Skip to main content
Top
Published in: Journal of Classification 1/2023

16-02-2023

Classification Trees with Mismeasured Responses

Authors: Liqun Diao, Grace Y. Yi

Published in: Journal of Classification | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Classification trees are a popular machine learning tool for studying a variety of problems, including prediction, inference, risk factors identification, and risk groups classification. Classification trees are basically developed under the assumption that the response and covariate variables are accurately measured. This condition, however, is often violated in practice. Ignoring this feature commonly yields invalid analysis results. In this paper, we study the impact of mismeasured responses on the performance of standard classification trees and propose a novel classification trees algorithm for mismeasured responses. Our study is directed to settings with binary responses which are subject to mismeasurement. To address the effects of mismeasured responses, we modify the decision rules which are valid for tree building in the mismeasurement-free settings by introducing new measures for the node impurity and misclassification cost. To characterize the magnitude of mismeasurement in responses, we consider two data scenarios. In the first scenario, the mismeasurement rates are known, either from previous studies of the same nature or being set by researchers who are interested in conducting sensitivity analyses to assess the impact of mismeasured responses. In the second scenario, the mismeasurement rates are unknown and are estimated from a validation dataset which contains both accurate measurements and mismeasurements for responses. We conduct a variety of simulation studies to assess the performance of the proposed classification trees algorithm, in comparison to the usual classification trees algorithms which ignore response mismeasurement. It is demonstrated that ignoring response mismeasurement can yield seriously erroneous results and that our proposed method provides superior performance with the mismeasurement effects accommodated. To illustrate the usage of the proposed method, we analyze the data arising from the National Health and Nutrition Examination Surveys (NHANES) by conducting sensitivity analyses to assess how classification results may be affected by different misclassification costs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ball, N., & Brunner, R.J. (2010). Data mining and machine learning in astronomy. International Journal of Modern Physics D, 19, 1049–1106.CrossRefMATH Ball, N., & Brunner, R.J. (2010). Data mining and machine learning in astronomy. International Journal of Modern Physics D, 19, 1049–1106.CrossRefMATH
go back to reference Birke, H. (2015). Model-based recursive partitioning with adjustment for measurement error - Applied to the Cox’s proportional hazards and Weibull model. Springer Spektrum. Birke, H. (2015). Model-based recursive partitioning with adjustment for measurement error - Applied to the Cox’s proportional hazards and Weibull model. Springer Spektrum.
go back to reference Blanchard, G., Lee, G., & Scott, C. (2010). Semi-supervised novelty detection. The Journal of Machine Learning Research, 11, 2973–3009.MathSciNetMATH Blanchard, G., Lee, G., & Scott, C. (2010). Semi-supervised novelty detection. The Journal of Machine Learning Research, 11, 2973–3009.MathSciNetMATH
go back to reference Blanco, V., Japón, A., & Puerto, J. (2022). Robust optimal classification trees under noisy labels. Advances in Data Analysis and Classification, 16, 155–179.MathSciNetCrossRefMATH Blanco, V., Japón, A., & Puerto, J. (2022). Robust optimal classification trees under noisy labels. Advances in Data Analysis and Classification, 16, 155–179.MathSciNetCrossRefMATH
go back to reference Bose, I., & Mahapatra, R.K. (2001). Business data mining – A machine learning perspective. Information and Management, 39, 211–225.CrossRef Bose, I., & Mahapatra, R.K. (2001). Business data mining – A machine learning perspective. Information and Management, 39, 211–225.CrossRef
go back to reference Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees. The Wadsworth statistics/probability series. Belmont, CA: Wadsworth International Group. Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees. The Wadsworth statistics/probability series. Belmont, CA: Wadsworth International Group.
go back to reference Brodley, C.E., & Friedl, M.A. (1999). Identifying mislabeled training data. Journal of Artificial Intelligence Research, 11, 131–167.CrossRefMATH Brodley, C.E., & Friedl, M.A. (1999). Identifying mislabeled training data. Journal of Artificial Intelligence Research, 11, 131–167.CrossRefMATH
go back to reference Buonaccorsi, J.P. (2010). Measurement error: Models, methods, and applications. Boca Raton: Chapman and Hall/CRC Press.CrossRefMATH Buonaccorsi, J.P. (2010). Measurement error: Models, methods, and applications. Boca Raton: Chapman and Hall/CRC Press.CrossRefMATH
go back to reference Carroll, R.J., D., R., & Stefanski, L.A. (1995). Measurement error in nonlinear models. New York: Chapman and Hall.CrossRefMATH Carroll, R.J., D., R., & Stefanski, L.A. (1995). Measurement error in nonlinear models. New York: Chapman and Hall.CrossRefMATH
