Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 1/2018

11-01-2017 | Original Article

Combined autohydrolysis and alkali pretreatments for cellulose enzymatic hydrolysis of Eucalyptus grandis wood

Authors: Florencia Cebreiros, Mario D. Ferrari, Claudia Lareo

Published in: Biomass Conversion and Biorefinery | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lignocellulosic materials represent a promising low-cost and abundant raw material which does not compete with foodstuffs, but an appropriate pretreatment is required to make sugars easily available. In this work, Eucalyptus grandis wood was subjected to autohydrolysis pretreatment under mild operational conditions (6–10 g/g liquid to solid ratio, 140–160 °C, reaction times up to 150 min) in order to recover and preserve hemicelluloses, while enhancing enzyme accessibility to cellulose. The severity of the pretreatment should be chosen depending on the subsequent use of the separated products. Pretreatment at 160 °C for 150 min using a liquid to solid ratio of 6 g/g was the best condition for hemicellulose recovery (mostly as xylose) in the liquid fraction. Under these autohydrolysis pretreatment conditions, an additional alkaline pretreatment applied to the autohydrolyzed solids was evaluated in order to improve the enzymatic hydrolysis of pretreated wood. Also, the addition of surfactant was assessed in order to enhance the enzymatic hydrolysis. The highest cellulose hydrolysis was obtained in the presence of PEG 6000. For the autohydrolysis-pretreated solids, a cellulose conversion of 39% was obtained, corresponding to an overall glucose yield of 18.7 kg per 100 kg of dry raw material. Additionally, for the autohydrolysis-alkaline-pretreated solids, a cellulose conversion of 43% was achieved, which corresponds to an overall glucose yield of 15.4 kg per 100 kg of dry raw material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922CrossRef FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922CrossRef
2.
go back to reference Emmel A, Mathias AL, Wypych F, Ramos LP (2003) Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Biores Technol 86:105–115CrossRef Emmel A, Mathias AL, Wypych F, Ramos LP (2003) Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Biores Technol 86:105–115CrossRef
3.
go back to reference Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Biores Technol 199:49–58CrossRef Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Biores Technol 199:49–58CrossRef
4.
go back to reference Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wang W, Zhang Y, Xu J, Xu H (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Biores Technol 101:4895–4899CrossRef Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wang W, Zhang Y, Xu J, Xu H (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Biores Technol 101:4895–4899CrossRef
5.
go back to reference Yu Q, Zhuang X, Wang Q, Qi W, Tan X, Yuan Z (2012) Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Biores Technol 116:220–225CrossRef Yu Q, Zhuang X, Wang Q, Qi W, Tan X, Yuan Z (2012) Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Biores Technol 116:220–225CrossRef
6.
go back to reference Cardona E, Rios J, Peña J, Rios L (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118:41–47CrossRef Cardona E, Rios J, Peña J, Rios L (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118:41–47CrossRef
7.
go back to reference Vegas R, Kabel M, Schols HA, Alonso JL, Parajó JC (2008) Hydrothermal processing of ricehusks: effects of severity on products distribution. J Chem Technol Biotechnol 83:965–972CrossRef Vegas R, Kabel M, Schols HA, Alonso JL, Parajó JC (2008) Hydrothermal processing of ricehusks: effects of severity on products distribution. J Chem Technol Biotechnol 83:965–972CrossRef
8.
go back to reference Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou YZ (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Biores Technol 199:68–75CrossRef Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou YZ (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Biores Technol 199:68–75CrossRef
9.
go back to reference Garrote G, Cruz JM, Domínguez H, Parajó JC (2008) Non-isothermal autohydrolysis of barley husks: product distribution and antioxidant activity of ethyl acetate solublefractions. J Food Eng 84:544–552CrossRef Garrote G, Cruz JM, Domínguez H, Parajó JC (2008) Non-isothermal autohydrolysis of barley husks: product distribution and antioxidant activity of ethyl acetate solublefractions. J Food Eng 84:544–552CrossRef
10.
go back to reference Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93CrossRef Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93CrossRef
