrossRef
216.
go back to reference H. Ghorbani Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renew. Sust. Energ. Rev. 74, 104–109 (2017)CrossRef H. Ghorbani Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renew. Sust. Energ. Rev. 74, 104–109 (2017)CrossRef
217.
go back to reference S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine, G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10439–10444 (2005)CrossRef S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine, G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10439–10444 (2005)CrossRef
218.
go back to reference F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef
219.
go back to reference C.I.L. Justino, A.R. Gomes, A.C. Freitas, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)CrossRef C.I.L. Justino, A.R. Gomes, A.C. Freitas, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)CrossRef
220.
go back to reference S.S. Varghese, S. Lonkar, K.K. Singh, et al., Recent advances in graphene based gas sensors. Sensors Actuators B Chem. 218, 160–183 (2015)CrossRef S.S. Varghese, S. Lonkar, K.K. Singh, et al., Recent advances in graphene based gas sensors. Sensors Actuators B Chem. 218, 160–183 (2015)CrossRef
221.
go back to reference H.S. Kang, Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin. J. Am. Chem. Soc. 127(27), 9839–9843 (2005)CrossRef H.S. Kang, Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin. J. Am. Chem. Soc. 127(27), 9839–9843 (2005)CrossRef
222.
go back to reference T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, A.I. Lichtenstein, Molecular doping of graphene. Nano Lett. 8(1), 173–177 (2008)CrossRef T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, A.I. Lichtenstein, Molecular doping of graphene. Nano Lett. 8(1), 173–177 (2008)CrossRef
223.
go back to reference M.J.F. Calvete, Future Trends for Top Materials (Bentham Science Publishers, Sharjah, 2017), p. 573 M.J.F. Calvete, Future Trends for Top Materials (Bentham Science Publishers, Sharjah, 2017), p. 573
224.
go back to reference P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Dover Publications, Mineola, 2007), p. 416 P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Dover Publications, Mineola, 2007), p. 416
225.
go back to reference F.J.M. Rietmeijer, Natural Fullerenes and Related Structures of Elemental Carbon (Springer, Dordrecht, 2006), p. 295 F.J.M. Rietmeijer, Natural Fullerenes and Related Structures of Elemental Carbon (Springer, Dordrecht, 2006), p. 295
226.
go back to reference E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonic (CRC Press, 2016), Boca Raton, FL, USA, p. 328 E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonic (CRC Press, 2016), Boca Raton, FL, USA, p. 328
227.
go back to reference M. Marcaccio, F. Paolucci, Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes (Springer, 2016), New York, p. 270 M. Marcaccio, F. Paolucci, Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes (Springer, 2016), New York, p. 270
228.
go back to reference J.-F. Nierengarten, Fullerenes and Other Carbon-Rich Nanostructures (Structure and Bonding) (Springer, Berlin, 2016), p. 259 J.-F. Nierengarten, Fullerenes and Other Carbon-Rich Nanostructures (Structure and Bonding) (Springer, Berlin, 2016), p. 259
229.
go back to reference H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.F. Smalley, C60-buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRef H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.F. Smalley, C60-buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRef
230.
go back to reference A. Astefanei, O. Núñez, M.T. Galceran, Characterisation and determination of fullerenes: a critical review. Anal. Chim. Acta 882, 1–21 (2015)CrossRef A. Astefanei, O. Núñez, M.T. Galceran, Characterisation and determination of fullerenes: a critical review. Anal. Chim. Acta 882, 1–21 (2015)CrossRef
231.
go back to reference R. Qiao, A.P. Roberts, A.S. Mount, S.J. Klaine, P.C. Ke, Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett. 7(3), 614–619 (2007)CrossRef R. Qiao, A.P. Roberts, A.S. Mount, S.J. Klaine, P.C. Ke, Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett. 7(3), 614–619 (2007)CrossRef
234.
go back to reference T.G. Schmalz, W.A. Seitz, D.J. Klein, G.E.J. Hite, Am. Chem. Soc. 110, 1113–1127 (1988)CrossRef T.G. Schmalz, W.A. Seitz, D.J. Klein, G.E.J. Hite, Am. Chem. Soc. 110, 1113–1127 (1988)CrossRef
235.
go back to reference T.C. Dinadayalane, G. Narahari Sastry, Isolated pentagon rule in buckybowls: a computational study on thermodynamic stabilities and bowl-to-bowl inversion barriers. Tetrahedron. 59, 8347–8351 (2003)CrossRef T.C. Dinadayalane, G. Narahari Sastry, Isolated pentagon rule in buckybowls: a computational study on thermodynamic stabilities and bowl-to-bowl inversion barriers. Tetrahedron. 59, 8347–8351 (2003)CrossRef
236.
go back to reference F. Jin, S. Yang, S.I. Troyanov, New isolated-pentagon-rule isomers of fullerene C98 captured as chloro derivatives. Inorg. Chem. 56(9), 4780–4783 (2017)CrossRef F. Jin, S. Yang, S.I. Troyanov, New isolated-pentagon-rule isomers of fullerene C98 captured as chloro derivatives. Inorg. Chem. 56(9), 4780–4783 (2017)CrossRef
237.
go back to reference A. Hirsch, Fullerenes and Related Structures (Springer, Berlin, 1999), p. 246CrossRef A. Hirsch, Fullerenes and Related Structures (Springer, Berlin, 1999), p. 246CrossRef
238.
go back to reference A. Hirsch, M. Brettreich, F. Wudl, Fullerenes: chemistry and reactions (Wiley-VCH, Weinhem, 2005), p. 440 A. Hirsch, M. Brettreich, F. Wudl, Fullerenes: chemistry and reactions (Wiley-VCH, Weinhem, 2005), p. 440
239.
go back to reference L.N. Sidorov, M.A. Yurovskaya, A.Y. Borschevskii, I.V. Trushkov, I.N. Ioffe, Fullerenes (Examen, Moscow, 2005), p. 688 L.N. Sidorov, M.A. Yurovskaya, A.Y. Borschevskii, I.V. Trushkov, I.N. Ioffe, Fullerenes (Examen, Moscow, 2005), p. 688
240.
go back to reference F. Langa, J.-F. Nierengarten, Fullerenes: Principles and Applications (Royal Society of Chemistry, London, 2007), p. 300CrossRef F. Langa, J.-F. Nierengarten, Fullerenes: Principles and Applications (Royal Society of Chemistry, London, 2007), p. 300CrossRef
241.
go back to reference G. Abrasonis, M.S. Amer, R. Blanco, Z. Chen, in Fullerene Research Advances, ed. by C. N Kramer (Ed), (Nova Science Pub Inc, New York, 2007), p. 305 G. Abrasonis, M.S. Amer, R. Blanco, Z. Chen, in Fullerene Research Advances, ed. by C. N Kramer (Ed), (Nova Science Pub Inc, New York, 2007), p. 305
242.
go back to reference K. Prassides, Fullerene-Based Materials: Structures and Properties (Springer, Berlin, 2004), p. 294CrossRef K. Prassides, Fullerene-Based Materials: Structures and Properties (Springer, Berlin, 2004), p. 294CrossRef
243.
go back to reference N.N. Valand, M.B. Patel, Fullerenes Chemistry & Its Applications (Scholars’ Press, 2015), Riga, Latvia, p. 76 N.N. Valand, M.B. Patel, Fullerenes Chemistry & Its Applications (Scholars’ Press, 2015), Riga, Latvia, p. 76
244.
go back to reference K. Komatsu, Molecular surgical synthesis of H2@C60: recollections. Phil. Trans. R. Soc. A 371, 20110636 (2013)CrossRef K. Komatsu, Molecular surgical synthesis of H2@C60: recollections. Phil. Trans. R. Soc. A 371, 20110636 (2013)CrossRef
245.
go back to reference D.J. Durbin, N.L. Allan, C. Malardier-Jugroot, Molecular hydrogen storage in fullerenes – a dispersion-corrected density functional theory study. Int. J. Hydrog. Energy. 41(30), 13116–13130 (2016)CrossRef D.J. Durbin, N.L. Allan, C. Malardier-Jugroot, Molecular hydrogen storage in fullerenes – a dispersion-corrected density functional theory study. Int. J. Hydrog. Energy. 41(30), 13116–13130 (2016)CrossRef
246.
go back to reference O.V. Boltalina, T. Nakajima, New Fluorinated Carbons: Fundamentals and Applications: Progress in Fluorine Science Series (Elsevier, Amsterdam/Cambridge MA, 2016), p. 442 O.V. Boltalina, T. Nakajima, New Fluorinated Carbons: Fundamentals and Applications: Progress in Fluorine Science Series (Elsevier, Amsterdam/Cambridge MA, 2016), p. 442
247.
go back to reference R.M. Girón, J. Marco-Martínez, S. Bellani, et al., Synthesis of modified fullerenes for oxygen reduction reactions. J. Mater. Chem. A 4, 14284–14290 (2016)CrossRef R.M. Girón, J. Marco-Martínez, S. Bellani, et al., Synthesis of modified fullerenes for oxygen reduction reactions. J. Mater. Chem. A 4, 14284–14290 (2016)CrossRef
248.
go back to reference A.A. Popov, Endohedral Fullerenes: Electron Transfer and Spin (Nanostructure Science and Technology) (Springer, Cham, 2017), p. 328CrossRef A.A. Popov, Endohedral Fullerenes: Electron Transfer and Spin (Nanostructure Science and Technology) (Springer, Cham, 2017), p. 328CrossRef
249.
go back to reference Exohedral metallofullerenes, in Quantum-Chemical Studies on Porphyrins, Fullerenes and Carbon, ed. by O. Loboda, (Springer, Berlin, 2013), pp. 27–47 Exohedral metallofullerenes, in Quantum-Chemical Studies on Porphyrins, Fullerenes and Carbon, ed. by O. Loboda, (Springer, Berlin, 2013), pp. 27–47
250.
go back to reference E.G. Atovmyan, A.A. Grishchuk, T.N. Fedotova, Polymerization of [60]fullerene activated with butyllithium. Russ. Chem. Bull. 60(7), 1505–1507 (2011)CrossRef E.G. Atovmyan, A.A. Grishchuk, T.N. Fedotova, Polymerization of [60]fullerene activated with butyllithium. Russ. Chem. Bull. 60(7), 1505–1507 (2011)CrossRef
251.
go back to reference M.D. Tzirakis, M. Orfanopoulos, Radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology. Chem. Rev. 113(7), 5262–5321 (2013)CrossRef M.D. Tzirakis, M. Orfanopoulos, Radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology. Chem. Rev. 113(7), 5262–5321 (2013)CrossRef
252.
go back to reference A.L. Balch, C.J. Chancellor, Fullerenes: metal complexes, in Encyclopedia of Inorganic and Bioinorganic Chemistry, (Wiley, Hoboken, 2011) A.L. Balch, C.J. Chancellor, Fullerenes: metal complexes, in Encyclopedia of Inorganic and Bioinorganic Chemistry, (Wiley, Hoboken, 2011)
253.
go back to reference S. Fukuzumi, Nanocarbons as electron donors and acceptors in photoinduced electron-transfer reactions. ECS J. Solid State Sci. Tech. 6(6), M3055–M3061 (2017)CrossRef S. Fukuzumi, Nanocarbons as electron donors and acceptors in photoinduced electron-transfer reactions. ECS J. Solid State Sci. Tech. 6(6), M3055–M3061 (2017)CrossRef
254.
go back to reference M. Maggini, E. Menna, Addition of azomethyne ylides: fulleropyrrolidines, in Fullerenes: From Synthesis to Optoelectronic Properties. Series: Developments in Fullerene Science, Vol. 4, ed. by D. M. Guldi, N. Martin (Eds), (Springer, 2003), New York, p. 447 M. Maggini, E. Menna, Addition of azomethyne ylides: fulleropyrrolidines, in Fullerenes: From Synthesis to Optoelectronic Properties. Series: Developments in Fullerene Science, Vol. 4, ed. by D. M. Guldi, N. Martin (Eds), (Springer, 2003), New York, p. 447
255.
go back to reference B.I. Kharisov, O.V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines. Ind. Eng. Chem. Res. 48(2), 545–571 (2009)CrossRef B.I. Kharisov, O.V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines. Ind. Eng. Chem. Res. 48(2), 545–571 (2009)CrossRef
256.
go back to reference J.-L. Shi, X.-F. Zhang, H.-J. Wang, et al., A protocol for the preparation of 2,5-diaryl fulleropyrrolidines: thermal reaction of [60]fullerene with aromatic aldehydes and arylmethanamines. J. Org. Chem. 81(17), 7662–7674 (2016)CrossRef J.-L. Shi, X.-F. Zhang, H.-J. Wang, et al., A protocol for the preparation of 2,5-diaryl fulleropyrrolidines: thermal reaction of [60]fullerene with aromatic aldehydes and arylmethanamines. J. Org. Chem. 81(17), 7662–7674 (2016)CrossRef
257.
go back to reference J. Coro, M. Suárez, L.S.R. Silva, et al., Fullerene applications in fuel cells: a review. Int. J. Hydrog. Energy 41(40), 17944–17959 (2016)CrossRef J. Coro, M. Suárez, L.S.R. Silva, et al., Fullerene applications in fuel cells: a review. Int. J. Hydrog. Energy 41(40), 17944–17959 (2016)CrossRef
258.
go back to reference S. Margadonna, Fullerene-Related Materials (Springer, 2008), New York, p. 700 S. Margadonna, Fullerene-Related Materials (Springer, 2008), New York, p. 700
259.
go back to reference W. Yan, S.M. Seifermann, P. Pierratd, S. Bräse, Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org. Biomol. Chem. 13, 25–54 (2015)CrossRef W. Yan, S.M. Seifermann, P. Pierratd, S. Bräse, Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org. Biomol. Chem. 13, 25–54 (2015)CrossRef
260.
go back to reference M.R. Cerón, V. Maffeis, S. Stevenson, L. Echegoyen, Endohedral fullerenes: synthesis, isolation, mono- and bis-functionalization. Inorg. Chim. Acta. 468, 16–27 (2017)CrossRef M.R. Cerón, V. Maffeis, S. Stevenson, L. Echegoyen, Endohedral fullerenes: synthesis, isolation, mono- and bis-functionalization. Inorg. Chim. Acta. 468, 16–27 (2017)CrossRef
261.
go back to reference G. Lalwani, B. Sitharaman, Multifunctional fullerene and metallofullerene based nanobiomaterials. NanoLIFE 3, 1342003 (2013) G. Lalwani, B. Sitharaman, Multifunctional fullerene and metallofullerene based nanobiomaterials. NanoLIFE 3, 1342003 (2013)
262.
go back to reference M. Maruyama, S. Okada, Design of new carbon allotropes of fused small fullerenes. Phys. Status Solidi 10(11), 1620–1623 (2013)CrossRef M. Maruyama, S. Okada, Design of new carbon allotropes of fused small fullerenes. Phys. Status Solidi 10(11), 1620–1623 (2013)CrossRef
263.
go back to reference J.-J. Adjizian, A. Vlandas, J. Rio, J.-C. Charlier, C.P. Ewels, Ab initio infrared vibrational modes for neutral and charged small fullerenes (C20, C24, C26, C28, C30 and C60). Phil. Trans. R. Soc. A 374, 20150323 (2016)CrossRef J.-J. Adjizian, A. Vlandas, J. Rio, J.-C. Charlier, C.P. Ewels, Ab initio infrared vibrational modes for neutral and charged small fullerenes (C20, C24, C26, C28, C30 and C60). Phil. Trans. R. Soc. A 374, 20150323 (2016)CrossRef
264.
go back to reference C.-Y. Luo, W.-Q. Huang, W. Hu, P. Peng, G.-F. Huang, Non-covalent functionalization of WS2 monolayer with small fullerenes: tuning electronic properties and photoactivity. Dalton Trans. 45, 13383–13391 (2016)CrossRef C.-Y. Luo, W.-Q. Huang, W. Hu, P. Peng, G.-F. Huang, Non-covalent functionalization of WS2 monolayer with small fullerenes: tuning electronic properties and photoactivity. Dalton Trans. 45, 13383–13391 (2016)CrossRef
265.
go back to reference R. Majidi, Electronic properties of graphyne nanotubes filled with small fullerenes: a density functional theory study. J. Comput. Electron. 15(4), 1263–1268 (2016)CrossRef R. Majidi, Electronic properties of graphyne nanotubes filled with small fullerenes: a density functional theory study. J. Comput. Electron. 15(4), 1263–1268 (2016)CrossRef
266.
go back to reference L.N. Sidorov, M.A. Yurovskaya, A.Y. Borshevskii, I.V. Trushkov, I.N. Ioffe, Fullerenes (Examen, Moscow, 2005), pp. 95–98 L.N. Sidorov, M.A. Yurovskaya, A.Y. Borshevskii, I.V. Trushkov, I.N. Ioffe, Fullerenes (Examen, Moscow, 2005), pp. 95–98
267.
go back to reference O. Ori, F. Cataldo, A. Graovac, Topological ranking of C28 fullerenes reactivity. Fullerenes, Nanotubes, Carbon Nanostruct. 17(3), 308–323 (2009)CrossRef O. Ori, F. Cataldo, A. Graovac, Topological ranking of C28 fullerenes reactivity. Fullerenes, Nanotubes, Carbon Nanostruct. 17(3), 308–323 (2009)CrossRef
268.
go back to reference M.N. Magomedov, On the prospects of preparing fullerites from small and large fullerenes. Phys. Solid State 48(11), 2220–2225 (2006)CrossRef M.N. Magomedov, On the prospects of preparing fullerites from small and large fullerenes. Phys. Solid State 48(11), 2220–2225 (2006)CrossRef
269.
go back to reference B.L. Zhang, C.Z. Wang, K.M. Ho, C.H. Xu, C.T. Chan, The geometry of small fullerene cages: C20 to C70. J. Chem. Phys. 97(7), 5007–5011 (1992)CrossRef B.L. Zhang, C.Z. Wang, K.M. Ho, C.H. Xu, C.T. Chan, The geometry of small fullerene cages: C20 to C70. J. Chem. Phys. 97(7), 5007–5011 (1992)CrossRef
270.
go back to reference L. Koponen, M.J. Puska, R.M. Nieminen, Photoabsorption spectra of small fullerenes and Si-heterofullerenes. J. Chem. Phys. 128(15), 154307/1–154307/7 (2008)CrossRef L. Koponen, M.J. Puska, R.M. Nieminen, Photoabsorption spectra of small fullerenes and Si-heterofullerenes. J. Chem. Phys. 128(15), 154307/1–154307/7 (2008)CrossRef
271.
go back to reference G. Seifert, A.N. Enyashin, T. Heine, Hyperdiamond and hyperlonsdaleit: possible crystalline phases of fullerene C28. Phys. Rev. B: Condens. Matter Mater. Phys. 72(1), 012102/1–012102/4 (2005)CrossRef G. Seifert, A.N. Enyashin, T. Heine, Hyperdiamond and hyperlonsdaleit: possible crystalline phases of fullerene C28. Phys. Rev. B: Condens. Matter Mater. Phys. 72(1), 012102/1–012102/4 (2005)CrossRef
272.
go back to reference M. Lin, Y.-N. Chiu, J. Xiao, Theoretical study for exohydrogenates of small fullerenes C28-40. J. Mol. Struct. THEOCHEM 489(2–3), 109–117 (1999)CrossRef M. Lin, Y.-N. Chiu, J. Xiao, Theoretical study for exohydrogenates of small fullerenes C28-40. J. Mol. Struct. THEOCHEM 489(2–3), 109–117 (1999)CrossRef
273.
go back to reference M.-F. Fan, Z. Lin, S. Yang, Closed-shell electronic requirements for small fullerene cage structures. J. Mol. Struct. THEOCHEM 337(3), 231–240 (1995)CrossRef M.-F. Fan, Z. Lin, S. Yang, Closed-shell electronic requirements for small fullerene cage structures. J. Mol. Struct. THEOCHEM 337(3), 231–240 (1995)CrossRef
274.
go back to reference M. Randic, H.W. Kroto, D. Vukicevic, Numerical Kekulé structures of fullerenes and partitioning of π-electrons to pentagonal and hexagonal rings. J. Chem. Inf. Model. 47 897–904 (2007) M. Randic, H.W. Kroto, D. Vukicevic, Numerical Kekulé structures of fullerenes and partitioning of π-electrons to pentagonal and hexagonal rings. J. Chem. Inf. Model. 47 897–904 (2007)
275.
go back to reference M. Ghorbani, A.R. Ashrafi, Cycle index of the symmetry group of fullerenes C24 and C150. Asian J. Chem. 19(2), 1109–1114 (2007) M. Ghorbani, A.R. Ashrafi, Cycle index of the symmetry group of fullerenes C24 and C150. Asian J. Chem. 19(2), 1109–1114 (2007)
276.
go back to reference A.P. Popov, I.V. Bazhin, Three-dimensional polymerized cubic phase of fullerenes C28, in Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, ed by T. N. Veziroglu et al. (Eds), (Kluwer Academic Publishers, Dordrecht, 2004), pp. 329–332CrossRef A.P. Popov, I.V. Bazhin, Three-dimensional polymerized cubic phase of fullerenes C28, in Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, ed by T. N. Veziroglu et al. (Eds), (Kluwer Academic Publishers, Dordrecht, 2004), pp. 329–332CrossRef
277.
go back to reference M. Maruyama, S. Okada, Elemental semiconductors of fused small fullerenes: electronic and geometric structures of C28 polymers. J. Phys. Soc. Jpn. 81, 114719 (2012). 4 ppCrossRef M. Maruyama, S. Okada, Elemental semiconductors of fused small fullerenes: electronic and geometric structures of C28 polymers. J. Phys. Soc. Jpn. 81, 114719 (2012). 4 ppCrossRef
278.