go back to reference Carroll, R.J., Ruppert, D., Stefanski, L.A., & Crainiceanu, C.M. (2006). Measurement error in nonlinear models: A modern perspective, 2nd edn. Boca Raton: Chapman and Hall/CRC Press.CrossRefMATH Carroll, R.J., Ruppert, D., Stefanski, L.A., & Crainiceanu, C.M. (2006). Measurement error in nonlinear models: A modern perspective, 2nd edn. Boca Raton: Chapman and Hall/CRC Press.CrossRefMATH
go back to reference Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 1–58.CrossRef Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 1–58.CrossRef
go back to reference Cheng, J., Liu, T., Ramamohanarao, K., & Tao, D. (2020). Learning with bounded instance and label-dependent label noise. In International conference on machine learning. PMLR (pp. 1789–1799). Cheng, J., Liu, T., Ramamohanarao, K., & Tao, D. (2020). Learning with bounded instance and label-dependent label noise. In International conference on machine learning. PMLR (pp. 1789–1799).
go back to reference Foster, I., Ghani, R., Jarmin, R.S., Kreuter, F., & Lane, J. (2016). Big data and social science: A practical guide to methods and tools. Boca Raton: Chapman and Hall/CRC Press.CrossRef Foster, I., Ghani, R., Jarmin, R.S., Kreuter, F., & Lane, J. (2016). Big data and social science: A practical guide to methods and tools. Boca Raton: Chapman and Hall/CRC Press.CrossRef
go back to reference Frénay, B., & Verleysen, M. (2013). Classification in the presence of label noise: A survey. IEEE Transactions on Neural Networks and Learning Systems, 25(5), 845–869.CrossRef Frénay, B., & Verleysen, M. (2013). Classification in the presence of label noise: A survey. IEEE Transactions on Neural Networks and Learning Systems, 25(5), 845–869.CrossRef
go back to reference Ghosh, A., Manwani, N., & Sastry, P. (2015). Making risk minimization tolerant to label noise. Neurocomputing, 160, 93–107.CrossRef Ghosh, A., Manwani, N., & Sastry, P. (2015). Making risk minimization tolerant to label noise. Neurocomputing, 160, 93–107.CrossRef
go back to reference Ghosh, A., Manwani, N., & Sastry, P. (2017). On the robustness of decision tree learning under label noise. In Pacific-Asia conference on knowledge discovery and data mining (pp. 685–697). Springer. Ghosh, A., Manwani, N., & Sastry, P. (2017). On the robustness of decision tree learning under label noise. In Pacific-Asia conference on knowledge discovery and data mining (pp. 685–697). Springer.
go back to reference Gustafson, P. (2004). Measurement error or misclassification in statistics and epidemiology. Boca Raton: Chapman and Hall/CRC Press.MATH Gustafson, P. (2004). Measurement error or misclassification in statistics and epidemiology. Boca Raton: Chapman and Hall/CRC Press.MATH
go back to reference Hayton, P., Schölkopf, B., Tarassenko, L., & Anuzis, P. (2000). Support vector novelty detection applied to jet engine vibration spectra. Advances in Neural Information Processing Systems, 13. Hayton, P., Schölkopf, B., Tarassenko, L., & Anuzis, P. (2000). Support vector novelty detection applied to jet engine vibration spectra. Advances in Neural Information Processing Systems, 13.
go back to reference Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85–126.CrossRefMATH Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85–126.CrossRefMATH
go back to reference Khoshgoftaar, T.M., Zhong, S., & Joshi, V. (2005). Enhancing software quality estimation using ensemble-classifier based noise filtering. Intelligent Data Analysis, 9(1), 3–27.CrossRef Khoshgoftaar, T.M., Zhong, S., & Joshi, V. (2005). Enhancing software quality estimation using ensemble-classifier based noise filtering. Intelligent Data Analysis, 9(1), 3–27.CrossRef
go back to reference Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine, 23, 89–109.CrossRef Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine, 23, 89–109.CrossRef
go back to reference Lin, C.H., Mausam, & Weld, D.S. (2014). To re (label), or not to re (label). In Proceedings of the 2nd AAAI conference on human computation and crowdsourcing, (Vol. 2 pp. 151–158). Lin, C.H., Mausam, & Weld, D.S. (2014). To re (label), or not to re (label). In Proceedings of the 2nd AAAI conference on human computation and crowdsourcing, (Vol. 2 pp. 151–158).
go back to reference Liu, T., & Tao, D. (2016). Classification with noisy labels by importance reweighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3), 447–461.MathSciNetCrossRef Liu, T., & Tao, D. (2016). Classification with noisy labels by importance reweighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3), 447–461.MathSciNetCrossRef
go back to reference Liu, Y., & Guo, H. (2020). Peer loss functions: Learning from noisy labels without knowing noise rates. In International conference on machine learning. PMLR (pp. 6226–6236). Liu, Y., & Guo, H. (2020). Peer loss functions: Learning from noisy labels without knowing noise rates. In International conference on machine learning. PMLR (pp. 6226–6236).
go back to reference Natarajan, N., Dhillon, I.S., Ravikumar, P.K., & Tewari, A. (2013). Learning with noisy labels. In Proceedings of the 26th international conference on neural information processing systems, (Vol. 1 pp. 1196–1204). Natarajan, N., Dhillon, I.S., Ravikumar, P.K., & Tewari, A. (2013). Learning with noisy labels. In Proceedings of the 26th international conference on neural information processing systems, (Vol. 1 pp. 1196–1204).