11.
go back to reference Almeida Carvalho E, Mendes dos Santos Góes, L, Uetanabaro APT, Paranhos da Silva EG, Brito Rodrigues L, Pirovani CP, Miura da Costa A (2016) Thermoresistant xylanases from Trichoderma stromaticum: application in bread making and manufacturing xylo-oligosaccharides. Food Chem 2016 (in press) Almeida Carvalho E, Mendes dos Santos Góes, L, Uetanabaro APT, Paranhos da Silva EG, Brito Rodrigues L, Pirovani CP, Miura da Costa A (2016) Thermoresistant xylanases from Trichoderma stromaticum: application in bread making and manufacturing xylo-oligosaccharides. Food Chem 2016 (in press)
12.
go back to reference Mussatto SI, Mancilha M (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597CrossRef Mussatto SI, Mancilha M (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597CrossRef
13.
go back to reference Yang ZY, Wu DT, Chen CW, Cheong KL, Deng Y, Chen LX, Han BX, Chen NF, Zhao J, Li SP (2016) Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection. Separ Purif Technol 171:151–156CrossRef Yang ZY, Wu DT, Chen CW, Cheong KL, Deng Y, Chen LX, Han BX, Chen NF, Zhao J, Li SP (2016) Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection. Separ Purif Technol 171:151–156CrossRef
14.
go back to reference Garrote G, Domínguez H, Parajó JC (2001) Kinetic modelling of corncob autohydrolysis. Process Biochem 36:571–578CrossRef Garrote G, Domínguez H, Parajó JC (2001) Kinetic modelling of corncob autohydrolysis. Process Biochem 36:571–578CrossRef
15.
go back to reference Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35CrossRef Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35CrossRef
16.
go back to reference Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRef Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRef
17.
go back to reference Johakimu JK, Jerome A, Sithole BB, Prabashni L (2016) Fractionation of organic susbtances from the South African Eucalyptus grandis biomass by a combination of hot water and mild alkaline treatments. Wood Sci Technol 50:365–384CrossRef Johakimu JK, Jerome A, Sithole BB, Prabashni L (2016) Fractionation of organic susbtances from the South African Eucalyptus grandis biomass by a combination of hot water and mild alkaline treatments. Wood Sci Technol 50:365–384CrossRef
18.
go back to reference Romaní A, Tomaz PD, Garrote G, Teixeira JA, Domingues L (2016) Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Biores Technol 220(1):323–332CrossRef Romaní A, Tomaz PD, Garrote G, Teixeira JA, Domingues L (2016) Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Biores Technol 220(1):323–332CrossRef
19.
go back to reference Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustainable Energy 35(2):489–511CrossRef Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustainable Energy 35(2):489–511CrossRef
20.
go back to reference Romaní A, Garrote G, Alonso JL, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Biores Technol 102(10):5896–5904CrossRef Romaní A, Garrote G, Alonso JL, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Biores Technol 102(10):5896–5904CrossRef
21.
go back to reference Ruiz HA, Ruzene DS, Silva DP, Da Silva FFM, Vicente AA, Teixeira JA (2011) Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl Biochem Biotechnol 164:629–641CrossRef Ruiz HA, Ruzene DS, Silva DP, Da Silva FFM, Vicente AA, Teixeira JA (2011) Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl Biochem Biotechnol 164:629–641CrossRef
22.
go back to reference Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E (2011) Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. Comptes Rendus Biologies 334(11):812–823CrossRef Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E (2011) Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. Comptes Rendus Biologies 334(11):812–823CrossRef
23.
go back to reference Guigou M, Cebreiros F, Cabrera MN, Ferrari MD, Lareo C (2016) Bioethanol production from Eucalyptus grandis hemicellulose recovered before kraft pulping using an integrated biorefinery concept. Biomass Conv Bioref. doi:10.1007/s13399-016-0218-6 Guigou M, Cebreiros F, Cabrera MN, Ferrari MD, Lareo C (2016) Bioethanol production from Eucalyptus grandis hemicellulose recovered before kraft pulping using an integrated biorefinery concept. Biomass Conv Bioref. doi:10.​1007/​s13399-016-0218-6
25.
go back to reference Adney B, Baker J (2008) Measurement of cellulase activities. National Renewable Energy Laboratory. Available online: www.nrel.gov Adney B, Baker J (2008) Measurement of cellulase activities. National Renewable Energy Laboratory. Available online: www.​nrel.​gov
26.