go back to reference A. Pahuja, S. Srivastava, Electronic transport properties of doped C28 fullerene. Phys. Res. Int. 2014, 872381 (2014). 7 ppCrossRef A. Pahuja, S. Srivastava, Electronic transport properties of doped C28 fullerene. Phys. Res. Int. 2014, 872381 (2014). 7 ppCrossRef
280.
go back to reference R.Q. Zhang, Y.Q. Feng, S.T. Lee, C.L. Bai, Electrical transport and electronic delocalization of small fullerenes. J. Phys. Chem. B 108(43), 16636–16641 (2004)CrossRef R.Q. Zhang, Y.Q. Feng, S.T. Lee, C.L. Bai, Electrical transport and electronic delocalization of small fullerenes. J. Phys. Chem. B 108(43), 16636–16641 (2004)CrossRef
281.
go back to reference P.W Dunk, N.K. Kaiser, C.L. Hendrickson, A.G Marshall, H.W. Kroto, Stabilization of small carbon clusters. Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16–20, 2009, INOR-223 P.W Dunk, N.K. Kaiser, C.L. Hendrickson, A.G Marshall, H.W. Kroto, Stabilization of small carbon clusters. Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16–20, 2009, INOR-223
282.
go back to reference W.-H. Lin, R.K. Mishra, Y.-T. Lin, S.-L. Lee, Computational studies of the growth mechanism of small fullerenes: a ring-stacking model. J. Chin. Chem. Soc. 50(3B), 575–582 (2003)CrossRef W.-H. Lin, R.K. Mishra, Y.-T. Lin, S.-L. Lee, Computational studies of the growth mechanism of small fullerenes: a ring-stacking model. J. Chin. Chem. Soc. 50(3B), 575–582 (2003)CrossRef
283.
go back to reference R.K. Mishra, Y.-T. Lin, S.-L. Lee, C28 (D2): fullerene growth mechanism. Int. J. Quantum Chem. 84, 642–648 (2001)CrossRef R.K. Mishra, Y.-T. Lin, S.-L. Lee, C28 (D2): fullerene growth mechanism. Int. J. Quantum Chem. 84, 642–648 (2001)CrossRef
284.
go back to reference W.-H. Lin, C.-C. Tu, S.-L. Lee, Theoretical studies of growth mechanism of small fullerene Cage C24 (D6d)+. Int. J. Quantum Chem. 103(4), 355–368 (2005)CrossRef W.-H. Lin, C.-C. Tu, S.-L. Lee, Theoretical studies of growth mechanism of small fullerene Cage C24 (D6d)+. Int. J. Quantum Chem. 103(4), 355–368 (2005)CrossRef
285.
go back to reference J.L. Martins, F.A. Reuse, Growth and formation of fullerene clusters. Condens Matter Theor 13, 355–362 (1998) J.L. Martins, F.A. Reuse, Growth and formation of fullerene clusters. Condens Matter Theor 13, 355–362 (1998)
286.
go back to reference H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, P.W. Fowler, Electronic structure of small fullerenes: evidence for the high stability of C32. Phys. Rev. Lett. 81(24), 5378–5381 (1998)CrossRef H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, P.W. Fowler, Electronic structure of small fullerenes: evidence for the high stability of C32. Phys. Rev. Lett. 81(24), 5378–5381 (1998)CrossRef
287.
go back to reference A.D. Darwish, A.G. Avent, P.R. Birkett, H.W. Kroto, R. Taylor, D.R.M. Walton, Some 4-fluorophenyl derivatives of [60]fullerene; spontaneous oxidation and oxide-induced fragmentation to C58. J. Chem. Soc. Perkin Trans. 2(7), 1038–1044 (2001)CrossRef A.D. Darwish, A.G. Avent, P.R. Birkett, H.W. Kroto, R. Taylor, D.R.M. Walton, Some 4-fluorophenyl derivatives of [60]fullerene; spontaneous oxidation and oxide-induced fragmentation to C58. J. Chem. Soc. Perkin Trans. 2(7), 1038–1044 (2001)CrossRef
288.
go back to reference T. Fan, S. Yao, C. Zhou, B. Han, J. Wu, Adsorption of a small fullerene, C28, on the Si(001)-c(2X1) surface: a density functional theory study. Wuhan Daxue Xuebao, Lixueban 53(6), 655–660 (2007) T. Fan, S. Yao, C. Zhou, B. Han, J. Wu, Adsorption of a small fullerene, C28, on the Si(001)-c(2X1) surface: a density functional theory study. Wuhan Daxue Xuebao, Lixueban 53(6), 655–660 (2007)
289.
go back to reference S. Yao, C. Zhou, L. Ning, J. Wu, Z. Pi, H. Cheng, Y. Jiang, Chemisorption of C28 fullerene on c(4x4) reconstructed GaAs(001) surface: a density functional theory study. Phys. Rev. B: Condens. Matter Mater. Phys. 71(19), 195316/1–195316/7 (2005)CrossRef S. Yao, C. Zhou, L. Ning, J. Wu, Z. Pi, H. Cheng, Y. Jiang, Chemisorption of C28 fullerene on c(4x4) reconstructed GaAs(001) surface: a density functional theory study. Phys. Rev. B: Condens. Matter Mater. Phys. 71(19), 195316/1–195316/7 (2005)CrossRef
290.
go back to reference G. Galli, A. Canning, J. Kim, Assembling small fullerenes: a molecular dynamics study. Mater. Res. Soc. Symp. Proc. 498(Covalently Bonded Disordered Thin-Film Materials), 19–30 (1998) G. Galli, A. Canning, J. Kim, Assembling small fullerenes: a molecular dynamics study. Mater. Res. Soc. Symp. Proc. 498(Covalently Bonded Disordered Thin-Film Materials), 19–30 (1998)
291.
go back to reference P. Melinon, V. Paillard, V. Dupuis, J.P. Perez, A. Perez, G. Panczer, Synthesis of diamond nanocrystallites using the low-energy cluster beam deposition; an indirect proof of small fullerene existence. Carbon 32(5), 1011–1013 (1994)CrossRef P. Melinon, V. Paillard, V. Dupuis, J.P. Perez, A. Perez, G. Panczer, Synthesis of diamond nanocrystallites using the low-energy cluster beam deposition; an indirect proof of small fullerene existence. Carbon 32(5), 1011–1013 (1994)CrossRef
292.
go back to reference K.S. Troche, V.R. Coluci, R. Rurali, D.S. Galvao, Structural and electronic properties of zigzag carbon nanotubes filled with small fullerenes. J. Phys. Condens. Matter 19(23), 236222/1–236222/9 (2007)CrossRef K.S. Troche, V.R. Coluci, R. Rurali, D.S. Galvao, Structural and electronic properties of zigzag carbon nanotubes filled with small fullerenes. J. Phys. Condens. Matter 19(23), 236222/1–236222/9 (2007)CrossRef
294.
go back to reference A. Kharlamov, G. Kharlamova, M. Bondarenko, V. Fomenko, Joint synthesis of small carbon molecules (C3-C11), quasi-fullerenes (C40, C48, C52) and their hydrides. Chem. Eng. Sci. 1(3), 32–40 (2013)CrossRef A. Kharlamov, G. Kharlamova, M. Bondarenko, V. Fomenko, Joint synthesis of small carbon molecules (C3-C11), quasi-fullerenes (C40, C48, C52) and their hydrides. Chem. Eng. Sci. 1(3), 32–40 (2013)CrossRef
295.
go back to reference F. Ben Romdhane, J.A. Rodríguez-Manzo, A. Andrieux-Ledier, F. Fossard, A. Hallal, L. Magaud, J. Coraux, A. Loiseau, F. Banhart, The formation of the smallest fullerene-like carbon cages on metal surfaces. Nanoscale 8(5), 2561–2567 (2016)CrossRef F. Ben Romdhane, J.A. Rodríguez-Manzo, A. Andrieux-Ledier, F. Fossard, A. Hallal, L. Magaud, J. Coraux, A. Loiseau, F. Banhart, The formation of the smallest fullerene-like carbon cages on metal surfaces. Nanoscale 8(5), 2561–2567 (2016)CrossRef
296.
go back to reference D.F.T. Tuan, R.M. Pitzer, Electronic structure of Hf@C28 and its ions. 1. SCF calculations. J. Phys. Chem 99, 9762–9767 (1995)CrossRef D.F.T. Tuan, R.M. Pitzer, Electronic structure of Hf@C28 and its ions. 1. SCF calculations. J. Phys. Chem 99, 9762–9767 (1995)CrossRef
297.
go back to reference D.F.T. Tuan, R.M. Pitzer, Electronic structures of C28H4 and Hf@C28H4 and their ions. SCF calculations. J. Phys. Chem. 100, 6277–6283 (1996)CrossRef D.F.T. Tuan, R.M. Pitzer, Electronic structures of C28H4 and Hf@C28H4 and their ions. SCF calculations. J. Phys. Chem. 100, 6277–6283 (1996)CrossRef
298.
go back to reference A.N. Enyashin, V.V. Ivanovskaya, Y.N. Makurin, A.L. Ivanovskii, Modeling of the structure and electronic structure of condensed phases of small fullerenes C28 and Zn@C28. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(8), 1569–1573 (2004) A.N. Enyashin, V.V. Ivanovskaya, Y.N. Makurin, A.L. Ivanovskii, Modeling of the structure and electronic structure of condensed phases of small fullerenes C28 and Zn@C28. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(8), 1569–1573 (2004)
299.
go back to reference T. Guo, M.D. Diener, Y. Chai, M.J. Alford, R.E. Haufler, S.M. McClure, T. Ohno, J.H. Weaver, G.E. Scuseria, R.E. Smalley, Uranium stabilization of C28: a tetravalent fullerene. Science 257(5077), 1661–1664 (1992)CrossRef T. Guo, M.D. Diener, Y. Chai, M.J. Alford, R.E. Haufler, S.M. McClure, T. Ohno, J.H. Weaver, G.E. Scuseria, R.E. Smalley, Uranium stabilization of C28: a tetravalent fullerene. Science 257(5077), 1661–1664 (1992)CrossRef
300.
go back to reference M.V. Ryzhkov, A.L. Ivanovskii, B. Delley, Electronic structure of endohedral fullerenes An@C28 (An=Th – Md). Comput. Theor. Chem. 985, 46–52 (2012)CrossRef M.V. Ryzhkov, A.L. Ivanovskii, B. Delley, Electronic structure of endohedral fullerenes An@C28 (An=Th – Md). Comput. Theor. Chem. 985, 46–52 (2012)CrossRef
301.
go back to reference M.R. Pederson, N. Laouini, Covalent container compound: empty, endohedral, and exohedral C28 fullerene complexes. Phys. Rev. B: Condens. Matter Mater. Phys. 48(4), 2733–2737 (1993)CrossRef M.R. Pederson, N. Laouini, Covalent container compound: empty, endohedral, and exohedral C28 fullerene complexes. Phys. Rev. B: Condens. Matter Mater. Phys. 48(4), 2733–2737 (1993)CrossRef
302.
go back to reference Y.N. Makurin, A.A. Sofronov, A.L. Ivanovskii, Electronic structure and conditions for chemical stabilization of fullerene C28. Exohedral complexes C28M4 (M = H, Cl, Br). Russ. J. Coord. Chem. 26(7), 464–469 (2000) Y.N. Makurin, A.A. Sofronov, A.L. Ivanovskii, Electronic structure and conditions for chemical stabilization of fullerene C28. Exohedral complexes C28M4 (M = H, Cl, Br). Russ. J. Coord. Chem. 26(7), 464–469 (2000)
303.
go back to reference P.W. Fowler, T. Heine, A. Troisi, Valencies of a small fullerene: structures and energetics of C24H2m. Chem. Phys. Lett. 312(2–4), 77–84 (1999)CrossRef P.W. Fowler, T. Heine, A. Troisi, Valencies of a small fullerene: structures and energetics of C24H2m. Chem. Phys. Lett. 312(2–4), 77–84 (1999)CrossRef
304.
go back to reference V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov, Y.N. Makurin, A.L. Ivanovskii, Quantum-chemical simulation of new hybrid nanostructures: small fullerenes C20 and C28 in single-walled boron-nitrogen nanotubes. Russ. J. Gen. Chem. 74(5), 713–720 (2004)CrossRef V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov, Y.N. Makurin, A.L. Ivanovskii, Quantum-chemical simulation of new hybrid nanostructures: small fullerenes C20 and C28 in single-walled boron-nitrogen nanotubes. Russ. J. Gen. Chem. 74(5), 713–720 (2004)CrossRef
305.
go back to reference K. Jackson, E. Kaxiras, M.R. Pederson, Bonding of endohedral atoms in small carbon fullerenes. J. Phys. Chem. 98(32), 7805–7810 (1994)CrossRef K. Jackson, E. Kaxiras, M.R. Pederson, Bonding of endohedral atoms in small carbon fullerenes. J. Phys. Chem. 98(32), 7805–7810 (1994)CrossRef
306.
go back to reference M. Monthioux, V.L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes? Carbon 44, 1621–1625 (2006)CrossRef M. Monthioux, V.L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes? Carbon 44, 1621–1625 (2006)CrossRef
308.
go back to reference A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335–349 (1976)CrossRef A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335–349 (1976)CrossRef
311.
go back to reference S. Iijima, Helical microtubes of graphitic carbon. Nature (London) 354, 56–58 (1991)CrossRef S. Iijima, Helical microtubes of graphitic carbon. Nature (London) 354, 56–58 (1991)CrossRef
312.
go back to reference T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000)CrossRef T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000)CrossRef
313.
go back to reference S. Saito, Carbon nanotubes for next-generation electronics devices. Science 278, 77–78 (1997)CrossRef S. Saito, Carbon nanotubes for next-generation electronics devices. Science 278, 77–78 (1997)CrossRef
314.
go back to reference W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41), 412001 (2007)CrossRef W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41), 412001 (2007)CrossRef
315.
go back to reference H.F. Wei, G.H. Hsiue, C.Y. Liu, Surface modification of multi-walled carbon nanotubes by a Sol–Gel reaction to increase their compatibility with PMMA resin. Compos. Sci. Technol. 67(6), 1018–1026 (2007)CrossRef H.F. Wei, G.H. Hsiue, C.Y. Liu, Surface modification of multi-walled carbon nanotubes by a Sol–Gel reaction to increase their compatibility with PMMA resin. Compos. Sci. Technol. 67(6), 1018–1026 (2007)CrossRef
316.
go back to reference G.A. Rivas, M.D. Rubianes, M.C. Rodriguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado, Carbon nanotubes for electrochemical biosensing. Talanta 74(3), 291–307 (2007)CrossRef G.A. Rivas, M.D. Rubianes, M.C. Rodriguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado, Carbon nanotubes for electrochemical biosensing. Talanta 74(3), 291–307 (2007)CrossRef
317.
go back to reference M.Q. Tran, C. Tridech, A. Alfrey, A. Bismarck, M.S.P. Shaffer, Thermal oxidative cutting of multi-walled carbon nanotubes. Carbon 45(12), 2341–2350 (2007)CrossRef M.Q. Tran, C. Tridech, A. Alfrey, A. Bismarck, M.S.P. Shaffer, Thermal oxidative cutting of multi-walled carbon nanotubes. Carbon 45(12), 2341–2350 (2007)CrossRef
318.
go back to reference S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.Y. Lee, T.A. Kawai, Review of DNA functionalized/grafted carbon nanotubes and their characterization. Sensors Actuators: B. Chem. 122(2), 672–682 (2007)CrossRef S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.Y. Lee, T.A. Kawai, Review of DNA functionalized/grafted carbon nanotubes and their characterization. Sensors Actuators: B. Chem. 122(2), 672–682 (2007)CrossRef
319.
go back to reference A.M. Shanmugharaj, J.H. Bae, K.Y. Lee, W.H. Noh, S.H. Lee, S.H. Ryu, Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos. Sci. Technol. 67(9), 1813–1822 (2007)CrossRef A.M. Shanmugharaj, J.H. Bae, K.Y. Lee, W.H. Noh, S.H. Lee, S.H. Ryu, Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos. Sci. Technol. 67(9), 1813–1822 (2007)CrossRef
320.
go back to reference K. Fujisawa, H. Jou Kim, S. Hyeon Go, et al., A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl. Sci. 6, 109 (2016)CrossRef K. Fujisawa, H. Jou Kim, S. Hyeon Go, et al., A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl. Sci. 6, 109 (2016)CrossRef
321.
go back to reference O.V. Kharissova, B.I. Kharisov, Variations of the interlayer spacing in carbon nanotubes. RSC Adv. 4, 30807–30815 (2014)CrossRef O.V. Kharissova, B.I. Kharisov, Variations of the interlayer spacing in carbon nanotubes. RSC Adv. 4, 30807–30815 (2014)CrossRef
322.
go back to reference R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, F. Wei, Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano 7(7), 6156–6161 (2013)CrossRef R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, F. Wei, Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano 7(7), 6156–6161 (2013)CrossRef
323.
go back to reference R. Jasti, J. Bhattacharjee, J.B. Neaton, C.R. Bertozzi, Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008)CrossRef R. Jasti, J. Bhattacharjee, J.B. Neaton, C.R. Bertozzi, Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008)CrossRef
324.
go back to reference X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. Jones, Y. Ando, Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92(12), 125502 (2004)CrossRef X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. Jones, Y. Ando, Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92(12), 125502 (2004)CrossRef
325.
go back to reference T. Hayashi, Y.A. Kim, T. Matoba, M. Esaka, et al., Smallest freestanding single-walled carbon nanotube. Nano Lett. 3(7), 887–889 (2003)CrossRef T. Hayashi, Y.A. Kim, T. Matoba, M. Esaka, et al., Smallest freestanding single-walled carbon nanotube. Nano Lett. 3(7), 887–889 (2003)CrossRef
326.
go back to reference H. Sugime, S. Esconjauregui, J. Yang, L. d’Arsié, R.A. Oliver, S. Bhardwaj, C. Cepek, J. Robertson, Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Appl. Phys. Lett. 103(7), 073116 (2013)CrossRef H. Sugime, S. Esconjauregui, J. Yang, L. d’Arsié, R.A. Oliver, S. Bhardwaj, C. Cepek, J. Robertson, Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Appl. Phys. Lett. 103(7), 073116 (2013)CrossRef
327.
go back to reference M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)CrossRef M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)CrossRef
328.
go back to reference T. Kodama, M. Ohnishi, W. Park, et al., Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nat. Mater. 16, 892–897 (2017)CrossRef T. Kodama, M. Ohnishi, W. Park, et al., Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nat. Mater. 16, 892–897 (2017)CrossRef
329.
go back to reference H. Chu, L. Wei, R. Cui, J. Wang, Y. Li, Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord. Chem. Rev. 254, 1117–1134 (2010)CrossRef H. Chu, L. Wei, R. Cui, J. Wang, Y. Li, Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord. Chem. Rev. 254, 1117–1134 (2010)CrossRef
330.
go back to reference H. Reza Barzegar, E. Gracia-Espino, A. Yan, et al., C60/Collapsed carbon nanotube hybrids: a variant of peapods. Nano Lett. 15(2), 829–834 (2015)CrossRef H. Reza Barzegar, E. Gracia-Espino, A. Yan, et al., C60/Collapsed carbon nanotube hybrids: a variant of peapods. Nano Lett. 15(2), 829–834 (2015)CrossRef
331.
go back to reference B.W. Smith, D.E. Luzzi, Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett. 321(1–2), 169–174 (2000)CrossRef B.W. Smith, D.E. Luzzi, Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett. 321(1–2), 169–174 (2000)CrossRef
332.
go back to reference Strategies for the hybridization of CNTs with graphene, in Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications, ed. by W. Fan et al (Springer, Briefs in Green Chemistry for Sustainability, Singapore, 2017), pp. 21–51 Strategies for the hybridization of CNTs with graphene, in Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications, ed. by W. Fan et al (Springer, Briefs in Green Chemistry for Sustainability, Singapore, 2017), pp. 21–51
333.
go back to reference C.B. Parker, A.S. Raut, B. Brown, B.R. Stoner, J.T. Glass, Three-dimensional arrays of graphenated carbon nanotubes. J. Mater. Res. 27(7), 1046–1053 (2012)CrossRef C.B. Parker, A.S. Raut, B. Brown, B.R. Stoner, J.T. Glass, Three-dimensional arrays of graphenated carbon nanotubes. J. Mater. Res. 27(7), 1046–1053 (2012)CrossRef
334.
go back to reference Q. Liu, W. Ren, Z.-G. Chen, et al., Semiconducting properties of cup-stacked carbon nanotubes. Carbon 47(3), 731–736 (2009)CrossRef Q. Liu, W. Ren, Z.-G. Chen, et al., Semiconducting properties of cup-stacked carbon nanotubes. Carbon 47(3), 731–736 (2009)CrossRef
335.
go back to reference Q. Liu, W. Ren, Z.-G. Chen, L. Yin, F. Li, H. Cong, H.-M. Cheng, Semiconducting properties of cup-stacked carbon nanotubes. Carbon 47(3), 731–736 (2009)CrossRef Q. Liu, W. Ren, Z.-G. Chen, L. Yin, F. Li, H. Cong, H.-M. Cheng, Semiconducting properties of cup-stacked carbon nanotubes. Carbon 47(3), 731–736 (2009)CrossRef
336.