go back to reference Nigam, N., Dutta, T., & Gupta, H.P. (2020). Impact of noisy labels in learning techniques: A survey. In M.L. Kolhe, S. Tiwari, & M. C. (Eds.) Advances in data and information sciences: Proceedings of ICDIS 2019 (pp. 403–411). Singapore: Springer. Nigam, N., Dutta, T., & Gupta, H.P. (2020). Impact of noisy labels in learning techniques: A survey. In M.L. Kolhe, S. Tiwari, & M. C. (Eds.) Advances in data and information sciences: Proceedings of ICDIS 2019 (pp. 403–411). Singapore: Springer.
go back to reference Patrini, G., Nielsen, F., Nock, R., & Carioni, M. (2016). Loss factorization, weakly supervised learning and label noise robustness. In Proceedings of the 33rd international conference on machine learning, (Vol. 48 pp. 708–717). Patrini, G., Nielsen, F., Nock, R., & Carioni, M. (2016). Loss factorization, weakly supervised learning and label noise robustness. In Proceedings of the 33rd international conference on machine learning, (Vol. 48 pp. 708–717).
go back to reference Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., & Moy, L. (2010). Learning from crowds. Journal of Machine Learning Research, 11, 1297–1322.MathSciNet Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., & Moy, L. (2010). Learning from crowds. Journal of Machine Learning Research, 11, 1297–1322.MathSciNet
go back to reference Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., & Platt, J. (1999). Support vector method for novelty detection. In S. Solla, T. Leen, & K. Müller (Eds.) Advances in neural information processing systems, Vol. 12. MIT Press. Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., & Platt, J. (1999). Support vector method for novelty detection. In S. Solla, T. Leen, & K. Müller (Eds.) Advances in neural information processing systems, Vol. 12. MIT Press.
go back to reference Scott, C., Blanchard, G., & Handy, G. (2013). Classification with asymmetric label noise: Consistency and maximal denoising. In Conference on learning theory. PMLR (pp. 489–511). Scott, C., Blanchard, G., & Handy, G. (2013). Classification with asymmetric label noise: Consistency and maximal denoising. In Conference on learning theory. PMLR (pp. 489–511).
go back to reference Shnayder, V., Agarwal, A., Frongillo, R., & Parkes, D.C. (2016). Informed truthfulness in multi-task peer prediction. In Proceedings of the 2016 ACM conference on economics and computation (pp. 179–196). Shnayder, V., Agarwal, A., Frongillo, R., & Parkes, D.C. (2016). Informed truthfulness in multi-task peer prediction. In Proceedings of the 2016 ACM conference on economics and computation (pp. 179–196).
go back to reference Verbaeten, S., & Assche, A.V. (2003). Ensemble methods for noise elimination in classification problems. In Multiple classifier systems. MCS 2003. Lecture Notes in Computer Science, (Vol. 2709 pp. 317–325). Berlin: Springer. Verbaeten, S., & Assche, A.V. (2003). Ensemble methods for noise elimination in classification problems. In Multiple classifier systems. MCS 2003. Lecture Notes in Computer Science, (Vol. 2709 pp. 317–325). Berlin: Springer.
go back to reference Yi, G.Y. (2017). Statistical analysis with measurement error or misclassification: Strategy method and application. New York: Springer.CrossRefMATH Yi, G.Y. (2017). Statistical analysis with measurement error or misclassification: Strategy method and application. New York: Springer.CrossRefMATH
go back to reference Yi, G.Y., & He, W. (2017). Analysis of case-control data with interacting misclassified covariates. Journal of Statistical Distributions and Applications, 4(1), 1–16.CrossRefMATH Yi, G.Y., & He, W. (2017). Analysis of case-control data with interacting misclassified covariates. Journal of Statistical Distributions and Applications, 4(1), 1–16.CrossRefMATH
go back to reference Yi, G.Y., Ma, Y., Spiegelman, D., & Carroll, R.J. (2015). Functional and structural methods with mixed measurement error and misclassification in covariates. Journal of the American Statistical Association, 110(510), 681–696.MathSciNetCrossRefMATH Yi, G.Y., Ma, Y., Spiegelman, D., & Carroll, R.J. (2015). Functional and structural methods with mixed measurement error and misclassification in covariates. Journal of the American Statistical Association, 110(510), 681–696.MathSciNetCrossRefMATH
go back to reference Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17, 492–514.MathSciNetCrossRef Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17, 492–514.MathSciNetCrossRef
go back to reference Zhu, X., & Wu, X. (2004). Class noise vs. attribute noise: A quantitative study. Artificial Intelligence Review, 22(3), 177–210.CrossRefMATH Zhu, X., & Wu, X. (2004). Class noise vs. attribute noise: A quantitative study. Artificial Intelligence Review, 22(3), 177–210.CrossRefMATH
Metadata
Title
Classification Trees with Mismeasured Responses
Authors
Liqun Diao
Grace Y. Yi
Publication date
16-02-2023
Publisher
Springer US
Published in
Journal of Classification / Issue 1/2023
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-023-09430-6

Other articles of this Issue 1/2023

Journal of Classification 1/2023 Go to the issue

Premium Partner