go back to reference Camesasca L, Ramírez MB, Guigou M, Ferrari MD, Lareo C (2015) Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass Bioenergy 74:193–201CrossRef Camesasca L, Ramírez MB, Guigou M, Ferrari MD, Lareo C (2015) Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass Bioenergy 74:193–201CrossRef
27.
go back to reference Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory. Available online, www.nrel.gov Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory. Available online, www.​nrel.​gov
28.
go back to reference Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. National Renewable Energy Laboratory. 2005. Available online, www.nrel.gov Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. National Renewable Energy Laboratory. 2005. Available online, www.​nrel.​gov
29.
go back to reference Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory. Available online, www.nrel.gov Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory. Available online, www.​nrel.​gov
30.
go back to reference Garrote G, Domínguez H, Parajó JC (1999) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109CrossRef Garrote G, Domínguez H, Parajó JC (1999) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109CrossRef
31.
go back to reference Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agricultural residues and marine biomass according to the biorefinery concept: a review. Renew Sustainable Energy Rev 21:35–51CrossRef Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agricultural residues and marine biomass according to the biorefinery concept: a review. Renew Sustainable Energy Rev 21:35–51CrossRef
32.
go back to reference Park J, Kang M, Kim JS, Lee J, Choi W, Lee J (2012) Enhancement of enzymatic digestibility of Eucalyptus grandis pretreated by NaOH catalyzed steam explosion. Biores Technol 123:707–712CrossRef Park J, Kang M, Kim JS, Lee J, Choi W, Lee J (2012) Enhancement of enzymatic digestibility of Eucalyptus grandis pretreated by NaOH catalyzed steam explosion. Biores Technol 123:707–712CrossRef
33.
go back to reference Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes: factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480CrossRef Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes: factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480CrossRef
34.
go back to reference Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491CrossRef Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491CrossRef
35.
go back to reference Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Biores Technol 101:8706–8712CrossRef Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Biores Technol 101:8706–8712CrossRef
36.
go back to reference Lee JM, Shi J, Venditti RA, Jameel H (2009) Autohydrolysis pretreatment of coastal Bermuda grass for increased enzyme hydrolysis. Biores Technol 100:6434–6441CrossRef Lee JM, Shi J, Venditti RA, Jameel H (2009) Autohydrolysis pretreatment of coastal Bermuda grass for increased enzyme hydrolysis. Biores Technol 100:6434–6441CrossRef
37.
go back to reference Ribas LA, Han Q, Jameel H, Chang H, Colodette JL, Borges FJ (2015) Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Biores Technol 180:97–105CrossRef Ribas LA, Han Q, Jameel H, Chang H, Colodette JL, Borges FJ (2015) Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Biores Technol 180:97–105CrossRef
38.
go back to reference Gao Y, Xu J, Zhang Y, Yu Q, Yuan Z, Liu Y (2013) Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Biores Technol 144:396–400CrossRef Gao Y, Xu J, Zhang Y, Yu Q, Yuan Z, Liu Y (2013) Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Biores Technol 144:396–400CrossRef
39.
go back to reference Ruiz HA, Ruzene DS, Silva DP, Quintas MAC, Vicente AA, Teixeira JA (2011) Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94CrossRef Ruiz HA, Ruzene DS, Silva DP, Quintas MAC, Vicente AA, Teixeira JA (2011) Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94CrossRef
40.
go back to reference Ruiz HA, Vicente AA, Teixeira JA (2012) Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Ind Crop Prod 36:100–107CrossRef Ruiz HA, Vicente AA, Teixeira JA (2012) Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Ind Crop Prod 36:100–107CrossRef
Metadata
Title
Combined autohydrolysis and alkali pretreatments for cellulose enzymatic hydrolysis of Eucalyptus grandis wood
Authors
Florencia Cebreiros
Mario D. Ferrari
Claudia Lareo
Publication date
11-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 1/2018
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-016-0236-4

Other articles of this Issue 1/2018

Biomass Conversion and Biorefinery 1/2018 Go to the issue