go back to reference O.V. Kharissova, B.I. Kharisov, Solubilization and Dispersion of Carbon Nanotubes (Springer-Nature, Cham, 2017), p. 250CrossRef O.V. Kharissova, B.I. Kharisov, Solubilization and Dispersion of Carbon Nanotubes (Springer-Nature, Cham, 2017), p. 250CrossRef
337.
go back to reference A.V. Krasheninnikov, Irradiation-induced phenomena in carbon nanotubes, in Chemistry of Carbon Nanotubes,ed. by V. A. Basiuk, E. V. Basiuk (Eds), (American Scientific Publishers, Stevenson Ranch, 2007), pp. 1–58 A.V. Krasheninnikov, Irradiation-induced phenomena in carbon nanotubes, in Chemistry of Carbon Nanotubes,ed. by V. A. Basiuk, E. V. Basiuk (Eds), (American Scientific Publishers, Stevenson Ranch, 2007), pp. 1–58
338.
go back to reference B.I. Kharisov, O.V. Kharissova, U.O. Mendez, Radiation Synthesis of Materials and Compounds (CRC Press, Boca Raton, 2013), p. 586CrossRef B.I. Kharisov, O.V. Kharissova, U.O. Mendez, Radiation Synthesis of Materials and Compounds (CRC Press, Boca Raton, 2013), p. 586CrossRef
339.
go back to reference N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors. - graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992)CrossRef N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors. - graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992)CrossRef
340.
go back to reference P.J.F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 2001) P.J.F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 2001)
341.
go back to reference R. Saito, G. Dresslehaus, M. S. Dresselhaus (eds.), Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998) R. Saito, G. Dresslehaus, M. S. Dresselhaus (eds.), Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)
342.
go back to reference S. Iijima, Carbon nanotubes: past, present, and future. Phys. B Condens. Matter 323(1–4), 1–5 (2002)CrossRef S. Iijima, Carbon nanotubes: past, present, and future. Phys. B Condens. Matter 323(1–4), 1–5 (2002)CrossRef
343.
go back to reference H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2012)CrossRef H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2012)CrossRef
344.
go back to reference J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998)CrossRef J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998)CrossRef
346.
go back to reference A. Eatemadi, H. Daraee, H. Karimkhanloo, et al., Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014)CrossRef A. Eatemadi, H. Daraee, H. Karimkhanloo, et al., Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014)CrossRef
347.
go back to reference C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, R. Lee, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)CrossRef C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, R. Lee, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)CrossRef
348.
go back to reference A.G. Rinzler, J. Liu, H. Dai, P. Nicolaev, C.B. Huffman, F.J. Rodríguez-Macias, P.J. Boul, A.H. Lu, D. Heyman, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eclund, R.E. Smalley, Large scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A Mater. Sci. Process. 67, 29–37 (1998)CrossRef A.G. Rinzler, J. Liu, H. Dai, P. Nicolaev, C.B. Huffman, F.J. Rodríguez-Macias, P.J. Boul, A.H. Lu, D. Heyman, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eclund, R.E. Smalley, Large scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A Mater. Sci. Process. 67, 29–37 (1998)CrossRef
349.
go back to reference O.V. Kharissova, M. Garza Castañón, J.L. Hernández Pinero, U. Ortiz Méndez, B.I. Kharisov, Fast production method of Fe-filled carbon nanotubes. Mech. Adv. Mater. Struct. 16(1), 63–68 (2009)CrossRef O.V. Kharissova, M. Garza Castañón, J.L. Hernández Pinero, U. Ortiz Méndez, B.I. Kharisov, Fast production method of Fe-filled carbon nanotubes. Mech. Adv. Mater. Struct. 16(1), 63–68 (2009)CrossRef
350.
go back to reference P. Nicolaev, M.J. Bronikowski, R.K. Bradley, F. Fohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)CrossRef P. Nicolaev, M.J. Bronikowski, R.K. Bradley, F. Fohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)CrossRef
351.
go back to reference W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996)CrossRef W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996)CrossRef
352.
go back to reference K. Yamagiwal, J. Kuwano, Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: effects of carbon sources on morphology of carbon nanotubes. Jpn. J. Appl. Phys. 56, 06GE05 (2017)CrossRef K. Yamagiwal, J. Kuwano, Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: effects of carbon sources on morphology of carbon nanotubes. Jpn. J. Appl. Phys. 56, 06GE05 (2017)CrossRef
353.
go back to reference H.S. Cheng, M.R. Shen, C.L. Mak, P.K. Lim, Liquid phase electrochemical route to carbon nanotubes at room temperature. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18-21, 2006, Zhuhai, China H.S. Cheng, M.R. Shen, C.L. Mak, P.K. Lim, Liquid phase electrochemical route to carbon nanotubes at room temperature. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18-21, 2006, Zhuhai, China
354.
go back to reference A. Shawky, S. Yasuda, K. Murakoshi, Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process. Carbon 50, 4184–4191 (2012)CrossRef A. Shawky, S. Yasuda, K. Murakoshi, Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process. Carbon 50, 4184–4191 (2012)CrossRef
355.
go back to reference D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)CrossRef D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)CrossRef
356.
go back to reference P. Chen, X. Wu, J. Lin, K.L. Tan, High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91–93 (1999)CrossRef P. Chen, X. Wu, J. Lin, K.L. Tan, High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91–93 (1999)CrossRef
357.
go back to reference P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11, 154–157 (1999)CrossRef P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11, 154–157 (1999)CrossRef
358.
go back to reference W. Han, P. Redlich, F. Ernst, M. Ruehle, Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. Appl. Phys. Lett. 75(13), 1875–1877 (1999)CrossRef W. Han, P. Redlich, F. Ernst, M. Ruehle, Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. Appl. Phys. Lett. 75(13), 1875–1877 (1999)CrossRef
359.
go back to reference Y. Fan, S.B. Singer, R. Bergstrom, B.C. Regan, Probing Planck’s Law with incandescent light emission from a single carbon nanotube. Phys. Rev. Lett. 102, 187402 (2009)CrossRef Y. Fan, S.B. Singer, R. Bergstrom, B.C. Regan, Probing Planck’s Law with incandescent light emission from a single carbon nanotube. Phys. Rev. Lett. 102, 187402 (2009)CrossRef
360.
go back to reference I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)CrossRef I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)CrossRef
361.
go back to reference O.V. Kharissova, L.M. Torres Martínez, B.I. Kharisov, Recent trends of reinforcement of cement with carbon nanotubes and fibers, in Advances in Carbon Nanostructures, ed. by A. M. T. Silva, S. A. C. Carabineiro (Eds), (INTECH, London, UK, 2016) O.V. Kharissova, L.M. Torres Martínez, B.I. Kharisov, Recent trends of reinforcement of cement with carbon nanotubes and fibers, in Advances in Carbon Nanostructures, ed. by A. M. T. Silva, S. A. C. Carabineiro (Eds), (INTECH, London, UK, 2016)
362.
go back to reference X. Qi, J. Xu, Q. Hu, et al., Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci. Rep. 6, 28310 (2016)CrossRef X. Qi, J. Xu, Q. Hu, et al., Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci. Rep. 6, 28310 (2016)CrossRef
363.
go back to reference M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRef M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRef
364.
go back to reference M. Chen, X. Qin, X. Qin, X. Qin, G. Zeng, Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotech. 35(9), 836–846 (2017)CrossRef M. Chen, X. Qin, X. Qin, X. Qin, G. Zeng, Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotech. 35(9), 836–846 (2017)CrossRef
365.
go back to reference E. Munoz-Sandoval, Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. J. Nanopart. Res. 16, 2152 (2014)CrossRef E. Munoz-Sandoval, Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. J. Nanopart. Res. 16, 2152 (2014)CrossRef
367.
go back to reference L.V. Radushkevich, B.M. Luk’yanovich, About the structure of carbon formed by the thermal decomposition of carbon oxide on the iron contact. Zh. Fiz. Khim. 26, 88–95 (1952) L.V. Radushkevich, B.M. Luk’yanovich, About the structure of carbon formed by the thermal decomposition of carbon oxide on the iron contact. Zh. Fiz. Khim. 26, 88–95 (1952)
368.
go back to reference C.-S. Lee (ed.), Carbon Nanofibers: Synthesis, Applications and Performance, Series: Nanotechnology Science and Technology (Nova Sci. Publishers, New York, 2018) C.-S. Lee (ed.), Carbon Nanofibers: Synthesis, Applications and Performance, Series: Nanotechnology Science and Technology (Nova Sci. Publishers, New York, 2018)
369.
go back to reference Y.-S. Lee, J. Sun Im. Preparation of Functionalized Nanofibers and Their Applications. Nanofibers, ed. by A. Kumar, (INTECH, 2010), London, UK, pp. 122–138 Y.-S. Lee, J. Sun Im. Preparation of Functionalized Nanofibers and Their Applications. Nanofibers, ed. by A. Kumar, (INTECH, 2010), London, UK, pp. 122–138
371.
go back to reference D. Vidick, M. Herlitschke, C. Poleunis, et al., Comparison of functionalized carbon nanofibers and multi-walled carbon nanotubes as supports for Fe–Co nanoparticles. J. Mater. Chem. A 1, 2050–2063 (2013)CrossRef D. Vidick, M. Herlitschke, C. Poleunis, et al., Comparison of functionalized carbon nanofibers and multi-walled carbon nanotubes as supports for Fe–Co nanoparticles. J. Mater. Chem. A 1, 2050–2063 (2013)CrossRef
372.
go back to reference L. Fen, N. Xie, J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014)CrossRef L. Fen, N. Xie, J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014)CrossRef
373.
go back to reference J. Bovi de Oliveira, L. Müller Guerrini, S. Sizuka Oishi, L.R. de Oliveira Hein, et al., Carbon nanofibers obtained from electrospinning process. Mater. Res. Express 5, 025602 (2018)CrossRef J. Bovi de Oliveira, L. Müller Guerrini, S. Sizuka Oishi, L.R. de Oliveira Hein, et al., Carbon nanofibers obtained from electrospinning process. Mater. Res. Express 5, 025602 (2018)CrossRef
374.
go back to reference C. Liu, K. Lafdi, Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends. J. Appl. Polym. Sci. 134, 45388 (2017)CrossRef C. Liu, K. Lafdi, Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends. J. Appl. Polym. Sci. 134, 45388 (2017)CrossRef
375.
go back to reference K.L. Klein, A.V. Melechko, T.E. McKnight, et al., Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 103, 061301 (2008)CrossRef K.L. Klein, A.V. Melechko, T.E. McKnight, et al., Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 103, 061301 (2008)CrossRef
376.
go back to reference O. Shafranska, A. Voronov, A. Kohut, X.-F. Wu, I.S. Akhatov, Polymer–metal complexes as a catalyst for the growth of carbon nanostructures. Carbon 47, 3137–3142 (2009)CrossRef O. Shafranska, A. Voronov, A. Kohut, X.-F. Wu, I.S. Akhatov, Polymer–metal complexes as a catalyst for the growth of carbon nanostructures. Carbon 47, 3137–3142 (2009)CrossRef
377.
go back to reference H. Wang, W. Wang, H. Wang, et al., High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer. ACS Appl. Energy Mater. 1, 431–439 (2018)CrossRef H. Wang, W. Wang, H. Wang, et al., High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer. ACS Appl. Energy Mater. 1, 431–439 (2018)CrossRef
378.
go back to reference R. Hao, Y. Yang, H. Wang, et al., Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 45, 220–228 (2018)CrossRef R. Hao, Y. Yang, H. Wang, et al., Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 45, 220–228 (2018)CrossRef
379.
go back to reference W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)CrossRef W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)CrossRef
380.
go back to reference J. Shuia, C. Chen, L. Grabstanowicza, D. Zhaod, D.-J. Liu, Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. PNAS 112(34), 10629–10634 (2015)CrossRef J. Shuia, C. Chen, L. Grabstanowicza, D. Zhaod, D.-J. Liu, Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. PNAS 112(34), 10629–10634 (2015)CrossRef
381.
go back to reference C. Wang, C. Liu, J. Li, et al., Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53, 1751–1754 (2017)CrossRef C. Wang, C. Liu, J. Li, et al., Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53, 1751–1754 (2017)CrossRef
382.
go back to reference D.A. Bulushev, M. Zacharska, A.S. Lisitsyn, et al., Single atoms of Pt-group metals stabilized by N‑doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6, 3442–3451 (2016)CrossRef D.A. Bulushev, M. Zacharska, A.S. Lisitsyn, et al., Single atoms of Pt-group metals stabilized by N‑doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6, 3442–3451 (2016)CrossRef
383.
go back to reference N. Thi Xuyen, H. Kyung Jeong, G. Kim, et al., Hydrolysis-induced immobilization of Pt(acac)2 on polyimide-based carbon nanofiber mat and formation of Pt nanoparticles. J. Mater. Chem. 19, 1283–1288 (2009)CrossRef N. Thi Xuyen, H. Kyung Jeong, G. Kim, et al., Hydrolysis-induced immobilization of Pt(acac)2 on polyimide-based carbon nanofiber mat and formation of Pt nanoparticles. J. Mater. Chem. 19, 1283–1288 (2009)CrossRef
384.
go back to reference N. Isoaho, S. Sainio, N. Wester, et al., Pt-grown carbon nanofibers for detection of hydrogen peroxide. RSC Adv. 8, 12742–12751 (2018)CrossRef N. Isoaho, S. Sainio, N. Wester, et al., Pt-grown carbon nanofibers for detection of hydrogen peroxide. RSC Adv. 8, 12742–12751 (2018)CrossRef
385.
go back to reference H. Lu, W. Fan, Y. Huang, T. Liu, Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. Nano Res. 11(3), 1274–1284 (2018)CrossRef H. Lu, W. Fan, Y. Huang, T. Liu, Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. Nano Res. 11(3), 1274–1284 (2018)CrossRef
386.
go back to reference Z.-D. Yang, Z.-W. Chang, Q. Zhang, K. Huang, X.-B. Zhang, Decorating carbon nanofibers with Mo2C nanoparticles towards hierarchically porous and highly catalytic cathode for high-performance Li-O2 batteries. Sci. Bull. 63, 433–440 (2018)CrossRef Z.-D. Yang, Z.-W. Chang, Q. Zhang, K. Huang, X.-B. Zhang, Decorating carbon nanofibers with Mo2C nanoparticles towards hierarchically porous and highly catalytic cathode for high-performance Li-O2 batteries. Sci. Bull. 63, 433–440 (2018)CrossRef
387.
go back to reference A. Jagadale, X. Zhou, D. Blaisdell, S. Yang, Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci. Rep. 8, 1602 (2018)CrossRef A. Jagadale, X. Zhou, D. Blaisdell, S. Yang, Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci. Rep. 8, 1602 (2018)CrossRef
388.
go back to reference Z. Said, A. Allagui, M. Ali Abdelkareem, H. Alawadhi, K. Elsaid, Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids. J. Colloid Interface Sci. 520, 50–57 (2018)CrossRef Z. Said, A. Allagui, M. Ali Abdelkareem, H. Alawadhi, K. Elsaid, Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids. J. Colloid Interface Sci. 520, 50–57 (2018)CrossRef
389.
go back to reference B. Zhou, W. Chen, Preparation and catalytic activity of carbon nanofibers anchored metallophthalocyanine in decomposing acid orange 7. Materials 7, 1370–1383 (2014)CrossRef B. Zhou, W. Chen, Preparation and catalytic activity of carbon nanofibers anchored metallophthalocyanine in decomposing acid orange 7. Materials 7, 1370–1383 (2014)CrossRef
390.
go back to reference J. Cai, W. Li, P. Zhao, J. Yu, Z. Yang, Low-cost and high-performance electrospun carbon nanofiber film anodes. Int. J. Electrochem. Sci. 13, 2934–2944 (2018)CrossRef J. Cai, W. Li, P. Zhao, J. Yu, Z. Yang, Low-cost and high-performance electrospun carbon nanofiber film anodes. Int. J. Electrochem. Sci. 13, 2934–2944 (2018)CrossRef
391.
go back to reference M. Pingot, B. Szadkowski, M. Zaborski, Effect of carbon nanofibers on mechanical and electrical behaviors of acrylonitrile‐butadiene rubber composites. Polym. Adv. Technol. 29, 1661–1669 (2018)CrossRef M. Pingot, B. Szadkowski, M. Zaborski, Effect of carbon nanofibers on mechanical and electrical behaviors of acrylonitrile‐butadiene rubber composites. Polym. Adv. Technol. 29, 1661–1669 (2018)CrossRef
392.
go back to reference B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)CrossRef B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)CrossRef
393.
go back to reference Nanocarbon studies in Russia: from fullerenes to nanotubes and nanodiamonds. A. Ya. Vul’ and V. I. Sokolov. Nanotechnol. Russ., 2009, 4, 7–8, 397–414 Nanocarbon studies in Russia: from fullerenes to nanotubes and nanodiamonds. A. Ya. Vul’ and V. I. Sokolov. Nanotechnol. Russ., 2009, 4, 7–8, 397–414
394.
go back to reference O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27(3–4), 227–356 (2002)CrossRef O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27(3–4), 227–356 (2002)CrossRef
395.
go back to reference V.V. Danilenko, On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46(4), 595–599 (2004)CrossRef V.V. Danilenko, On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46(4), 595–599 (2004)CrossRef
396.
go back to reference M. Castellino, Nanocrystalline Diamonds: Study and Characterization of Diamond Surface for Biosensoring Applications (LAP LAMBERT Academic Publishing, 2011), Riga, Latvia, p. 196 M. Castellino, Nanocrystalline Diamonds: Study and Characterization of Diamond Surface for Biosensoring Applications (LAP LAMBERT Academic Publishing, 2011), Riga, Latvia, p. 196
397.
go back to reference O.A. Shenderova, D.M. Gruen, Ultrananocrystalline Diamond: Synthesis, Properties and Applications (Micro and Nano Technologies), 2nd edn. (William Andrew, San Diego, 2012), p. 584 O.A. Shenderova, D.M. Gruen, Ultrananocrystalline Diamond: Synthesis, Properties and Applications (Micro and Nano Technologies), 2nd edn. (William Andrew, San Diego, 2012), p. 584
398.
go back to reference O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, Growth, electronic properties and applications of nanodiamond. Diam. Relat. Mater. 17(7–10), 1080–1088 (2008)CrossRef O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, Growth, electronic properties and applications of nanodiamond. Diam. Relat. Mater. 17(7–10), 1080–1088 (2008)CrossRef
399.
go back to reference G.R. Huss, Meteoritic nanodiamonds: messengers from the stars. Elements 1(2), 97–100 (2005)CrossRef G.R. Huss, Meteoritic nanodiamonds: messengers from the stars. Elements 1(2), 97–100 (2005)CrossRef
400.
go back to reference A.P. Jones, L.B. d’Hendecourt, Interstellar nanodiamonds. Astron. Soc. Pac. Conf. Ser. 309, 589–601 (2004) A.P. Jones, L.B. d’Hendecourt, Interstellar nanodiamonds. Astron. Soc. Pac. Conf. Ser. 309, 589–601 (2004)
401.
go back to reference V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012)CrossRef V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012)CrossRef
402.
go back to reference D. Ho, C.-H. K. Wang, E. K.-H. Chow (eds.), Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. 1, e1500439 (2015). 14 pp D. Ho, C.-H. K. Wang, E. K.-H. Chow (eds.), Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. 1, e1500439 (2015). 14 pp
403.
go back to reference M. Ullah, A. Kausar, M. Siddiq, M. Subhan, M. Abid Zia, Reinforcing effects of modified nanodiamonds on the physical properties of polymer-based nanocomposites: a review. Polym.-Plast. Technol. Eng. 54(8), 861–879 (2015)CrossRef M. Ullah, A. Kausar, M. Siddiq, M. Subhan, M. Abid Zia, Reinforcing effects of modified nanodiamonds on the physical properties of polymer-based nanocomposites: a review. Polym.-Plast. Technol. Eng. 54(8), 861–879 (2015)CrossRef
404.
go back to reference A. Shakun, J. Vuorinen, M. Hoikkanen, M. Poikelispää, A. Das, Hard nanodiamonds in soft rubbers: past, present and future – a review. Compos. A: Appl. Sci. Manuf. 64, 49–69 (2014)CrossRef A. Shakun, J. Vuorinen, M. Hoikkanen, M. Poikelispää, A. Das, Hard nanodiamonds in soft rubbers: past, present and future – a review. Compos. A: Appl. Sci. Manuf. 64, 49–69 (2014)CrossRef
406.
go back to reference A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22(5), 890–906 (2012)CrossRef A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22(5), 890–906 (2012)CrossRef
407.
go back to reference R. Basu, N. Skaggs, S. Shalov, P. Brereton, Evidence of nanodiamond-self-assembly in a liquid crystal, and the consequent impacts on the liquid crystal properties. AIP Adv. 7, 075008 (2017)CrossRef R. Basu, N. Skaggs, S. Shalov, P. Brereton, Evidence of nanodiamond-self-assembly in a liquid crystal, and the consequent impacts on the liquid crystal properties. AIP Adv. 7, 075008 (2017)CrossRef
408.
go back to reference S.Y. Ong, M. Chipaux, A. Nagl, R. Schirhagl, Shape and crystallographic orientation of nanodiamonds for quantum sensing. Phys. Chem. Chem. Phys. 19, 10748–10752 (2017)CrossRef S.Y. Ong, M. Chipaux, A. Nagl, R. Schirhagl, Shape and crystallographic orientation of nanodiamonds for quantum sensing. Phys. Chem. Chem. Phys. 19, 10748–10752 (2017)CrossRef
409.
go back to reference A.P. Hopper, J.M. Dugan, A.A. Gill, O.J.L. Fox, P.W. May, J.W. Haycock, F. Claeyssens, Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth. Biomed. Mater. 9, 045009 (2014). (11 pp)CrossRef A.P. Hopper, J.M. Dugan, A.A. Gill, O.J.L. Fox, P.W. May, J.W. Haycock, F. Claeyssens, Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth. Biomed. Mater. 9, 045009 (2014). (11 pp)CrossRef
411.
go back to reference D.E.J. Waddington, M. Sarracanie, H. Zhang, et al., Nanodiamond-enhanced MRI via in situ hyperpolarization. Nat. Comm. 8, 15118 (2017)CrossRef D.E.J. Waddington, M. Sarracanie, H. Zhang, et al., Nanodiamond-enhanced MRI via in situ hyperpolarization. Nat. Comm. 8, 15118 (2017)CrossRef
412.
go back to reference R.J. Edgington, A. Thalhammer, J.O. Welch, A. Bongrain, P. Bergonzo, E. Scorsone, R.B. Jackman, R. Schoepfer, Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth. J. Neural Eng. 10, 056022 (2013). (9 pp)CrossRef R.J. Edgington, A. Thalhammer, J.O. Welch, A. Bongrain, P. Bergonzo, E. Scorsone, R.B. Jackman, R. Schoepfer, Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth. J. Neural Eng. 10, 056022 (2013). (9 pp)CrossRef
413.
go back to reference G. Rodrigues de Almeida Neto, M. Valinhos Barcelos, R.J. Sánchez Rodríguez, J.G. Cabrera Gomez, Influence of encapsulated nanodiamond dispersion on P(3HB) biocomposites properties. Mater. Res. 20(3), 768–774 (2017)CrossRef G. Rodrigues de Almeida Neto, M. Valinhos Barcelos, R.J. Sánchez Rodríguez, J.G. Cabrera Gomez, Influence of encapsulated nanodiamond dispersion on P(3HB) biocomposites properties. Mater. Res. 20(3), 768–774 (2017)CrossRef
414.
go back to reference A. Pentecost, C.E. Witherel, Y. Gogotsi, K. Spiller, Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages. Biomater. Sci. 5, 2131–2143 (2017)CrossRef A. Pentecost, C.E. Witherel, Y. Gogotsi, K. Spiller, Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages. Biomater. Sci. 5, 2131–2143 (2017)CrossRef
415.
go back to reference J. Giammarco, V.N. Mochalin, J. Haeckel, Y. Gogotsi, The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release. J. Colloid Interface Sci. 468, 253–261 (2016)CrossRef J. Giammarco, V.N. Mochalin, J. Haeckel, Y. Gogotsi, The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release. J. Colloid Interface Sci. 468, 253–261 (2016)CrossRef
416.
go back to reference A. Knapinska, D. Tokmina-Roszyk, S. Amar, M. Tokmina-Roszyk, V.N. Mochalin, Y. Gogotsi, P. Cosme, A.C. Terentis, G.B. Fields, Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates. Biopolymers 104(3), 186–195 (2015)CrossRef A. Knapinska, D. Tokmina-Roszyk, S. Amar, M. Tokmina-Roszyk, V.N. Mochalin, Y. Gogotsi, P. Cosme, A.C. Terentis, G.B. Fields, Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates. Biopolymers 104(3), 186–195 (2015)CrossRef
417.
go back to reference L. Zhao, Y. Nakae, H. Qin, T. Ito, T. Kimura, H. Kojima, L. Chan, N. Komatsu, Polyglycerol-functionalized nanodiamond as a platform for gene delivery: derivatization, characterization, and hybridization with DNA. Beilstein J. Org. Chem. 10, 707–713 (2014)CrossRef L. Zhao, Y. Nakae, H. Qin, T. Ito, T. Kimura, H. Kojima, L. Chan, N. Komatsu, Polyglycerol-functionalized nanodiamond as a platform for gene delivery: derivatization, characterization, and hybridization with DNA. Beilstein J. Org. Chem. 10, 707–713 (2014)CrossRef
418.
go back to reference E. Rej, T. Gaebel, T. Boele, D.E.J. Waddington, D.J. Reilly, Hyperpolarized nanodiamond with long spin-relaxation times. Nat. Commun. 6, 8459 (2015)CrossRef E. Rej, T. Gaebel, T. Boele, D.E.J. Waddington, D.J. Reilly, Hyperpolarized nanodiamond with long spin-relaxation times. Nat. Commun. 6, 8459 (2015)CrossRef
420.
go back to reference M. Montalti, A. Cantelli, G. Battistelli, Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 44, 4853–4921 (2015)CrossRef M. Montalti, A. Cantelli, G. Battistelli, Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 44, 4853–4921 (2015)CrossRef
421.
go back to reference C. Gupta, D. Prakash, S. Gupta, Cancer treatment with nano-diamonds. Front. Biosci. Schol. 9, 62–70 (2017)CrossRef C. Gupta, D. Prakash, S. Gupta, Cancer treatment with nano-diamonds. Front. Biosci. Schol. 9, 62–70 (2017)CrossRef
422.
go back to reference T.-K. Ryu, G.-J. Lee, C.-K. Rhee, S.-W. Choi, Cellular uptake behavior of doxorubicin-conjugated nanodiamond clusters for efficient cancer therapy. Macromol. Biosci. 15(10), 1469–1475 (2015)CrossRef T.-K. Ryu, G.-J. Lee, C.-K. Rhee, S.-W. Choi, Cellular uptake behavior of doxorubicin-conjugated nanodiamond clusters for efficient cancer therapy. Macromol. Biosci. 15(10), 1469–1475 (2015)CrossRef
424.
go back to reference G. Galli, Chapter 2. structure, stability and electronic properties of nanodiamonds, in Computer-Based Modeling of Novel Carbon Systems and Their Properties, Carbon Materials: Chemistry and Physics 3, ed. by L. Colombo, A. Fasolino (Eds), (Springer, Dordrecht, 2010)CrossRef G. Galli, Chapter 2. structure, stability and electronic properties of nanodiamonds, in Computer-Based Modeling of Novel Carbon Systems and Their Properties, Carbon Materials: Chemistry and Physics 3, ed. by L. Colombo, A. Fasolino (Eds), (Springer, Dordrecht, 2010)CrossRef
425.
go back to reference Z.H. Khan, M. Husain, Nanodiamond: synthesis, transport property, field emission and applications. Mater. Sci. Res. India 3(1a), 1–22 (2006)CrossRef Z.H. Khan, M. Husain, Nanodiamond: synthesis, transport property, field emission and applications. Mater. Sci. Res. India 3(1a), 1–22 (2006)CrossRef
426.
go back to reference A. Tanaka, Tribology of carbon composites. Toraiborojisuto 54(1), 16–21 (2009) A. Tanaka, Tribology of carbon composites. Toraiborojisuto 54(1), 16–21 (2009)
427.
go back to reference X. Hu, M. Li, Z. Sun, Q. Wang, D. Fan, L. Chen, Research status and prospection of synthetic nanodiamonds. Guanli Gongchengban 31(2), 301–304 (2009). 317 X. Hu, M. Li, Z. Sun, Q. Wang, D. Fan, L. Chen, Research status and prospection of synthetic nanodiamonds. Guanli Gongchengban 31(2), 301–304 (2009). 317
428.
go back to reference E. Osawa, Nano carbon materials. Fullerenes and diamond. Seramikkusu 39(11), 892–909 (2004) E. Osawa, Nano carbon materials. Fullerenes and diamond. Seramikkusu 39(11), 892–909 (2004)
429.
go back to reference M.A. Quiroz Alfaro, U.A. Martinez Huitle, C.A. Martinez Huitle, Nanodiamantes. Ingenierias IX(33), 37–43 (2006) M.A. Quiroz Alfaro, U.A. Martinez Huitle, C.A. Martinez Huitle, Nanodiamantes. Ingenierias IX(33), 37–43 (2006)
432.
go back to reference S. Kazi, A review article on nanodiamonds discussing their properties and applications. Int. J. Pharm. Sci. Invent. 3(7), 40–45 (2014) S. Kazi, A review article on nanodiamonds discussing their properties and applications. Int. J. Pharm. Sci. Invent. 3(7), 40–45 (2014)
433.
go back to reference W.W.-W. Hsiao, Y. Yung Hui, P.-C. Tsai, H.-C. Chang, Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res. 49(3), 400–407 (2016)CrossRef W.W.-W. Hsiao, Y. Yung Hui, P.-C. Tsai, H.-C. Chang, Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res. 49(3), 400–407 (2016)CrossRef
434.
go back to reference H.M. Chaudhary, A.S. Duttagupta, K.R. Jadhav, S.V. Chilajwar, V.J. Kadam, Nanodiamonds as a new horizon for pharmaceutical and biomedical applications. Curr. Drug Deliv. 12(3), 271–281 (2015)CrossRef H.M. Chaudhary, A.S. Duttagupta, K.R. Jadhav, S.V. Chilajwar, V.J. Kadam, Nanodiamonds as a new horizon for pharmaceutical and biomedical applications. Curr. Drug Deliv. 12(3), 271–281 (2015)CrossRef
435.
go back to reference D. Ho, Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer, NewYork, 2009), p. 380 D. Ho, Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer, NewYork, 2009), p. 380
436.
go back to reference O.A. Shenderova, D.M. Haber, Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew, San Diego, 2007), p. 620 O.A. Shenderova, D.M. Haber, Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew, San Diego, 2007), p. 620
437.
go back to reference H.-C. Chang, W.W.-W. Hsiao, M.-C. Su, Fluorescent Nanodiamonds, 1st edn. (Springer, New York, 2018)CrossRef H.-C. Chang, W.W.-W. Hsiao, M.-C. Su, Fluorescent Nanodiamonds, 1st edn. (Springer, New York, 2018)CrossRef
438.
go back to reference J.-C. Arnault, Nanodiamonds: Advanced Material Analysis, Properties and Applications (Micro and Nano Technologies) (Elsevier Science, Saint Louis, 2017), p. 504 J.-C. Arnault, Nanodiamonds: Advanced Material Analysis, Properties and Applications (Micro and Nano Technologies) (Elsevier Science, Saint Louis, 2017), p. 504
439.
go back to reference D. Ho, Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer, New York, 2014), p. 286 D. Ho, Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer, New York, 2014), p. 286
440.
go back to reference O.A. Williams, Nanodiamond: RSC (Nanoscience & Nanotechnology Series) (Royal Society of Chemistry, Cambridge, 2014), p. 530CrossRef O.A. Williams, Nanodiamond: RSC (Nanoscience & Nanotechnology Series) (Royal Society of Chemistry, Cambridge, 2014), p. 530CrossRef
441.
go back to reference A. Vul’, O. Shenderova, Detonation Nanodiamonds: Science and Applications, 1st edn. (Pan Stanford, Singapore, 2014), p. 346 A. Vul’, O. Shenderova, Detonation Nanodiamonds: Science and Applications, 1st edn. (Pan Stanford, Singapore, 2014), p. 346
442.
go back to reference C.-C. Teng, Nanodiamond Related Materials: Synthesis and Characterization (LAP LAMBERT Academic Publishing, Riga, Latvia, 2010), p. 100 C.-C. Teng, Nanodiamond Related Materials: Synthesis and Characterization (LAP LAMBERT Academic Publishing, Riga, Latvia, 2010), p. 100
443.
go back to reference V. Ligatchev, Nano- and Micro-Crystalline Diamond Films and Powders, UK ed. (Nova Science Pub Inc, New York, 2009), p. 92 V. Ligatchev, Nano- and Micro-Crystalline Diamond Films and Powders, UK ed. (Nova Science Pub Inc, New York, 2009), p. 92
444.
go back to reference S.C. Tjong, Properties of chemical vapor deposited nanocrystalline diamond and nanodiamond/amorphous carbon composite films, in Nanocomposite Thin Films and Coatings, (Imperial College Press, London, 2007), pp. 167–206CrossRef S.C. Tjong, Properties of chemical vapor deposited nanocrystalline diamond and nanodiamond/amorphous carbon composite films, in Nanocomposite Thin Films and Coatings, (Imperial College Press, London, 2007), pp. 167–206CrossRef
445.
go back to reference N. Yang, H. Uetsuka, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Phys. Status Solidi A 206(9), 2048–2056 (2009)CrossRef N. Yang, H. Uetsuka, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Phys. Status Solidi A 206(9), 2048–2056 (2009)CrossRef
446.
go back to reference X.-L. Kong, Nanodiamonds used as a platform for studying noncovalent interaction by MALDI-MS. Chinese J. Chem. 26(10), 1811–1815 (2008)CrossRef X.-L. Kong, Nanodiamonds used as a platform for studying noncovalent interaction by MALDI-MS. Chinese J. Chem. 26(10), 1811–1815 (2008)CrossRef
447.
go back to reference C.J. Tang, A.J. Neves, J. Gracio, A.J.S. Fernandes, M.C. Carmo, A new chemical path for fabrication of nanocrystalline diamond films. J. Cryst. Growth 310(2), 261–265 (2008)CrossRef C.J. Tang, A.J. Neves, J. Gracio, A.J.S. Fernandes, M.C. Carmo, A new chemical path for fabrication of nanocrystalline diamond films. J. Cryst. Growth 310(2), 261–265 (2008)CrossRef
448.
go back to reference M. Watanabe, H. Yusa, Introduction of advanced materials laboratory and some topics - from repletion of basic research to development of practical materials. Mater. Integration 15(9), 8–13 (2002) M. Watanabe, H. Yusa, Introduction of advanced materials laboratory and some topics - from repletion of basic research to development of practical materials. Mater. Integration 15(9), 8–13 (2002)
449.
go back to reference Q. Yang, S. Yang, C. Xiao, A. Hirose, Transformation of carbon nanotubes to diamond in microwave hydrogen plasma. Mater. Lett. 61(11–12), 2208–2211 (2007)CrossRef Q. Yang, S. Yang, C. Xiao, A. Hirose, Transformation of carbon nanotubes to diamond in microwave hydrogen plasma. Mater. Lett. 61(11–12), 2208–2211 (2007)CrossRef
450.
go back to reference Y. Kimura, C. Kaito, Production of nanodiamond from carbon film containing silicon. J. Cryst. Growth 255(3–4), 282–285 (2003)CrossRef Y. Kimura, C. Kaito, Production of nanodiamond from carbon film containing silicon. J. Cryst. Growth 255(3–4), 282–285 (2003)CrossRef
451.
go back to reference J.A. West, J. Kennett, Nanodiamonds and diamond-like particles from carbonaceous material. PCT Int. Appl., 2009, 25 pp. WO 2009094481 A2 20090730 Application: WO 2009-US31731 20090122. Priority: US 2008–62350 20080125. CAN 151:227622 AN 2009:917817 J.A. West, J. Kennett, Nanodiamonds and diamond-like particles from carbonaceous material. PCT Int. Appl., 2009, 25 pp. WO 2009094481 A2 20090730 Application: WO 2009-US31731 20090122. Priority: US 2008–62350 20080125. CAN 151:227622 AN 2009:917817
452.
go back to reference V.Y. Dolmatov, M.V. Veretennikova, V.A. Marchukov, V.G. Sushchev, Currently available methods of industrial nanodiamond synthesis. Phys. Solid State 46(4), 611–615 (2004)CrossRef V.Y. Dolmatov, M.V. Veretennikova, V.A. Marchukov, V.G. Sushchev, Currently available methods of industrial nanodiamond synthesis. Phys. Solid State 46(4), 611–615 (2004)CrossRef
453.
go back to reference D.M. Gruen, Ultrananocrystalline diamond films from fullerene precursors. In: Ōsawa E. (eds) Perspectives of Fullerene Nanotechnology. Springer, Dordrecht, 217–222 (2002) D.M. Gruen, Ultrananocrystalline diamond films from fullerene precursors. In: Ōsawa E. (eds) Perspectives of Fullerene Nanotechnology. Springer, Dordrecht, 217–222 (2002)
454.
go back to reference S. Korablov, K. Yokosawa, D. Korablov, K. Tohji, N. Yamasaki, Hydrothermal formation of diamond from chlorinated organic compounds. Mater. Lett. 60(25–26), 3041–3044 (2006)CrossRef S. Korablov, K. Yokosawa, D. Korablov, K. Tohji, N. Yamasaki, Hydrothermal formation of diamond from chlorinated organic compounds. Mater. Lett. 60(25–26), 3041–3044 (2006)CrossRef
455.
go back to reference Q. Chen, Z. Lou, Q. Wang, C. Chen, Recent progress in diamond synthesis. Wuli 34(3), 199–204 (2005) Q. Chen, Z. Lou, Q. Wang, C. Chen, Recent progress in diamond synthesis. Wuli 34(3), 199–204 (2005)
456.
go back to reference K.G. Nickel, T. Kraft, Y.G. Gogotsi, Hydrothermal synthesis of diamond. Handb. Ceram. Hard Mater. 1, 374–389 (2000)CrossRef K.G. Nickel, T. Kraft, Y.G. Gogotsi, Hydrothermal synthesis of diamond. Handb. Ceram. Hard Mater. 1, 374–389 (2000)CrossRef
457.
go back to reference B. Basavalingu, K. Byrappa, P. Madhusudan, Hydrothermal synthesis of nano-sized crystals of diamond under sub-natural conditions. J. Geol. Soc. India 69(3), 665–670 (2007) B. Basavalingu, K. Byrappa, P. Madhusudan, Hydrothermal synthesis of nano-sized crystals of diamond under sub-natural conditions. J. Geol. Soc. India 69(3), 665–670 (2007)
458.
go back to reference B. Basavalingu, K. Byrappa, M. Yoshimura, P. Madhusudan, A.S. Dayananda, Hydrothermal synthesis and characterization of micro to nano sized carbon particles. J. Mater. Sci. 41(5), 1465–1469 (2006)CrossRef B. Basavalingu, K. Byrappa, M. Yoshimura, P. Madhusudan, A.S. Dayananda, Hydrothermal synthesis and characterization of micro to nano sized carbon particles. J. Mater. Sci. 41(5), 1465–1469 (2006)CrossRef
459.
go back to reference N. Yamasaki, K. Yokosawa, S. Korablov, K. Tohjt, Synthesis of diamond particles under alkaline hydrothermal conditions. Diffus. Defect Data--Solid State Data, Pt B: Solid State Phenom. 114(High Pressure Technology of Nanomaterials), 271–276 (2006)CrossRef N. Yamasaki, K. Yokosawa, S. Korablov, K. Tohjt, Synthesis of diamond particles under alkaline hydrothermal conditions. Diffus. Defect Data--Solid State Data, Pt B: Solid State Phenom. 114(High Pressure Technology of Nanomaterials), 271–276 (2006)CrossRef
460.
go back to reference S. Korablov, K. Yokosawa, D. Korablov, K. Tohji, N. Yamasaki, Hydrothermal formation of diamond from chlorinated organic compounds. Mater. Lett. 60(25–26), 3041–3044 (2006)CrossRef S. Korablov, K. Yokosawa, D. Korablov, K. Tohji, N. Yamasaki, Hydrothermal formation of diamond from chlorinated organic compounds. Mater. Lett. 60(25–26), 3041–3044 (2006)CrossRef
461.
go back to reference J. Lu, J. Zang, Y. Wang, Y. Xu, X. Xu, Preparation and characterization of Zirconia-coated nanodiamonds as a Pt catalyst support for methanol electro-oxidation. Nanomater. (Basel). 6(12), 234 (2016)CrossRef J. Lu, J. Zang, Y. Wang, Y. Xu, X. Xu, Preparation and characterization of Zirconia-coated nanodiamonds as a Pt catalyst support for methanol electro-oxidation. Nanomater. (Basel). 6(12), 234 (2016)CrossRef
462.
go back to reference Z.-X. Wang, Q.-Y. Pan, J.-G. Hu, Z.-Z. Yong, Y.-Q. Hu, Z.-Y. Zhu, Synthesis of diamond nanocrystals by double ions (40Ar+,C2H6+) bombardment. Wuli Xuebao 56(8), 4829–4833 (2007) Z.-X. Wang, Q.-Y. Pan, J.-G. Hu, Z.-Z. Yong, Y.-Q. Hu, Z.-Y. Zhu, Synthesis of diamond nanocrystals by double ions (40Ar+,C2H6+) bombardment. Wuli Xuebao 56(8), 4829–4833 (2007)
463.
go back to reference I. Gouzman, O. Fuchs, Y. Lifshitz, S. Michaelson, A. Hoffman, Nanodiamond growth on diamond by energetic plasma bombardment. Diam. Relat. Mater. 16(4–7), 762–766 (2007)CrossRef I. Gouzman, O. Fuchs, Y. Lifshitz, S. Michaelson, A. Hoffman, Nanodiamond growth on diamond by energetic plasma bombardment. Diam. Relat. Mater. 16(4–7), 762–766 (2007)CrossRef
464.
go back to reference Y. Yao, M.Y. Liao, Z.G. Wang, Y. Lifshitz, S.T. Lee, Nucleation of diamond by pure carbon ion bombardment - a transmission electron microscopy study. Appl. Phys. Lett. 87(6), 063103/1–063103/3 (2005)CrossRef Y. Yao, M.Y. Liao, Z.G. Wang, Y. Lifshitz, S.T. Lee, Nucleation of diamond by pure carbon ion bombardment - a transmission electron microscopy study. Appl. Phys. Lett. 87(6), 063103/1–063103/3 (2005)CrossRef
465.
go back to reference Y. Yao, M.Y. Liao, T. Kohler, T. Frauenheim, R.Q. Zhang, Z.G. Wang, Y. Lifshitz, S.T. Lee, Diamond nucleation by energetic pure carbon bombardment. Phys. Rev. B: Condens. Matter Mater. Phys. 72(3), 035402/1–035402/5 (2005)CrossRef Y. Yao, M.Y. Liao, T. Kohler, T. Frauenheim, R.Q. Zhang, Z.G. Wang, Y. Lifshitz, S.T. Lee, Diamond nucleation by energetic pure carbon bombardment. Phys. Rev. B: Condens. Matter Mater. Phys. 72(3), 035402/1–035402/5 (2005)CrossRef
466.
go back to reference D. Amans, A.-C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18(2–3), 177–180 (2009)CrossRef D. Amans, A.-C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18(2–3), 177–180 (2009)CrossRef
467.
go back to reference J. Sun, Q. Zhai, X. Yang, Y. Lei, X. Du, J. Yang, Synthesis of diamond nanopowders from carbon powders by laser bombarding. 2005, 6 pp. CN 1663909 A 20050907 Patent written in Chinese. Application: CN 2004–10093973 20041220. Priority: CAN 144:152787 AN 2005:1332207 J. Sun, Q. Zhai, X. Yang, Y. Lei, X. Du, J. Yang, Synthesis of diamond nanopowders from carbon powders by laser bombarding. 2005, 6 pp. CN 1663909 A 20050907 Patent written in Chinese. Application: CN 2004–10093973 20041220. Priority: CAN 144:152787 AN 2005:1332207
468.
go back to reference J. Sun, Q. Zhai, H. Du, L. Jiang, Y. Lei, X. Yang, X. Du, Effects of carbon material structures on the nanodiamond synthesis by laser irradiation. Nami Jishu Yu Jingmi Gongcheng 4(3), 217–220 (2006) J. Sun, Q. Zhai, H. Du, L. Jiang, Y. Lei, X. Yang, X. Du, Effects of carbon material structures on the nanodiamond synthesis by laser irradiation. Nami Jishu Yu Jingmi Gongcheng 4(3), 217–220 (2006)
469.
go back to reference C.X. Wang, P. Liu, H. Cui, G.W. Yang, Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl. Phys. Lett. 87(20), 201913/1–201913/3 (2005) C.X. Wang, P. Liu, H. Cui, G.W. Yang, Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl. Phys. Lett. 87(20), 201913/1–201913/3 (2005)
470.
go back to reference P. Liu, C. Wang, J. Chen, N. Xu, G. Yang, N. Ke, J. Xu, Localized nanodiamond crystallization and field emission performance improvement of amorphous carbon upon laser irradiation in liquid. J. Phys. Chem. C 113(28), 12154–12161 (2009)CrossRef P. Liu, C. Wang, J. Chen, N. Xu, G. Yang, N. Ke, J. Xu, Localized nanodiamond crystallization and field emission performance improvement of amorphous carbon upon laser irradiation in liquid. J. Phys. Chem. C 113(28), 12154–12161 (2009)CrossRef
471.
go back to reference Y.F. Lu, S.M. Huang, Z. Sun, Raman spectroscopy of phenylcarbyne polymer films under pulsed green laser irradiation. J. Appl. Phys. 87(2), 945–951 (2000)CrossRef Y.F. Lu, S.M. Huang, Z. Sun, Raman spectroscopy of phenylcarbyne polymer films under pulsed green laser irradiation. J. Appl. Phys. 87(2), 945–951 (2000)CrossRef
472.
go back to reference V.K. Goncharov, D.R. Ismailov, O.R. Lyudchik, S.A. Petrov, M.V. Puzyrev, Determination of the optical bandgap for diamond-like carbon films obtained by laser plasma deposition. J. Appl. Spectrosc. 74(5), 704–709 (2007)CrossRef V.K. Goncharov, D.R. Ismailov, O.R. Lyudchik, S.A. Petrov, M.V. Puzyrev, Determination of the optical bandgap for diamond-like carbon films obtained by laser plasma deposition. J. Appl. Spectrosc. 74(5), 704–709 (2007)CrossRef
473.
go back to reference V.N. Varyukhin, R.V. Shalaev, A.M. Prudnikov, Properties of diamond films obtained in a glow discharge under laser irradiation. Funct. Mater. 9(1), 111–114 (2002) V.N. Varyukhin, R.V. Shalaev, A.M. Prudnikov, Properties of diamond films obtained in a glow discharge under laser irradiation. Funct. Mater. 9(1), 111–114 (2002)
474.
go back to reference O.V. Kharissova, M. Osorio, M. Garza, B.I. Kharisov, Study of bismuth nanoparticles and nanotubes obtained by microwave heating. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 38(7), 567–572 (2008)CrossRef O.V. Kharissova, M. Osorio, M. Garza, B.I. Kharisov, Study of bismuth nanoparticles and nanotubes obtained by microwave heating. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 38(7), 567–572 (2008)CrossRef
475.
go back to reference O.V. Kharissova, M.G. Castanon, J.L. Hernandez Pinero, U.O. Mendez, B.I. Kharisov, Fast production method of Fe-filled carbon nanotubes. Mech. Adv. Mater. Struct. 16(1), 63–68 (2009)CrossRef O.V. Kharissova, M.G. Castanon, J.L. Hernandez Pinero, U.O. Mendez, B.I. Kharisov, Fast production method of Fe-filled carbon nanotubes. Mech. Adv. Mater. Struct. 16(1), 63–68 (2009)CrossRef
476.
go back to reference M.G. Rodriguez, O.V. Kharissova, U. Ortiz-Mendez, Formation of boron carbide nanofibers and nanobelts from heated by microwave. Rev. Adv. Mat. Sci. 7(1), 55–60 (2004) M.G. Rodriguez, O.V. Kharissova, U. Ortiz-Mendez, Formation of boron carbide nanofibers and nanobelts from heated by microwave. Rev. Adv. Mat. Sci. 7(1), 55–60 (2004)
477.
go back to reference D. Lewis III, M.A. Imam, A.W. Fliflet, R.W. Bruce, L.K. Kurihara, A.K. Kinkead, M. Lombardi, S.H. Gold, Recent advances in microwave and millimeter-wave processing of materials. Mater. Sci. Forum 539-543(Pt. 4, THERMEC 2006), 3249–3254 (2007)CrossRef D. Lewis III, M.A. Imam, A.W. Fliflet, R.W. Bruce, L.K. Kurihara, A.K. Kinkead, M. Lombardi, S.H. Gold, Recent advances in microwave and millimeter-wave processing of materials. Mater. Sci. Forum 539-543(Pt. 4, THERMEC 2006), 3249–3254 (2007)CrossRef
478.
go back to reference X.-T. Yan, X. Yongdong, Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials (Engineering Materials and Processes) (Springer, London, 2009), p. 327 X.-T. Yan, X. Yongdong, Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials (Engineering Materials and Processes) (Springer, London, 2009), p. 327
479.
go back to reference H.O. Pierson, Handbook of chemical vapor deposition, in Second Edition: Principles, Technology and Applications (Materials Science and Process Technology Series), 2nd edn., (William Andrew, Norwich, 2000), p. 506 H.O. Pierson, Handbook of chemical vapor deposition, in Second Edition: Principles, Technology and Applications (Materials Science and Process Technology Series), 2nd edn., (William Andrew, Norwich, 2000), p. 506
480.
go back to reference P George, Chemical Vapor Deposition. VDM Verlag Dr. Mueller E.K. (2008), p .112 P George, Chemical Vapor Deposition. VDM Verlag Dr. Mueller E.K. (2008), p .112
481.
go back to reference F.J. Gordillo-Vazquez, C. Gomez-Aleixandre, J.M. Albella, Plasma chemistry in the CVD synthesis of nanodiamond films. Proc. – Electrochem. Soc. 2005-09(EUROCVD-15), 415–426 (2005) F.J. Gordillo-Vazquez, C. Gomez-Aleixandre, J.M. Albella, Plasma chemistry in the CVD synthesis of nanodiamond films. Proc. – Electrochem. Soc. 2005-09(EUROCVD-15), 415–426 (2005)
482.
go back to reference C.-R. Lin, D.-H. Wei, M.-K. BenDao, et al., Effects of surface modification of nanodiamond particles for nucleation enhancement during its film growth by microwave plasma jet chemical vapour deposition technique. Adv. Mater. Sci. Eng. 2014, 937159 (2014). 5 pp C.-R. Lin, D.-H. Wei, M.-K. BenDao, et al., Effects of surface modification of nanodiamond particles for nucleation enhancement during its film growth by microwave plasma jet chemical vapour deposition technique. Adv. Mater. Sci. Eng. 2014, 937159 (2014). 5 pp
483.
go back to reference V.S. Purohit, D. Jain, V.G. Sathe, V. Ganesan, S.V. Bhoraskar, Synthesis of nanocrystalline diamonds by microwave plasma. J. Phys. D: Appl. Phys. 40(6), 1794–1800 (2007)CrossRef V.S. Purohit, D. Jain, V.G. Sathe, V. Ganesan, S.V. Bhoraskar, Synthesis of nanocrystalline diamonds by microwave plasma. J. Phys. D: Appl. Phys. 40(6), 1794–1800 (2007)CrossRef
484.
go back to reference M. Miyake, A. Ogino, M. Nagatsu, Characteristics of nano-crystalline diamond films prepared in Ar/H2/CH4 microwave plasma. Thin Solid Films 515(9), 4258–4261 (2007)CrossRef M. Miyake, A. Ogino, M. Nagatsu, Characteristics of nano-crystalline diamond films prepared in Ar/H2/CH4 microwave plasma. Thin Solid Films 515(9), 4258–4261 (2007)CrossRef
485.
go back to reference S. Chowdhury, J. Borham, S.A. Catledge, A.W. Eberhardt, P.S. Johnson, Y.K. Vohra, Synthesis and mechanical wear studies of ultra smooth nanostructured diamond (USND) coatings deposited by microwave plasma chemical vapor deposition with He/H2/CH4/N2 mixtures. Diam. Relat. Mater. 17(4–5), 419–427 (2008)CrossRef S. Chowdhury, J. Borham, S.A. Catledge, A.W. Eberhardt, P.S. Johnson, Y.K. Vohra, Synthesis and mechanical wear studies of ultra smooth nanostructured diamond (USND) coatings deposited by microwave plasma chemical vapor deposition with He/H2/CH4/N2 mixtures. Diam. Relat. Mater. 17(4–5), 419–427 (2008)CrossRef
486.
go back to reference J.E. Butler, A.V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Depos. 14(7–8), 145–160 (2008)CrossRef J.E. Butler, A.V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Depos. 14(7–8), 145–160 (2008)CrossRef
487.
go back to reference W. Chen, X. Lu, Q. Yang, C. Xiao, R. Sammynaiken, J. Maley, A. Hirose, Effects of gas flow rate on diamond deposition in a microwave plasma reactor. Thin Solid Films 515(4), 1970–1975 (2006)CrossRef W. Chen, X. Lu, Q. Yang, C. Xiao, R. Sammynaiken, J. Maley, A. Hirose, Effects of gas flow rate on diamond deposition in a microwave plasma reactor. Thin Solid Films 515(4), 1970–1975 (2006)CrossRef
488.
go back to reference A. Nanba, T. Imai, Y. Nishibayashi, Y. Yamamoto, K. Meguro, Microwave plasma CVD apparatus. JP 2005–218732 20050728. Priority: CAN 146:194557 AN 2007:143909 A. Nanba, T. Imai, Y. Nishibayashi, Y. Yamamoto, K. Meguro, Microwave plasma CVD apparatus. JP 2005–218732 20050728. Priority: CAN 146:194557 AN 2007:143909
489.
go back to reference O. Ariyada, S. Sato, H. Suzuki, Microwave chemical vapor deposition apparatus for preparation of diamond, 2006, 12 pp. JP 2006083405 A 20060330 Patent written in Japanese. Application: JP 2004–266462 20040914. Priority: CAN 144:321896 AN 2006:292991 O. Ariyada, S. Sato, H. Suzuki, Microwave chemical vapor deposition apparatus for preparation of diamond, 2006, 12 pp. JP 2006083405 A 20060330 Patent written in Japanese. Application: JP 2004–266462 20040914. Priority: CAN 144:321896 AN 2006:292991
490.
go back to reference V. Pichot, M. Comet, E. Fousson, D. Spitzer, Detonation synthesis of nanodiamonds: their synthesis and use in pyrotechnics. Actual. Chim. 329, 8–13 (2009) V. Pichot, M. Comet, E. Fousson, D. Spitzer, Detonation synthesis of nanodiamonds: their synthesis and use in pyrotechnics. Actual. Chim. 329, 8–13 (2009)
491.
go back to reference V.Y. Dolmatov, The structure of a cluster of a detonation-produced nanodiamond. Sverkhtverdye Materialy 1, 28–32 (2005) V.Y. Dolmatov, The structure of a cluster of a detonation-produced nanodiamond. Sverkhtverdye Materialy 1, 28–32 (2005)
492.
go back to reference V.Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ. Chem. Rev. 76(4), 339–360 (2007)CrossRef V.Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ. Chem. Rev. 76(4), 339–360 (2007)CrossRef
493.
go back to reference V.Y. Dolmatov, Modern commercial technology for production of detonation nano-diamonds and the area of their application Report 1. Sverkhtverdye Materialy (3), 10–21 (2006) V.Y. Dolmatov, Modern commercial technology for production of detonation nano-diamonds and the area of their application Report 1. Sverkhtverdye Materialy (3), 10–21 (2006)
494.
go back to reference V.Y. Dolmatov, Modern industrial methods for manufacture of detonation derived nanodiamonds and main areas of their use. Part 1. Sverkhtverdye Materialy (2), 18–29 (2006) V.Y. Dolmatov, Modern industrial methods for manufacture of detonation derived nanodiamonds and main areas of their use. Part 1. Sverkhtverdye Materialy (2), 18–29 (2006)
495.
go back to reference V.Y. Dolmatov, T. Fujimura, Physical and chemical problems of modification of detonation nanodiamond surface properties. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 217–230 (2005)CrossRef V.Y. Dolmatov, T. Fujimura, Physical and chemical problems of modification of detonation nanodiamond surface properties. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 217–230 (2005)CrossRef
496.
go back to reference J.B. Donnet, E. Fousson, T.K. Wang, M. Samirant, C. Baras, M. Pontier Johnson, Dynamic synthesis of diamonds. Diam. Relat. Mater. 9(3–6), 887–892 (2000)CrossRef J.B. Donnet, E. Fousson, T.K. Wang, M. Samirant, C. Baras, M. Pontier Johnson, Dynamic synthesis of diamonds. Diam. Relat. Mater. 9(3–6), 887–892 (2000)CrossRef
497.
go back to reference E. Osawa, Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 16(12), 2018–2022 (2007)CrossRef E. Osawa, Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 16(12), 2018–2022 (2007)CrossRef
498.
go back to reference E. Osawa, Disintegration and purification of crude aggregates of detonation nanodiamond. A few remarks on nano methodology. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 231–240 (2005)CrossRef E. Osawa, Disintegration and purification of crude aggregates of detonation nanodiamond. A few remarks on nano methodology. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 231–240 (2005)CrossRef
499.
go back to reference V.M. Titov, B.P. Tolochko, K.A. Ten, L.A. Lukyanchikov, P.I. Zubkov, The formation kinetics of detonation nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 169–180 (2005)CrossRef V.M. Titov, B.P. Tolochko, K.A. Ten, L.A. Lukyanchikov, P.I. Zubkov, The formation kinetics of detonation nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 169–180 (2005)CrossRef
500.
go back to reference A.P. Puzyr, V.S. Bondar, Production of nanodiamonds with an increased colloidal stability by using an explosion synthesis. 2005, RU 2252192 C2 20050520 Patent written in Russian. Application: RU 2003–119416 20030626. Priority: CAN 142:448964 AN 2005:428972 A.P. Puzyr, V.S. Bondar, Production of nanodiamonds with an increased colloidal stability by using an explosion synthesis. 2005, RU 2252192 C2 20050520 Patent written in Russian. Application: RU 2003–119416 20030626. Priority: CAN 142:448964 AN 2005:428972
501.
go back to reference L. Fang, H. Ohfuji, T. Irifune, A novel technique for the synthesis of nanodiamond powder. J. Nanomater. 2013, 201845 (2013). 4 pp. L. Fang, H. Ohfuji, T. Irifune, A novel technique for the synthesis of nanodiamond powder. J. Nanomater. 2013, 201845 (2013). 4 pp.
502.
go back to reference E. Nakanishi, K. Matsui, C. Yamaguchi, H. Nishino, C. Kurusu, Manufacture of functional carbon materials, 2000, 5 pp. JP 2000109310 A 20000418 Patent written in Japanese. Application: JP 99-218782 19990802. Priority: JP 98-219197 19980803. CAN 132:253156 AN 2000:247376 E. Nakanishi, K. Matsui, C. Yamaguchi, H. Nishino, C. Kurusu, Manufacture of functional carbon materials, 2000, 5 pp. JP 2000109310 A 20000418 Patent written in Japanese. Application: JP 99-218782 19990802. Priority: JP 98-219197 19980803. CAN 132:253156 AN 2000:247376
503.
go back to reference A.K. Khachatryan, S.G. Aloyan, P.W. May, R. Sargsyan, V.A. Khachatryan, V.S. Baghdasaryan, Graphite-to-diamond transformation induced by ultrasound cavitation. Diam. Relat. Mater. 17(6), 931–936 (2008)CrossRef A.K. Khachatryan, S.G. Aloyan, P.W. May, R. Sargsyan, V.A. Khachatryan, V.S. Baghdasaryan, Graphite-to-diamond transformation induced by ultrasound cavitation. Diam. Relat. Mater. 17(6), 931–936 (2008)CrossRef
504.
go back to reference S.K. Gordeev, S.B. Korchagina, Method for preparation of nanodiamond powders for producing stable suspensions. 2007, 3 pp. RU 2302994 C2 20070720 Patent written in Russian. Application: RU 2004–121069 20040701. Priority: CAN 147:191800 AN 2007:789603 S.K. Gordeev, S.B. Korchagina, Method for preparation of nanodiamond powders for producing stable suspensions. 2007, 3 pp. RU 2302994 C2 20070720 Patent written in Russian. Application: RU 2004–121069 20040701. Priority: CAN 147:191800 AN 2007:789603
505.
go back to reference L.-J. Chen, N.-H. Tai, C.-Y. Lee, I.-N. Lin, Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond. J. Appl. Phys. 101(6), 064308/1–064308/6 (2007) L.-J. Chen, N.-H. Tai, C.-Y. Lee, I.-N. Lin, Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond. J. Appl. Phys. 101(6), 064308/1–064308/6 (2007)
506.
go back to reference K. Hanada, K. Matsuzaki, T. Sano, Nanocrystalline diamond films fabricated by sol-gel technique. Surf. Sci. 601(18), 4502–4505 (2007)CrossRef K. Hanada, K. Matsuzaki, T. Sano, Nanocrystalline diamond films fabricated by sol-gel technique. Surf. Sci. 601(18), 4502–4505 (2007)CrossRef
507.
go back to reference S. Iijima, Process and apparatus for manufacture of diamond powder in nanometer range by size reduction. 1992, 4 pp. JP 04132606 A 19920506 Heisei. Patent written in Japanese. Application: JP 90–254415 19900925. Priority: CAN 117:153818 AN 1992:553818 S. Iijima, Process and apparatus for manufacture of diamond powder in nanometer range by size reduction. 1992, 4 pp. JP 04132606 A 19920506 Heisei. Patent written in Japanese. Application: JP 90–254415 19900925. Priority: CAN 117:153818 AN 1992:553818
508.
go back to reference J. Adler, Y. Gershon, T. Mutat, A. Sorkin, E. Warszawski, R. Kalish, Y. Yaish, Visualizing nanodiamond and nanotubes with AViz. Springer Proc. Phys. 123(Computer Simulation Studies in Condensed-Matter Physics XIX), 56–60 (2009)CrossRef J. Adler, Y. Gershon, T. Mutat, A. Sorkin, E. Warszawski, R. Kalish, Y. Yaish, Visualizing nanodiamond and nanotubes with AViz. Springer Proc. Phys. 123(Computer Simulation Studies in Condensed-Matter Physics XIX), 56–60 (2009)CrossRef
509.
go back to reference J. Adler, P. Pine, Visualization techniques for modelling carbon allotropes. Comput. Phys. Commun. 180(4), 580–582 (2009)CrossRef J. Adler, P. Pine, Visualization techniques for modelling carbon allotropes. Comput. Phys. Commun. 180(4), 580–582 (2009)CrossRef
510.
go back to reference M. El Bojaddaini, H. Chatei, M. El Hammouti, H. Robert, J. Bougdira, Modeling of a pulsed microwave plasma discharge in view of diamond film synthesis. Los. Alamos Natl. Lab., Prepr. Arch., Phys. 156 (2007). arXiv:0711.0845v1 [physics.soc-ph] M. El Bojaddaini, H. Chatei, M. El Hammouti, H. Robert, J. Bougdira, Modeling of a pulsed microwave plasma discharge in view of diamond film synthesis. Los. Alamos Natl. Lab., Prepr. Arch., Phys. 156 (2007). arXiv:0711.0845v1 [physics.soc-ph]
511.
go back to reference A.A. Fokin, P.R. Schreiner, Band gap tuning in nanodiamonds: first principle computational studies. Mol. Phys. 107(8–12), 823–830 (2009)CrossRef A.A. Fokin, P.R. Schreiner, Band gap tuning in nanodiamonds: first principle computational studies. Mol. Phys. 107(8–12), 823–830 (2009)CrossRef
512.
go back to reference A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in zero- and one-dimensional nanocarbon systems, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (Eds), American Scientific Publishers, Valencia, California, vol. 9, (2006), pp. 573–622 A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in zero- and one-dimensional nanocarbon systems, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (Eds), American Scientific Publishers, Valencia, California, vol. 9, (2006), pp. 573–622
513.
go back to reference A.S. Barnard, S.P. Russo, I.K. Snook, Simulation and bonding of dopants in nanocrystalline diamond. J. Nanosci. Nanotech. 5(9), 1395–1407 (2005)CrossRef A.S. Barnard, S.P. Russo, I.K. Snook, Simulation and bonding of dopants in nanocrystalline diamond. J. Nanosci. Nanotech. 5(9), 1395–1407 (2005)CrossRef
514.
go back to reference C.X. Wang, Y.H. Yang, N.S. Xu, G.W. Yang, Thermodynamics of diamond nucleation on the nanoscale. J. Am. Chem. Soc. 126(36), 11303–11306 (2004)CrossRef C.X. Wang, Y.H. Yang, N.S. Xu, G.W. Yang, Thermodynamics of diamond nucleation on the nanoscale. J. Am. Chem. Soc. 126(36), 11303–11306 (2004)CrossRef
515.
go back to reference A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in quasi-zero dimensional nanocarbon systems. J. Comput. Theor. Nanosci. 2(2), 180–201 (2005)CrossRef A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in quasi-zero dimensional nanocarbon systems. J. Comput. Theor. Nanosci. 2(2), 180–201 (2005)CrossRef
516.
go back to reference L. La Torre Riveros, D.A. Tryk, C.R. Cabrera, Chemical purification and characterization of diamond nanoparticles for electrophoretically coated electrodes. Rev. Adv. Mater. Sci. 10(3), 256–260 (2005) L. La Torre Riveros, D.A. Tryk, C.R. Cabrera, Chemical purification and characterization of diamond nanoparticles for electrophoretically coated electrodes. Rev. Adv. Mater. Sci. 10(3), 256–260 (2005)
517.
go back to reference N.V. Novikov, G.P. Bogatyreva, G.F. Nevstruev, G.D. Il'nitskaya, M.N. Voloshin, Magnetic methods of purification control of nanodiamond powders. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(4), 672–674 (2004) N.V. Novikov, G.P. Bogatyreva, G.F. Nevstruev, G.D. Il'nitskaya, M.N. Voloshin, Magnetic methods of purification control of nanodiamond powders. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(4), 672–674 (2004)
518.
go back to reference K. Lin, S. Hou, B. Ma, Effect of ultrasonic-dispersion for diamond powder purification. Jingangshi Yu Moliao Moju Gongcheng 6, 9–12 (2007) K. Lin, S. Hou, B. Ma, Effect of ultrasonic-dispersion for diamond powder purification. Jingangshi Yu Moliao Moju Gongcheng 6, 9–12 (2007)
519.
go back to reference S. Liu, J. Liu, P. Li, Y. Li, Y. Shen, Process for purification of diamond by electrolysis. 2007, 7 pp. CN 101049929 A 20071010 Patent written in Chinese. Application: CN 2007–10054424 20070518 S. Liu, J. Liu, P. Li, Y. Li, Y. Shen, Process for purification of diamond by electrolysis. 2007, 7 pp. CN 101049929 A 20071010 Patent written in Chinese. Application: CN 2007–10054424 20070518
520.
go back to reference A.G. Ovcharenko, A.V. Ignatchenko, R.R. Sataev, P.M. Brylyakov, Purification of ultradispersed diamond by removal of soluble and adsorbed impurities using electric field. 1996, SU 1815933 A1 19960620 Patent written in Russian. Application: SU 90–4855039 19900727. Priority: CAN 125:333282 AN 1996:729518 A.G. Ovcharenko, A.V. Ignatchenko, R.R. Sataev, P.M. Brylyakov, Purification of ultradispersed diamond by removal of soluble and adsorbed impurities using electric field. 1996, SU 1815933 A1 19960620 Patent written in Russian. Application: SU 90–4855039 19900727. Priority: CAN 125:333282 AN 1996:729518
521.
go back to reference S.I. Dolgaev, N.A. Kirichenko, L.A. Kulevskii, E.N. Lubnin, A.V. Simakin, G.A. Shafeev, Laser purification of ultradispersed diamond in aqueous solution. Quantum Electron 34(9), 860–864 (2004)CrossRef S.I. Dolgaev, N.A. Kirichenko, L.A. Kulevskii, E.N. Lubnin, A.V. Simakin, G.A. Shafeev, Laser purification of ultradispersed diamond in aqueous solution. Quantum Electron 34(9), 860–864 (2004)CrossRef
522.
go back to reference Yu.A. Doynikov, A.F. Makhrachev, K.K. Kurbatov, I.V. Makarskii, E.I. Adodin, S.A. Yagupov, L.G. Tarasova, E.G. Kovalenko, Method for purification of diamonds. 2009, 7 pp. RU 2367601 C1 20090920 Patent written in Russian. Application: RU 2007–147784 20071225. Priority: CAN 151:384616 AN 2009:1153611 Yu.A. Doynikov, A.F. Makhrachev, K.K. Kurbatov, I.V. Makarskii, E.I. Adodin, S.A. Yagupov, L.G. Tarasova, E.G. Kovalenko, Method for purification of diamonds. 2009, 7 pp. RU 2367601 C1 20090920 Patent written in Russian. Application: RU 2007–147784 20071225. Priority: CAN 151:384616 AN 2009:1153611
523.
go back to reference H. Zeng, X. An, Method for purifying diamond nanoparticle with Ce salt. 2004, 11 pp. CN 1480252 A 20040310 Patent written in Chinese. Application: CN 2003–139849 20030718. Priority: CAN 142:357372 AN 2005:20996 H. Zeng, X. An, Method for purifying diamond nanoparticle with Ce salt. 2004, 11 pp. CN 1480252 A 20040310 Patent written in Chinese. Application: CN 2003–139849 20030718. Priority: CAN 142:357372 AN 2005:20996
524.
go back to reference I.L. Petrov, Yu.A. Skryabin, O.A. Shenderova, Nanodiamond material, method and device for purifying and modifying a nanodiamond. 2008, 21 pp. Patent written in Russian. Application: WO 2008-RU313 20080520. Priority: RU 2007–118553 20070521 I.L. Petrov, Yu.A. Skryabin, O.A. Shenderova, Nanodiamond material, method and device for purifying and modifying a nanodiamond. 2008, 21 pp. Patent written in Russian. Application: WO 2008-RU313 20080520. Priority: RU 2007–118553 20070521
525.
go back to reference K. Lin, Y. Pan, S. Hou, H. Xiao, B. Ma, Discussion on purification techniques of synthetic diamond. Diamond and Abrasives Engineering (5), 77–78 (2005) K. Lin, Y. Pan, S. Hou, H. Xiao, B. Ma, Discussion on purification techniques of synthetic diamond. Diamond and Abrasives Engineering (5), 77–78 (2005)
526.
go back to reference D.F. Johnson, J.M. Mullin, W.D. Mattson, High-velocity collisions of nanodiamond. J. Phys. Chem. C 121(2), 1140–1145 (2017)CrossRef D.F. Johnson, J.M. Mullin, W.D. Mattson, High-velocity collisions of nanodiamond. J. Phys. Chem. C 121(2), 1140–1145 (2017)CrossRef
527.
go back to reference M. Dubois, K. Guerin, E. Petit, N. Batisse, A. Hamwi, N. Komatsu, J. Giraudet, P. Pirotte, F. Masin, Solid-state NMR study of nanodiamonds produced by the detonation technique. J. Phys. Chem. C 113(24), 10371–10378 (2009)CrossRef M. Dubois, K. Guerin, E. Petit, N. Batisse, A. Hamwi, N. Komatsu, J. Giraudet, P. Pirotte, F. Masin, Solid-state NMR study of nanodiamonds produced by the detonation technique. J. Phys. Chem. C 113(24), 10371–10378 (2009)CrossRef
528.
go back to reference A.I. Shames, A.M. Panich, W. Kempinski, M.V. Baidakova, V.Y. Osipov, T. Enoki, A.Y. Vul, Magnetic resonance study of nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 271–282 (2005)CrossRef A.I. Shames, A.M. Panich, W. Kempinski, M.V. Baidakova, V.Y. Osipov, T. Enoki, A.Y. Vul, Magnetic resonance study of nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 271–282 (2005)CrossRef
529.
go back to reference A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362(1824), 2477–2512 (2004)CrossRef A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362(1824), 2477–2512 (2004)CrossRef
530.
go back to reference D. Ballutaud, F. Jomard, M.-A. Pinault, G. Frangieh, N. Simon, sp2 carbon phases in nanocrystalline diamond. ECS Trans. 13(2, Dielectrics for Nanosystems 3: Materials Science, Processing, Reliability, and Manufacturing), 377–383 (2008)CrossRef D. Ballutaud, F. Jomard, M.-A. Pinault, G. Frangieh, N. Simon, sp2 carbon phases in nanocrystalline diamond. ECS Trans. 13(2, Dielectrics for Nanosystems 3: Materials Science, Processing, Reliability, and Manufacturing), 377–383 (2008)CrossRef
531.
go back to reference B. Lesiak, L. Kövér, J. Tóth, et al., C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl. Surf. Sci. 452, 223–231 (2018)CrossRef B. Lesiak, L. Kövér, J. Tóth, et al., C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl. Surf. Sci. 452, 223–231 (2018)CrossRef
532.
go back to reference A.V. Shushkanova, L. Dubrovinsky, N. Dubrovinskaya, Y.A. Litvin, V.S. Urusov, Synthesis and in-situ Raman spectroscopy of nanodiamonds. Dokl. Phys. 53(1), 1–4 (2008)CrossRef A.V. Shushkanova, L. Dubrovinsky, N. Dubrovinskaya, Y.A. Litvin, V.S. Urusov, Synthesis and in-situ Raman spectroscopy of nanodiamonds. Dokl. Phys. 53(1), 1–4 (2008)CrossRef
533.
go back to reference T. Hamilton, R.G. Wilks, M.V. Yablonskikh, Q. Yang, M.N. Foursa, A. Hirose, V.N. Vasilets, A. Moewes, Determining the sp2/sp3 bonding concentrations of carbon films using X-ray absorption spectroscopy. Can. J. Phys. 86(12), 1401–1407 (2008)CrossRef T. Hamilton, R.G. Wilks, M.V. Yablonskikh, Q. Yang, M.N. Foursa, A. Hirose, V.N. Vasilets, A. Moewes, Determining the sp2/sp3 bonding concentrations of carbon films using X-ray absorption spectroscopy. Can. J. Phys. 86(12), 1401–1407 (2008)CrossRef
534.
go back to reference X. Xiao, B.W. Sheldon, Y. Qi, A.K. Kothari, Intrinsic stress evolution in nanocrystalline diamond thin films with deposition temperature. Appl. Phys. Lett. 92(13), 131908/1–131908/3 (2008)CrossRef X. Xiao, B.W. Sheldon, Y. Qi, A.K. Kothari, Intrinsic stress evolution in nanocrystalline diamond thin films with deposition temperature. Appl. Phys. Lett. 92(13), 131908/1–131908/3 (2008)CrossRef
535.
go back to reference C.J. Tang, M.A. Neto, M.J. Soares, A.J.S. Fernandes, A.J. Neves, J. Gracio, A comparison study of hydrogen incorporation among nanocrystalline, microcrystalline and polycrystalline diamond films grown by chemical vapor deposition. Thin Solid Films 515(7–8), 3539–3546 (2007)CrossRef C.J. Tang, M.A. Neto, M.J. Soares, A.J.S. Fernandes, A.J. Neves, J. Gracio, A comparison study of hydrogen incorporation among nanocrystalline, microcrystalline and polycrystalline diamond films grown by chemical vapor deposition. Thin Solid Films 515(7–8), 3539–3546 (2007)CrossRef
536.
go back to reference M.Y. Koroleva, D.V. Berdnikova, B.V. Spitsyn, E.V. Yurtov, Sedimentation stability of aqueous dispersions of nanodiamond agglomerates. Theor. Found. Chem. Eng. 43(4), 478–481 (2009)CrossRef M.Y. Koroleva, D.V. Berdnikova, B.V. Spitsyn, E.V. Yurtov, Sedimentation stability of aqueous dispersions of nanodiamond agglomerates. Theor. Found. Chem. Eng. 43(4), 478–481 (2009)CrossRef
537.
go back to reference E. Osawa, D. Ho, H. Huang, M.V. Korobov, N.N. Rozhkova, Consequences of strong and diverse electrostatic potential fields on the surface of detonation nanodiamond particles. Diam. Relat. Mater. 18(5–8), 904–909 (2009)CrossRef E. Osawa, D. Ho, H. Huang, M.V. Korobov, N.N. Rozhkova, Consequences of strong and diverse electrostatic potential fields on the surface of detonation nanodiamond particles. Diam. Relat. Mater. 18(5–8), 904–909 (2009)CrossRef
538.
go back to reference J. Houska, N.R. Panyala, E.M. Pena-Mendez, J. Havel, Mass spectrometry of nanodiamonds. Rapid Commun. Mass Spectrom. 23(8), 1125–1131 (2009)CrossRef J. Houska, N.R. Panyala, E.M. Pena-Mendez, J. Havel, Mass spectrometry of nanodiamonds. Rapid Commun. Mass Spectrom. 23(8), 1125–1131 (2009)CrossRef
539.
go back to reference N. Brown, O. Hod, Controlling the electronic properties of nanodiamonds via surface chemical functionalization: a DFT study. J. Phys. Chem. C 118(10), 5530–5537 (2014)CrossRef N. Brown, O. Hod, Controlling the electronic properties of nanodiamonds via surface chemical functionalization: a DFT study. J. Phys. Chem. C 118(10), 5530–5537 (2014)CrossRef
540.
go back to reference J.-Y. Raty, G. Galli, Structural and electronic properties of isolated nanodiamonds: a theoretical perspective. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 15–24 (2005)CrossRef J.-Y. Raty, G. Galli, Structural and electronic properties of isolated nanodiamonds: a theoretical perspective. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 15–24 (2005)CrossRef
541.
go back to reference J. Preclikova, F. Trojanek, A. Kromka, B. Rezek, B. Dzurnak, P. Maly, Ultrafast photoluminescence of nanocrystalline diamond films. Phys. Status Solidi A: Appl. Mater. Sci. 205(9), 2154–2157 (2008)CrossRef J. Preclikova, F. Trojanek, A. Kromka, B. Rezek, B. Dzurnak, P. Maly, Ultrafast photoluminescence of nanocrystalline diamond films. Phys. Status Solidi A: Appl. Mater. Sci. 205(9), 2154–2157 (2008)CrossRef
542.
go back to reference I.I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(4), 636–643 (2004) I.I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(4), 636–643 (2004)
543.
go back to reference J.C. Madaleno, M.K. Singh, E. Titus, G. Cabral, J. Gracio, L. Pereira, Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Appl. Phys. Lett. 92(2), 023113/1–023113/3 (2008)CrossRef J.C. Madaleno, M.K. Singh, E. Titus, G. Cabral, J. Gracio, L. Pereira, Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Appl. Phys. Lett. 92(2), 023113/1–023113/3 (2008)CrossRef
544.
go back to reference N. Aggadi, C. Arnas, F. Benedic, C. Dominique, X. Duten, F. Silva, K. Hassouni, D.M. Gruen, Structural and chemical characterization of soot particles formed in Ar/H2/CH4 microwave discharges during nanocrystalline diamond film synthesis. Diam. Relat. Mater. 15(4–8), 908–912 (2006)CrossRef N. Aggadi, C. Arnas, F. Benedic, C. Dominique, X. Duten, F. Silva, K. Hassouni, D.M. Gruen, Structural and chemical characterization of soot particles formed in Ar/H2/CH4 microwave discharges during nanocrystalline diamond film synthesis. Diam. Relat. Mater. 15(4–8), 908–912 (2006)CrossRef
545.
go back to reference C. Popov, M. Novotny, M. Jelinek, S. Boycheva, V. Vorlicek, M. Trchova, W. Kulisch, Chemical bonding study of nanocrystalline diamond films prepared by plasma techniques. Thin Solid Films 506–507, 297–302 (2006)CrossRef C. Popov, M. Novotny, M. Jelinek, S. Boycheva, V. Vorlicek, M. Trchova, W. Kulisch, Chemical bonding study of nanocrystalline diamond films prepared by plasma techniques. Thin Solid Films 506–507, 297–302 (2006)CrossRef
546.
go back to reference D. Slocombe, A. Porch, E. Bustarret, O.A. Williams, Microwave properties of nanodiamond particles. Appl. Phys. Lett. 102, 244102 (2013)CrossRef D. Slocombe, A. Porch, E. Bustarret, O.A. Williams, Microwave properties of nanodiamond particles. Appl. Phys. Lett. 102, 244102 (2013)CrossRef
547.
go back to reference A.S. Barnard, Stability of nanodiamond, in Ultrananocrystalline Diamond, (2006), Elsevier Science, New York, pp. 117–154CrossRef A.S. Barnard, Stability of nanodiamond, in Ultrananocrystalline Diamond, (2006), Elsevier Science, New York, pp. 117–154CrossRef
548.
go back to reference S.K. Gordeev, S.B. Korchagina, On the stability of small sized nanodiamonds. J. Superhard Mater. 29(2), 124–125 (2007)CrossRef S.K. Gordeev, S.B. Korchagina, On the stability of small sized nanodiamonds. J. Superhard Mater. 29(2), 124–125 (2007)CrossRef
549.
go back to reference Y.V. Butenko, P.R. Coxon, M. Yeganeh, A.C. Brieva, K. Liddell, V.R. Dhanak, L. Siller, Stability of hydrogenated nanodiamonds under extreme ultraviolet irradiation. Diam. Relat. Mater. 17(6), 962–966 (2008)CrossRef Y.V. Butenko, P.R. Coxon, M. Yeganeh, A.C. Brieva, K. Liddell, V.R. Dhanak, L. Siller, Stability of hydrogenated nanodiamonds under extreme ultraviolet irradiation. Diam. Relat. Mater. 17(6), 962–966 (2008)CrossRef
550.
go back to reference G.-z. Wang, Review on correlation of diamond performance and nitrogen. Chaoying Cailiao Gongcheng 18(2), 33–36 (2006) G.-z. Wang, Review on correlation of diamond performance and nitrogen. Chaoying Cailiao Gongcheng 18(2), 33–36 (2006)
551.
go back to reference S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo, Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv. Funct. Mater. 19(13), 2116–2124 (2009)CrossRef S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo, Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv. Funct. Mater. 19(13), 2116–2124 (2009)CrossRef
552.
go back to reference I.I. Kulakova, Chemical properties of nanodiamond. NATO Sci. Ser., II: Math., Phys. Chem. 200(Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing), 365–379 (2005) I.I. Kulakova, Chemical properties of nanodiamond. NATO Sci. Ser., II: Math., Phys. Chem. 200(Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing), 365–379 (2005)
553.
go back to reference W. Jiang, W.-y. Lu, B.-w. Yang, Y. Yao, S.-x. Zhang, Z.-l. Kou, Method for analyzing impurity elements in diamond by detecting combustion residues of diamond with EDS and SEM. Chaoying Cailiao Gongcheng 18(3), 6–11 (2006) W. Jiang, W.-y. Lu, B.-w. Yang, Y. Yao, S.-x. Zhang, Z.-l. Kou, Method for analyzing impurity elements in diamond by detecting combustion residues of diamond with EDS and SEM. Chaoying Cailiao Gongcheng 18(3), 6–11 (2006)
554.
go back to reference G.P. Bogatyreva, V.M. Maevskii, G.D. Il'nitskaya, G.F. Nevstruev, V.N. Tkach, I.N. Zaitseva, Impurities and inclusions in synthetic diamond powders of the AC4 and AC6 grades. Sverkhtverdye Materialy 4, 62–69 (2006) G.P. Bogatyreva, V.M. Maevskii, G.D. Il'nitskaya, G.F. Nevstruev, V.N. Tkach, I.N. Zaitseva, Impurities and inclusions in synthetic diamond powders of the AC4 and AC6 grades. Sverkhtverdye Materialy 4, 62–69 (2006)
555.
go back to reference L.V.C. Assali, W.V.M. Machado, R. Larico, J.F. Justo, Cobalt in diamond: an ab initio investigation. Diam. Relat. Mater. 16(4–7), 819–822 (2007)CrossRef L.V.C. Assali, W.V.M. Machado, R. Larico, J.F. Justo, Cobalt in diamond: an ab initio investigation. Diam. Relat. Mater. 16(4–7), 819–822 (2007)CrossRef
556.
go back to reference H.-F. Cheng, Y.-C. Lee, S.-J. Lin, Y.-P. Chou, T.T. Chen, I.-N. Lin, Current image tunneling spectroscopy of boron-doped nanodiamonds. J. Appl. Phys. 97(4), 044312/1–044312/5 (2005)CrossRef H.-F. Cheng, Y.-C. Lee, S.-J. Lin, Y.-P. Chou, T.T. Chen, I.-N. Lin, Current image tunneling spectroscopy of boron-doped nanodiamonds. J. Appl. Phys. 97(4), 044312/1–044312/5 (2005)CrossRef
557.
go back to reference C.X. Yan, Y. Dai, B.B. Huang, R. Long, M. Guo, Shallow donors in diamond: Be and Mg. Comput. Mater. Sci. 44(4), 1286–1290 (2009)CrossRef C.X. Yan, Y. Dai, B.B. Huang, R. Long, M. Guo, Shallow donors in diamond: Be and Mg. Comput. Mater. Sci. 44(4), 1286–1290 (2009)CrossRef
558.
go back to reference H. Sakai, H. Kudou, M. Takahashi, M. Arifuku, Method for producing dispersion of nanodiamond in organic solvent. WO 2008-JP3215 20081106. Priority: JP 2007–290340 20071108. CAN 150:518067 AN 2009:587231 H. Sakai, H. Kudou, M. Takahashi, M. Arifuku, Method for producing dispersion of nanodiamond in organic solvent. WO 2008-JP3215 20081106. Priority: JP 2007–290340 20071108. CAN 150:518067 AN 2009:587231
559.
go back to reference U. Maitra, A. Gomathi, C.N.R. Rao, Covalent and noncovalent functionalization and solubilisation of nanodiamond. J. Exp. Nanosci. 3(4), 271–278 (2008)CrossRef U. Maitra, A. Gomathi, C.N.R. Rao, Covalent and noncovalent functionalization and solubilisation of nanodiamond. J. Exp. Nanosci. 3(4), 271–278 (2008)CrossRef
560.
go back to reference D. Das, R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52(1), 29–64 (2007)CrossRef D. Das, R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52(1), 29–64 (2007)CrossRef
561.
go back to reference B. Chernomordik, S. Dumpala, Z.Q. Chen, M.K. Sunkara, Nanodiamond tipped and coated conical carbon tubular structures. Chem. Vap. Depos. 14(7–8), 256–262 (2008)CrossRef B. Chernomordik, S. Dumpala, Z.Q. Chen, M.K. Sunkara, Nanodiamond tipped and coated conical carbon tubular structures. Chem. Vap. Depos. 14(7–8), 256–262 (2008)CrossRef
562.
go back to reference S.J. Askari, G.C. Chen, F. Akhtar, F.X. Lu, Adherent and low friction nano-crystalline diamond film grown on titanium using microwave CVD plasma. Diam. Relat. Mater. 17(3), 294–299 (2008)CrossRef S.J. Askari, G.C. Chen, F. Akhtar, F.X. Lu, Adherent and low friction nano-crystalline diamond film grown on titanium using microwave CVD plasma. Diam. Relat. Mater. 17(3), 294–299 (2008)CrossRef
563.
go back to reference S.J. Askari, G.C. Chen, F.X. Lu, Growth of polycrystalline and nanocrystalline diamond films on pure titanium by microwave plasma assisted CVD process. Mat. Res. Bull. 43(5), 1086–1092 (2008)CrossRef S.J. Askari, G.C. Chen, F.X. Lu, Growth of polycrystalline and nanocrystalline diamond films on pure titanium by microwave plasma assisted CVD process. Mat. Res. Bull. 43(5), 1086–1092 (2008)CrossRef
564.
go back to reference W. Kulisch, C. Popov, V. Vorlicek, P.N. Gibson, G. Favaro, Nanocrystalline diamond growth on different substrates. Thin Solid Films 515(3), 1005–1010 (2006)CrossRef W. Kulisch, C. Popov, V. Vorlicek, P.N. Gibson, G. Favaro, Nanocrystalline diamond growth on different substrates. Thin Solid Films 515(3), 1005–1010 (2006)CrossRef
565.
go back to reference K. Teii, T. Ikeda, Effect of enhanced C2 growth chemistry on nanodiamond film deposition. Appl. Phys. Lett. 90(11), 111504/1–111504/3 (2007)CrossRef K. Teii, T. Ikeda, Effect of enhanced C2 growth chemistry on nanodiamond film deposition. Appl. Phys. Lett. 90(11), 111504/1–111504/3 (2007)CrossRef
566.
go back to reference F.J. Gordillo-Vazquez, J.M. Albella, Distinct nonequilibrium plasma chemistry of C2 affecting the synthesis of nanodiamond thin films from C2H2 (1%)/H2/Ar-rich plasmas. J Appl. Phys. 94(9), 6085–6090 (2003)CrossRef F.J. Gordillo-Vazquez, J.M. Albella, Distinct nonequilibrium plasma chemistry of C2 affecting the synthesis of nanodiamond thin films from C2H2 (1%)/H2/Ar-rich plasmas. J Appl. Phys. 94(9), 6085–6090 (2003)CrossRef
567.
go back to reference X.-H. Li, W.-T. Guo, X.-K. Chen, W. Gan, J.-P. Yang, R. Wang, S.-Z. Cao, Y. Rong, Effect of pressure on growth rate and quality of diamond films prepared by microwave plasma chemical vapor deposition. Wuli Xuebao 56(12), 7183–7187 (2007) X.-H. Li, W.-T. Guo, X.-K. Chen, W. Gan, J.-P. Yang, R. Wang, S.-Z. Cao, Y. Rong, Effect of pressure on growth rate and quality of diamond films prepared by microwave plasma chemical vapor deposition. Wuli Xuebao 56(12), 7183–7187 (2007)
568.
go back to reference L. Wang, J. Lu, Q. Su, N. Wu, J. Liu, W. Shi, Y. Xia, [100]-textured growth of polycrystalline diamond films on alumina substrates by microwave plasma chemical vapor deposition. Mater Lett. 60(19), 2390–2394 (2006)CrossRef L. Wang, J. Lu, Q. Su, N. Wu, J. Liu, W. Shi, Y. Xia, [100]-textured growth of polycrystalline diamond films on alumina substrates by microwave plasma chemical vapor deposition. Mater Lett. 60(19), 2390–2394 (2006)CrossRef
569.
go back to reference C.S. Abreu, M.S. Amaral, F.J. Oliveira, A. Tallaire, F. Benedic, O. Syll, G. Cicala, J.R. Gomes, R.F. Silva, Tribological testing of self-mated nanocrystalline diamond coatings on Si3N4 ceramics. Surf. Coat. Technol. 200(22–23), 6235–6239 (2006)CrossRef C.S. Abreu, M.S. Amaral, F.J. Oliveira, A. Tallaire, F. Benedic, O. Syll, G. Cicala, J.R. Gomes, R.F. Silva, Tribological testing of self-mated nanocrystalline diamond coatings on Si3N4 ceramics. Surf. Coat. Technol. 200(22–23), 6235–6239 (2006)CrossRef
570.
go back to reference T. Enoki, K. Takai, V. Osipov, M. Baidakova, A. Vul, Nanographene and nanodiamond; new members in the nanocarbon family. Chem. Asian J. 4(6), 796–804 (2009)CrossRef T. Enoki, K. Takai, V. Osipov, M. Baidakova, A. Vul, Nanographene and nanodiamond; new members in the nanocarbon family. Chem. Asian J. 4(6), 796–804 (2009)CrossRef
571.
go back to reference V.P. Grichko, O.A. Shenderova, Nanodiamond: designing the bio-platform, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen. (2006), Elsevier Science, New York, pp. 529–557CrossRef V.P. Grichko, O.A. Shenderova, Nanodiamond: designing the bio-platform, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen. (2006), Elsevier Science, New York, pp. 529–557CrossRef
572.
go back to reference K.V. Purtov, L.P. Burakova, A.P. Puzyr, V.S. Bondar, The interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation. Nanotechnology 19(32), 325101/1–325101/3 (2008)CrossRef K.V. Purtov, L.P. Burakova, A.P. Puzyr, V.S. Bondar, The interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation. Nanotechnology 19(32), 325101/1–325101/3 (2008)CrossRef
573.
go back to reference N. Komatsu, Size separation and surface functionalization of nanodiamond particles aiming at their biomedical applications. Hyomen Kagaku 30(5), 273–278 (2009)CrossRef N. Komatsu, Size separation and surface functionalization of nanodiamond particles aiming at their biomedical applications. Hyomen Kagaku 30(5), 273–278 (2009)CrossRef
574.
go back to reference C. Presti, J.G. Alauzun, D. Laurencin, P. Hubert Mutin, Surface functionalization of detonation nanodiamonds by phosphonic dichloride derivatives. Langmuir 30(30), 9239–9245 (2014)CrossRef C. Presti, J.G. Alauzun, D. Laurencin, P. Hubert Mutin, Surface functionalization of detonation nanodiamonds by phosphonic dichloride derivatives. Langmuir 30(30), 9239–9245 (2014)CrossRef
575.
go back to reference Z.C. Kennedy, C.A. Barrett, M.G. Warner, Direct functionalization of an acid-terminated nanodiamond with azide: enabling access to 4-substituted-1,2,3-triazole-functionalized particles. Langmuir 33(11), 2790–2798 (2017)CrossRef Z.C. Kennedy, C.A. Barrett, M.G. Warner, Direct functionalization of an acid-terminated nanodiamond with azide: enabling access to 4-substituted-1,2,3-triazole-functionalized particles. Langmuir 33(11), 2790–2798 (2017)CrossRef
576.
go back to reference O. Muller, V. Pichot, L. Merlat, L. Schmidlin, D. Spitzer, Nonlinear optical behavior of porphyrin functionalized nanodiamonds: an efficient material for optical power limiting. Appl. Opt. 55(14), 3801–3808 (2016)CrossRef O. Muller, V. Pichot, L. Merlat, L. Schmidlin, D. Spitzer, Nonlinear optical behavior of porphyrin functionalized nanodiamonds: an efficient material for optical power limiting. Appl. Opt. 55(14), 3801–3808 (2016)CrossRef
577.
go back to reference N. Alzate-Carvajal, E.V. Basiuk, V. Meza-Laguna, et al., Solvent-free one-step covalent functionalization of graphene oxide and nanodiamond with amines. RSC Adv. 6, 113596–113610 (2016)CrossRef N. Alzate-Carvajal, E.V. Basiuk, V. Meza-Laguna, et al., Solvent-free one-step covalent functionalization of graphene oxide and nanodiamond with amines. RSC Adv. 6, 113596–113610 (2016)CrossRef
578.
go back to reference G. Ke, S. Huan, F.-l. Huang, Synthesis and dispersibility of derivative of 1,3-propanediamine with nanodiamond. Gongneng Cailiao 40(5), 863–866 (2009) G. Ke, S. Huan, F.-l. Huang, Synthesis and dispersibility of derivative of 1,3-propanediamine with nanodiamond. Gongneng Cailiao 40(5), 863–866 (2009)
579.
go back to reference Z. Remes, A. Choukourov, J. Stuchlik, J. Potmesil, M. Vanecek, Nanocrystalline diamond surface functionalization in radio frequency plasma. Diam. Relat. Mater. 15(4–8), 745–748 (2006)CrossRef Z. Remes, A. Choukourov, J. Stuchlik, J. Potmesil, M. Vanecek, Nanocrystalline diamond surface functionalization in radio frequency plasma. Diam. Relat. Mater. 15(4–8), 745–748 (2006)CrossRef
580.
go back to reference V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131(13), 4594–4595 (2009)CrossRef V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131(13), 4594–4595 (2009)CrossRef
581.
go back to reference Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3(8), 2288–2296 (2009)CrossRef Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3(8), 2288–2296 (2009)CrossRef
582.
go back to reference W.S. Yeap, S. Chen, K.P. Loh, Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir 25(1), 185–191 (2009)CrossRef W.S. Yeap, S. Chen, K.P. Loh, Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir 25(1), 185–191 (2009)CrossRef
583.
go back to reference M. Baidakova, A. Vul, New prospects and frontiers of nanodiamond clusters. J. Phys. D: Appl. Phys. 40(20), 6300–6311 (2007)CrossRef M. Baidakova, A. Vul, New prospects and frontiers of nanodiamond clusters. J. Phys. D: Appl. Phys. 40(20), 6300–6311 (2007)CrossRef
584.
go back to reference A.P. Puzyr, V.S. Bondar, A.A. Bukayemsky, G.E. Selyutin, V.F. Kargin, Physical and chemical properties of modified nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 261–270 (2005)CrossRef A.P. Puzyr, V.S. Bondar, A.A. Bukayemsky, G.E. Selyutin, V.F. Kargin, Physical and chemical properties of modified nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 261–270 (2005)CrossRef
585.
go back to reference B.V. Spitsyn, M.N. Gradoboev, T.B. Galushko, T.A. Karpukhina, N.V. Serebryakova, I.I. Kulakova, N.N. Melnik, Purification and functionalization of nanodiamond. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 241–252 (2005)CrossRef B.V. Spitsyn, M.N. Gradoboev, T.B. Galushko, T.A. Karpukhina, N.V. Serebryakova, I.I. Kulakova, N.N. Melnik, Purification and functionalization of nanodiamond. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 241–252 (2005)CrossRef
586.
go back to reference V.N. Khabashesku, J.L. Margrave, E.V. Barrera, Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam. Relat. Mater. 14(3–7), 859–866 (2005)CrossRef V.N. Khabashesku, J.L. Margrave, E.V. Barrera, Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam. Relat. Mater. 14(3–7), 859–866 (2005)CrossRef
587.
go back to reference V.N. Khabashesku, Y. Liu, J.L. Margrave, M.L. Margrave, Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions. U.S. Pat. Appl. Publ. 2005, 18 pp. US 2005158549 A1 20050721 Patent written in English. Application: US 2004-996869 20041124. Priority: US 2003-525588 20031126 V.N. Khabashesku, Y. Liu, J.L. Margrave, M.L. Margrave, Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions. U.S. Pat. Appl. Publ. 2005, 18 pp. US 2005158549 A1 20050721 Patent written in English. Application: US 2004-996869 20041124. Priority: US 2003-525588 20031126
588.
go back to reference Y. Liu, V.N. Khabashesku, N.J. Halas, Functionalization of nanodiamond powder and applications for glass surface diamond coatings. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, United States, March 13–17, 2005, 2005, COLL-581 Y. Liu, V.N. Khabashesku, N.J. Halas, Functionalization of nanodiamond powder and applications for glass surface diamond coatings. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, United States, March 13–17, 2005, 2005, COLL-581
589.
go back to reference Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond derivatives. Chem. Mater. 16(20), 3924–3930 (2004)CrossRef Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond derivatives. Chem. Mater. 16(20), 3924–3930 (2004)CrossRef
590.
go back to reference Y. Liu, V.N. Khabashesku, N.J. Halas, Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. J. Am. Chem. Soc. 127(11), 3712–3713 (2005)CrossRef Y. Liu, V.N. Khabashesku, N.J. Halas, Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. J. Am. Chem. Soc. 127(11), 3712–3713 (2005)CrossRef
591.
go back to reference V.L. Kuznetsov, Y.V. Butenko, Nanodiamond graphitization and properties of onion-like carbon. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 199–216 (2005)CrossRef V.L. Kuznetsov, Y.V. Butenko, Nanodiamond graphitization and properties of onion-like carbon. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 199–216 (2005)CrossRef
592.
go back to reference S.J. Kwon, J.G. Park, Theoretical analysis of the graphitization of a nanodiamond. J. Phys.: Condens. Matter 19, 386215 (2007) S.J. Kwon, J.G. Park, Theoretical analysis of the graphitization of a nanodiamond. J. Phys.: Condens. Matter 19, 386215 (2007)
593.
go back to reference J.-M. Leyssale, G.L. Vignoles, Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500K. Chem. Phys. Lett. 454(4–6), 299–304 (2008)CrossRef J.-M. Leyssale, G.L. Vignoles, Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500K. Chem. Phys. Lett. 454(4–6), 299–304 (2008)CrossRef
594.
go back to reference Z. Qiao, J. Li, N. Zhao, C. Shi, P. Nash, Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scr. Mater. 54(2), 225–229 (2006)CrossRef Z. Qiao, J. Li, N. Zhao, C. Shi, P. Nash, Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scr. Mater. 54(2), 225–229 (2006)CrossRef
595.
go back to reference R. Narulkar, S. Bukkapatnam, L.M. Raff, R. Komanduri, Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput. Mater. Sci. 45(2), 358–366 (2009)CrossRef R. Narulkar, S. Bukkapatnam, L.M. Raff, R. Komanduri, Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput. Mater. Sci. 45(2), 358–366 (2009)CrossRef
596.
go back to reference A. Brodka, L. Hawelek, A. Burian, S. Tomita, V. Honkimaeki, Molecular dynamics study of structure and graphitization process of nanodiamonds. J. Mol. Struct 887(1–3), 34–40 (2008)CrossRef A. Brodka, L. Hawelek, A. Burian, S. Tomita, V. Honkimaeki, Molecular dynamics study of structure and graphitization process of nanodiamonds. J. Mol. Struct 887(1–3), 34–40 (2008)CrossRef
597.
go back to reference A.F. Azevedo, S.C. Ramos, M.R. Baldan, N.G. Ferreira, Graphitization effects of CH4 addition on NCD growth by first and second Raman spectra and by X-ray diffraction measurements. Diam. Relat. Mater. 17(7–10), 1137–1142 (2008)CrossRef A.F. Azevedo, S.C. Ramos, M.R. Baldan, N.G. Ferreira, Graphitization effects of CH4 addition on NCD growth by first and second Raman spectra and by X-ray diffraction measurements. Diam. Relat. Mater. 17(7–10), 1137–1142 (2008)CrossRef
598.
go back to reference V.V. Kononenko, T.V. Kononenko, S.M. Pimenov, M.N. Sinyavskii, V.I. Konov, F. Dausinger, Effect of the pulse duration on graphitisation of diamond during laser ablation. Quantum Electron 35(3), 252–256 (2005)CrossRef V.V. Kononenko, T.V. Kononenko, S.M. Pimenov, M.N. Sinyavskii, V.I. Konov, F. Dausinger, Effect of the pulse duration on graphitisation of diamond during laser ablation. Quantum Electron 35(3), 252–256 (2005)CrossRef
599.
go back to reference V.N. Strekalov, Graphitization of diamond stimulated by electron-hole recombination. Appl. Phys. A Mater. Sci. Process. 80(5), 1061–1066 (2005)CrossRef V.N. Strekalov, Graphitization of diamond stimulated by electron-hole recombination. Appl. Phys. A Mater. Sci. Process. 80(5), 1061–1066 (2005)CrossRef
600.
go back to reference I. Gouzman, S. Michaelson, A. Hoffman, Nanodiamond films deposited from energetic species: material characterization and mechanism of formation, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen (Eds), (2006), Elsevier Science, New York, pp. 229–272CrossRef I. Gouzman, S. Michaelson, A. Hoffman, Nanodiamond films deposited from energetic species: material characterization and mechanism of formation, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen (Eds), (2006), Elsevier Science, New York, pp. 229–272CrossRef
601.
go back to reference A. Hoffman, Mechanism and properties of nanodiamond films deposited by the DC-GD-CVD process. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 125–144 (2005)CrossRef A. Hoffman, Mechanism and properties of nanodiamond films deposited by the DC-GD-CVD process. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 125–144 (2005)CrossRef
602.
go back to reference W. Liu, C. Gu, The preparation and properties of nanostructured diamond films deposited by a hot-filament chemical vapor deposition method via continuous ion bombardment. Thin Solid Films 467(1–2), 4–9 (2004)CrossRef W. Liu, C. Gu, The preparation and properties of nanostructured diamond films deposited by a hot-filament chemical vapor deposition method via continuous ion bombardment. Thin Solid Films 467(1–2), 4–9 (2004)CrossRef
603.
go back to reference M. Liao, F. Qin, J. Zhang, Z. Liu, S. Yang, Z. Wang, S.-T. Lee, Ion bombardment as the initial stage of diamond film growth. J. Appl. Phys. 89(3), 1983–1985 (2001)CrossRef M. Liao, F. Qin, J. Zhang, Z. Liu, S. Yang, Z. Wang, S.-T. Lee, Ion bombardment as the initial stage of diamond film growth. J. Appl. Phys. 89(3), 1983–1985 (2001)CrossRef
604.
go back to reference L. Grausova, L. Bacakova, A. Kromka, S. Potocky, M. Vanecek, M. Nesladek, V. Lisa, Nanodiamond as promising material for bone tissue engineering. J. Nanosci. Nanotech. 9(6), 3524–3534 (2009)CrossRef L. Grausova, L. Bacakova, A. Kromka, S. Potocky, M. Vanecek, M. Nesladek, V. Lisa, Nanodiamond as promising material for bone tissue engineering. J. Nanosci. Nanotech. 9(6), 3524–3534 (2009)CrossRef
605.
go back to reference S. Liu, W. Liu, L. Hei, W. Tang, F. Lv, Research on preparation of diamond coatings containing Si by microwave plasma chemical vapor deposition. Beijing Keji Daxue Xuebao 29(4), 408–412 (2007). 446. S. Liu, W. Liu, L. Hei, W. Tang, F. Lv, Research on preparation of diamond coatings containing Si by microwave plasma chemical vapor deposition. Beijing Keji Daxue Xuebao 29(4), 408–412 (2007). 446.
606.
go back to reference W. Man, J. Wang, C. Wang, Z. Ma, S. Wang, L. Xiong, Low temperature synthesis of nanocrystalline diamond films deposited by microwave CVD. Wuhan Huagong Xueyuan Xuebao 28(4), 57–61 (2006) W. Man, J. Wang, C. Wang, Z. Ma, S. Wang, L. Xiong, Low temperature synthesis of nanocrystalline diamond films deposited by microwave CVD. Wuhan Huagong Xueyuan Xuebao 28(4), 57–61 (2006)
607.
go back to reference E.A. Mujica, F. Piazza, J. De Jesus, B.R. Weiner, S.D. Wolter, G. Morell, Synthesis of unstrained failure-resistant nanocrystalline diamond films. Thin Solid Films 515(20–21), 7906–7910 (2007)CrossRef E.A. Mujica, F. Piazza, J. De Jesus, B.R. Weiner, S.D. Wolter, G. Morell, Synthesis of unstrained failure-resistant nanocrystalline diamond films. Thin Solid Films 515(20–21), 7906–7910 (2007)CrossRef
608.
go back to reference J. Zhou, L. Wang, G. Liu, S. Ouyang, Method for synthesizing diamond nanofilm with microwave plasma at low temperature. 2007, 3 pp. CN 101024893 A 20070829 Patent written in Chinese. Application: CN 2007–10051244 20070111. Priority: CAN 147:353777 AN 2007:967265 J. Zhou, L. Wang, G. Liu, S. Ouyang, Method for synthesizing diamond nanofilm with microwave plasma at low temperature. 2007, 3 pp. CN 101024893 A 20070829 Patent written in Chinese. Application: CN 2007–10051244 20070111. Priority: CAN 147:353777 AN 2007:967265
609.
go back to reference V.V. Karbushev, I.I. Konstantinov, I.L. Parsamyan, V.G. Kulichikhin, V.A. Popov, T.F. George, Preparation of polymer-nanodiamond composites with improved properties. Adv. Mater. Res. 59(1st International Conference on New Materials for Extreme Environments, 2008), 275–278 (2009) V.V. Karbushev, I.I. Konstantinov, I.L. Parsamyan, V.G. Kulichikhin, V.A. Popov, T.F. George, Preparation of polymer-nanodiamond composites with improved properties. Adv. Mater. Res. 59(1st International Conference on New Materials for Extreme Environments, 2008), 275–278 (2009)
610.
go back to reference T. Sawaguchi, S. Yano, T. Hagiwara, H. Ito, Transparent heat-resistant polymer-nanodiamond composites. PCT Int. Appl. 2005, 20 pp. WO 2005085359 A1 20050915 Patent written in Japanese. Application: WO 2005-JP3887 20050307. Priority: JP 2004–64281 20040308 T. Sawaguchi, S. Yano, T. Hagiwara, H. Ito, Transparent heat-resistant polymer-nanodiamond composites. PCT Int. Appl. 2005, 20 pp. WO 2005085359 A1 20050915 Patent written in Japanese. Application: WO 2005-JP3887 20050307. Priority: JP 2004–64281 20040308
611.
go back to reference K. Eswar Prasad, B. Das, U. Maitra, U. Ramamurty, C.N.R. Rao, Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc. Natl. Acad. Sci. U. S. A., Early Ed. 1-4, 4 (2009) K. Eswar Prasad, B. Das, U. Maitra, U. Ramamurty, C.N.R. Rao, Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc. Natl. Acad. Sci. U. S. A., Early Ed. 1-4, 4 (2009)
612.
go back to reference A.S. Gavrilov, A.P. Voznyakovskii, Rheological characteristics and relaxation properties of polymer-nanodiamond composites. Russ. J. Appl. Chem. 82(6), 1041–1045 (2009)CrossRef A.S. Gavrilov, A.P. Voznyakovskii, Rheological characteristics and relaxation properties of polymer-nanodiamond composites. Russ. J. Appl. Chem. 82(6), 1041–1045 (2009)CrossRef
613.
go back to reference V.Y. Dolmatov, Polymer-diamond composites based on detonation nanodiamonds. Report 3. Sverkhtverdye Materialy 4, 3–12 (2007) V.Y. Dolmatov, Polymer-diamond composites based on detonation nanodiamonds. Report 3. Sverkhtverdye Materialy 4, 3–12 (2007)
614.
go back to reference I.I. Konstantinov, V.V. Karbushev, A.V. Semakov, V.G. Kulichikhin, Combining carbon and polymeric particles in an inert fluid as a promising approach to synthesis of nanocomposites. Russ. J. Appl. Chem. 82(3), 483–487 (2009)CrossRef I.I. Konstantinov, V.V. Karbushev, A.V. Semakov, V.G. Kulichikhin, Combining carbon and polymeric particles in an inert fluid as a promising approach to synthesis of nanocomposites. Russ. J. Appl. Chem. 82(3), 483–487 (2009)CrossRef
615.
go back to reference M. Mahdavi, N. Mahmoudi, F. Rezaie Anaran, A. Simchi, Electrospinning of nanodiamond-modified polysaccharide nanofibers with physico-mechanical properties close to natural skins. Mar. Drugs 14, 128 (2016)CrossRef M. Mahdavi, N. Mahmoudi, F. Rezaie Anaran, A. Simchi, Electrospinning of nanodiamond-modified polysaccharide nanofibers with physico-mechanical properties close to natural skins. Mar. Drugs 14, 128 (2016)CrossRef
616.
go back to reference H. Yoshioka, R. Furukuwa, H. Sawada, Preparation and applications of fluoroalkylated oligomeric nanoparticles. Hyomen 44(5), 167–182 (2006) H. Yoshioka, R. Furukuwa, H. Sawada, Preparation and applications of fluoroalkylated oligomeric nanoparticles. Hyomen 44(5), 167–182 (2006)
617.
go back to reference W. Zhang, S.-T. Lee, I. Bello, K.M. Leung, H.-Q. Li, Y.-S. Zou, Y.M. Chong, K.L. Ma, Ultrahard multilayer coatings based on alternating layers of nanocrystalline diamond and nanocrystalline cubic boron nitride. U.S. Pat. Appl. Publ., 2009, 14 pp. US 2009022969 A1 20090122 Patent written in English. Application: US 2007-880115 20070719. Priority: CAN 150:150364 AN 2009:93515 W. Zhang, S.-T. Lee, I. Bello, K.M. Leung, H.-Q. Li, Y.-S. Zou, Y.M. Chong, K.L. Ma, Ultrahard multilayer coatings based on alternating layers of nanocrystalline diamond and nanocrystalline cubic boron nitride. U.S. Pat. Appl. Publ., 2009, 14 pp. US 2009022969 A1 20090122 Patent written in English. Application: US 2007-880115 20070719. Priority: CAN 150:150364 AN 2009:93515
618.
go back to reference H.Q. Li, K.M. Leung, K.L. Ma, Q. Ye, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, I. Bello, Nanocubic boron nitride/nanodiamond multilayer structures. Appl. Phys. Lett. 91(20), 201918/1–201918/3 (2007) H.Q. Li, K.M. Leung, K.L. Ma, Q. Ye, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, I. Bello, Nanocubic boron nitride/nanodiamond multilayer structures. Appl. Phys. Lett. 91(20), 201918/1–201918/3 (2007)
619.
go back to reference F.A. Almeida, M. Belmonte, A.J.S. Fernandes, F.J. Oliveira, R.F. Sand ilva, MPCVD diamond coating of Si3N4-TiN electroconductive composite substrates. Diam. Relat. Mater. 16(4–7), 978–982 (2007)CrossRef F.A. Almeida, M. Belmonte, A.J.S. Fernandes, F.J. Oliveira, R.F. Sand ilva, MPCVD diamond coating of Si3N4-TiN electroconductive composite substrates. Diam. Relat. Mater. 16(4–7), 978–982 (2007)CrossRef
620.
go back to reference Y. Tzeng, Y.-C. Chen, A.-J. Cheng, Y.-T. Hung, C.-S. Yeh, M. Park, B.M. Wilamowski, Chemically vapor deposited diamond-tipped one-dimensional nanostructures and nanodiamond-silica-nanotube composites. Diam. Relat. Mater. 18(2–3), 173–176 (2009)CrossRef Y. Tzeng, Y.-C. Chen, A.-J. Cheng, Y.-T. Hung, C.-S. Yeh, M. Park, B.M. Wilamowski, Chemically vapor deposited diamond-tipped one-dimensional nanostructures and nanodiamond-silica-nanotube composites. Diam. Relat. Mater. 18(2–3), 173–176 (2009)CrossRef
621.
go back to reference M.K. Singh, E. Titus, J.C. Madaleno, L. Pereira, G. Cabral, V.F. Neto, J. Gracio, Nanocrystalline diamond on SiO2 fiber: a new class of hybrid material. Diam. Relat. Mater. 17(7–10), 1106–1109 (2008)CrossRef M.K. Singh, E. Titus, J.C. Madaleno, L. Pereira, G. Cabral, V.F. Neto, J. Gracio, Nanocrystalline diamond on SiO2 fiber: a new class of hybrid material. Diam. Relat. Mater. 17(7–10), 1106–1109 (2008)CrossRef
622.
go back to reference E.A. Ekimov, A. Zoteev, N.F. Borovikov, Sintering of a nanodiamond in the presence of cobalt. Inorg. Mater. 45(5), 491–494 (2009)CrossRef E.A. Ekimov, A. Zoteev, N.F. Borovikov, Sintering of a nanodiamond in the presence of cobalt. Inorg. Mater. 45(5), 491–494 (2009)CrossRef
623.
go back to reference I.I. Vlasov, O.I. Lebedev, V.G. Ralchenko, E. Goovaerts, G. Bertoni, G. Van Tendeloo, V.I. Konov, Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19(22), 4058–4062 (2007)CrossRef I.I. Vlasov, O.I. Lebedev, V.G. Ralchenko, E. Goovaerts, G. Bertoni, G. Van Tendeloo, V.I. Konov, Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19(22), 4058–4062 (2007)CrossRef
624.
go back to reference I.P. Chang, K.C. Hwang, C.-S. Chiang, Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J. Amer. Chem. Soc. 130(46), 15476–15481 (2008)CrossRef I.P. Chang, K.C. Hwang, C.-S. Chiang, Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J. Amer. Chem. Soc. 130(46), 15476–15481 (2008)CrossRef
625.
go back to reference R.K. Yafarov, Production of nanodiamond composites in a low-pressure microwave gas-discharge plasma. Tech. Phys. 51(1), 40–46 (2006)CrossRef R.K. Yafarov, Production of nanodiamond composites in a low-pressure microwave gas-discharge plasma. Tech. Phys. 51(1), 40–46 (2006)CrossRef
626.
go back to reference R. Blum, P. Molian, Liquid-phase sintering of nanodiamond composite coatings on aluminum A319 using a focused laser beam. Surf. Coat. Technol. 204(1–2), 1–14 (2009)CrossRef R. Blum, P. Molian, Liquid-phase sintering of nanodiamond composite coatings on aluminum A319 using a focused laser beam. Surf. Coat. Technol. 204(1–2), 1–14 (2009)CrossRef
627.
go back to reference H. Matsubara, Fabrication of novel materials by the incorporation of nanodiamond into plated films. Hyomen Kagaku 30(5), 279–286 (2009)CrossRef H. Matsubara, Fabrication of novel materials by the incorporation of nanodiamond into plated films. Hyomen Kagaku 30(5), 279–286 (2009)CrossRef
628.
go back to reference H. Matsubara, Co-deposition behavior of nanodiamond with electrolessly plated nickel films. Hyomen Gijutsu 57(7), 484–488 (2006) H. Matsubara, Co-deposition behavior of nanodiamond with electrolessly plated nickel films. Hyomen Gijutsu 57(7), 484–488 (2006)
629.
go back to reference P.Y. Detkov, V.A. Popov, V.G. Kulichikhin, S.I. Chukhaeva, Development of composite materials based on improved nanodiamonds. Top. Appl. Phys. 109(Molecular Building Blocks for Nanotechnology), 29–43 (2007)CrossRef P.Y. Detkov, V.A. Popov, V.G. Kulichikhin, S.I. Chukhaeva, Development of composite materials based on improved nanodiamonds. Top. Appl. Phys. 109(Molecular Building Blocks for Nanotechnology), 29–43 (2007)CrossRef
630.
go back to reference H. Uetsuka, T. Nakamura, C.E. Nebel, Nanodiamond-containing microstructure composites and method for transporting biological molecules into bodies by using them. 2009, 7 pp. JP 2009119561 A 20090604 Patent written in Japanese. Application: JP 2007–296378 20071115 H. Uetsuka, T. Nakamura, C.E. Nebel, Nanodiamond-containing microstructure composites and method for transporting biological molecules into bodies by using them. 2009, 7 pp. JP 2009119561 A 20090604 Patent written in Japanese. Application: JP 2007–296378 20071115
631.
go back to reference S.H. Lee, Gas sensor using nanodiamond and gas detection method. 2009, 6 pp. KR 2009066740 A 20090624 Patent written in Korean. Application: KR 2007–134421 20071220. Priority: CAN 151:92754 AN 2009:780521 S.H. Lee, Gas sensor using nanodiamond and gas detection method. 2009, 6 pp. KR 2009066740 A 20090624 Patent written in Korean. Application: KR 2007–134421 20071220. Priority: CAN 151:92754 AN 2009:780521
632.
go back to reference S. Raina, W.P. Kang, J.L. Davidson, Optimizing nitrogen incorporation in nanodiamond film for bio-analyte sensing. Diam. Relat. Mater. 18(5–8), 718–721 (2009)CrossRef S. Raina, W.P. Kang, J.L. Davidson, Optimizing nitrogen incorporation in nanodiamond film for bio-analyte sensing. Diam. Relat. Mater. 18(5–8), 718–721 (2009)CrossRef
633.
go back to reference K.B. Holt, D.J. Caruana, E.J. Millan-Barrios, Electrochemistry of undoped diamond nanoparticles: accessing surface redox states. J. Am. Chem. Soc. 131(32), 11272–11273 (2009)CrossRef K.B. Holt, D.J. Caruana, E.J. Millan-Barrios, Electrochemistry of undoped diamond nanoparticles: accessing surface redox states. J. Am. Chem. Soc. 131(32), 11272–11273 (2009)CrossRef
634.
go back to reference I.S. Larionova, V.N. Belyaev, K.F. Il’inykh, A.V. Frolov, N.V. Bychin, V.M. Mitrofanov, Method for preparation and galvanic deposition of wear-resistant nanodiamonds based coating composition on metal surfaces. 2009, 5 pp. RU 2357017 C1 20090527 Patent written in Russian. Application: RU 2007–128703 20070725. Priority: CAN 150:565842 AN 2009:646846 I.S. Larionova, V.N. Belyaev, K.F. Il’inykh, A.V. Frolov, N.V. Bychin, V.M. Mitrofanov, Method for preparation and galvanic deposition of wear-resistant nanodiamonds based coating composition on metal surfaces. 2009, 5 pp. RU 2357017 C1 20090527 Patent written in Russian. Application: RU 2007–128703 20070725. Priority: CAN 150:565842 AN 2009:646846
635.
go back to reference P.A. Vityaz, The state of the art and prospects of detonation-synthesis nanodiamond applications in Belarus. Phys. Solid State 46(4), 606–610 (2004)CrossRef P.A. Vityaz, The state of the art and prospects of detonation-synthesis nanodiamond applications in Belarus. Phys. Solid State 46(4), 606–610 (2004)CrossRef
636.
go back to reference S. Shiozaki, Normal-temperature glass, its formation, and normal temperature glass coating material. 2009, 18 pp. JP 2009102188 A 20090514 Patent written in Japanese. Application: JP 2007–274359 20071022. Priority: CAN 150:499296 AN 2009:583008 S. Shiozaki, Normal-temperature glass, its formation, and normal temperature glass coating material. 2009, 18 pp. JP 2009102188 A 20090514 Patent written in Japanese. Application: JP 2007–274359 20071022. Priority: CAN 150:499296 AN 2009:583008
637.
go back to reference K.V. Purtov, V.S. Bondar, A.P. Puzyr, Nanodiamond sorbent and method of its obtaining. 2009, 7 pp. RU 2352387 C1 20090420 Patent written in Russian. Application: RU 2007–127892 20070719. Priority: CAN 150:450910 AN 2009:474289 K.V. Purtov, V.S. Bondar, A.P. Puzyr, Nanodiamond sorbent and method of its obtaining. 2009, 7 pp. RU 2352387 C1 20090420 Patent written in Russian. Application: RU 2007–127892 20070719. Priority: CAN 150:450910 AN 2009:474289
638.
go back to reference V.S. Bondar, A.P. Puzyr, Possibilities and prospects for creation of new nanoprocesses based on detonation nanodiamond particles: medicobiological and technical aspects. Konstruktsii iz Kompozitsionnykh Materialov 4, 80–94 (2005) V.S. Bondar, A.P. Puzyr, Possibilities and prospects for creation of new nanoprocesses based on detonation nanodiamond particles: medicobiological and technical aspects. Konstruktsii iz Kompozitsionnykh Materialov 4, 80–94 (2005)
639.
go back to reference S.A. Zibrov, V.V. Vasil’ev, V.L. Velichanskii, V.G. Pevgov, V.M. Rudoi, Method for protection of documents, valuable papers or products with nanodiamonds with active NV centers. 2009, 4 pp. RU 2357866 C1 20090610 Patent written in Russian. Application: RU 2008–136466 20080910. Priority: CAN 151:7812 AN 2009:703362 S.A. Zibrov, V.V. Vasil’ev, V.L. Velichanskii, V.G. Pevgov, V.M. Rudoi, Method for protection of documents, valuable papers or products with nanodiamonds with active NV centers. 2009, 4 pp. RU 2357866 C1 20090610 Patent written in Russian. Application: RU 2008–136466 20080910. Priority: CAN 151:7812 AN 2009:703362
640.
go back to reference D. Zhang, X.-G. Hu, Y. Tong, F.-L. Huang, The research development of nanodiamond as a lubricating additive. Runhuayou 21(1), 50–54 (2006) D. Zhang, X.-G. Hu, Y. Tong, F.-L. Huang, The research development of nanodiamond as a lubricating additive. Runhuayou 21(1), 50–54 (2006)
641.
go back to reference J. Qu, X. Li, B. Song, Polytetrafluoroethylene friction material for ultrasonic motor, 2004, 4 pp. CN 1473865 A 20040211 Patent written in Chinese. Application: CN 2003–132555 20030807. Priority: CAN 142:393210 AN 2004:1024000 J. Qu, X. Li, B. Song, Polytetrafluoroethylene friction material for ultrasonic motor, 2004, 4 pp. CN 1473865 A 20040211 Patent written in Chinese. Application: CN 2003–132555 20030807. Priority: CAN 142:393210 AN 2004:1024000
642.
go back to reference J. Luo, X. Liu, X. Wang, Effect of proportion of nano-diamond and zirconia on color of core resin. Xiandai Kouqiang Yixue Zazhi 22(3), 251–254 (2008) J. Luo, X. Liu, X. Wang, Effect of proportion of nano-diamond and zirconia on color of core resin. Xiandai Kouqiang Yixue Zazhi 22(3), 251–254 (2008)
643.
go back to reference M. Comet, V. Pichot, B. Siegert, D. Spitzer, J.-P. Moeglin, Y. Boehrer, Use of nanodiamonds as a reducing agent in a chlorate-based energetic composition. Propellants, Explos., Pyrotech. 34(2), 166–173 (2009)CrossRef M. Comet, V. Pichot, B. Siegert, D. Spitzer, J.-P. Moeglin, Y. Boehrer, Use of nanodiamonds as a reducing agent in a chlorate-based energetic composition. Propellants, Explos., Pyrotech. 34(2), 166–173 (2009)CrossRef
644.
go back to reference Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)CrossRef Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)CrossRef
645.
go back to reference V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)CrossRef V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)CrossRef
646.
go back to reference A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)CrossRef A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)CrossRef
647.
go back to reference C.-Y. Cheng, E. Perevedentseva, J.-S. Tu, P.-H. Chung, C.-L. Cheng, K.-K. Liu, J.-I. Chao, P.-H. Chen, C.-C. Chang, Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl. Phys. Lett. 90(16), 163903/1–163903/3 (2007)CrossRef C.-Y. Cheng, E. Perevedentseva, J.-S. Tu, P.-H. Chung, C.-L. Cheng, K.-K. Liu, J.-I. Chao, P.-H. Chen, C.-C. Chang, Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl. Phys. Lett. 90(16), 163903/1–163903/3 (2007)CrossRef
648.
go back to reference R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30(29), 5720–5728 (2009)CrossRef R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30(29), 5720–5728 (2009)CrossRef
649.
go back to reference K.-K. Liu, C.-C. Wang, C.-L. Cheng, J.-I. Chao, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30(26), 4249–4259 (2009)CrossRef K.-K. Liu, C.-C. Wang, C.-L. Cheng, J.-I. Chao, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30(26), 4249–4259 (2009)CrossRef
650.
go back to reference M. Chen, E.D. Pierstorff, R. Lam, S.-Y. Li, H. Huang, E. Osawa, D. Ho, Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 3(7), 2016–2022 (2009)CrossRef M. Chen, E.D. Pierstorff, R. Lam, S.-Y. Li, H. Huang, E. Osawa, D. Ho, Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 3(7), 2016–2022 (2009)CrossRef
651.
go back to reference O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, H. Girard, C. Gesset, M. Senour, A. Thorel, J.-C. Arnault, J.-P. Boudou, P.A. Curmi, F. Treussart, Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the fluorescent yield. arXiv.org, e-Print Archive, Physics, 2009, pp. 1–24, arXiv:0907.1148v1 [physics.optics] O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, H. Girard, C. Gesset, M. Senour, A. Thorel, J.-C. Arnault, J.-P. Boudou, P.A. Curmi, F. Treussart, Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the fluorescent yield. arXiv.​org, e-Print Archive, Physics, 2009, pp. 1–24, arXiv:0907.1148v1 [physics.optics]
Metadata
Title
Classic Carbon Nanostructures
Authors
Boris Ildusovich Kharisov
Oxana Vasilievna Kharissova
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-03505-1_3

Premium Partners