Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2017

12-09-2016

Comparative study on the wettability and interfacial structure in Sn–xZn/Cu and Sn/Cu–xZn system

Authors: Fengjiang Wang, Dongyang Li, Jiheng Wang, Xiaojing Wang, Changhui Dong

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Zn is the common used alloying element in Pb-free solder to depress the growth of interfacial intermetallic compound (IMC) in solder joints, but is also an oxidation preferred element to decrease the wettability of solder. This paper provides a potential replacement on the Zn-contained solder with small amount of Zn alloyed Cu substrate to avoid the deterioration on wettability but keep the depressing effect on growth of IMC through the comparative study on Sn–xZn/Cu and Sn/Cu–xZn. To systematically study the effect of Zn alloying, 0.2–0.8 wt% content of Zn was added into pure Sn solder and 2.29 and 4.89 wt% content of Zn was alloyed into Cu substrate. The wettability, interfacial reaction during soldering and interfacial IMC growth of Sn–xZn/Cu and Sn/Cu–xZn during isothermal aging were studied and compared with Sn/Cu system. Zn alloyed into Cu substrate exhibited a far better wettability than Zn alloyed into solder. Although there was no significant change on the composition, morphology and thickness of interfacial of IMC in Zn-contained system during soldering, Zn alloyed into Cu substrate or Sn solder obviously depressed the formation of Cu3Sn and the growth of IMC layers during isothermal aging compared with Sn/Cu system. The depressing effect and calculated activation energy on the growth of IMC increased with the content of Zn in Cu or in Sn, and can be attributed to the CuZn solid solution existed at the interface because it decreased the driving force on formation of Cu3Sn and the diffusion rate of Cu atoms. Compared Sn/Cu–xZn with Sn–xZn/Cu, Cu–4.89Zn substrate provided a similar depressing effect on IMC growth but an exceeding wettability compared with Sn–Zn solder, and can be offered as an alternative under bump metallurgy (UBM) in solder joints.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R49, 1–60 (2005)CrossRef T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R49, 1–60 (2005)CrossRef
2.
go back to reference J.H.L. Pang, L. Xu, X.Q. Shi, W. Zhou, S.L. Ngoh, J. Electron. Mater. 33, 1219–1226 (2004)CrossRef J.H.L. Pang, L. Xu, X.Q. Shi, W. Zhou, S.L. Ngoh, J. Electron. Mater. 33, 1219–1226 (2004)CrossRef
3.
go back to reference J.H.L. Pang, T.H. Low, B.S. Xiong, X. Luhua, C.C. Neo, Thin Solid Films 462–463, 370–375 (2004)CrossRef J.H.L. Pang, T.H. Low, B.S. Xiong, X. Luhua, C.C. Neo, Thin Solid Films 462–463, 370–375 (2004)CrossRef
4.
go back to reference A.A. El-Daly, N. Radwan, H.M.A. El-Eizz, B.A. Hamza, J. Mater. Sci. Mater. Electron. 26, 8807–8818 (2015)CrossRef A.A. El-Daly, N. Radwan, H.M.A. El-Eizz, B.A. Hamza, J. Mater. Sci. Mater. Electron. 26, 8807–8818 (2015)CrossRef
5.
go back to reference A.A. El-Daly, H. El-Hosainy, T.A. Elmosalami, W.M. Desoky, J. Alloys Compd. 653, 402–410 (2015)CrossRef A.A. El-Daly, H. El-Hosainy, T.A. Elmosalami, W.M. Desoky, J. Alloys Compd. 653, 402–410 (2015)CrossRef
6.
go back to reference A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, J. Alloys Compd. 614, 20–28 (2014)CrossRef A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, J. Alloys Compd. 614, 20–28 (2014)CrossRef
7.
go back to reference A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Mater. Sci. Eng. A608, 130–138 (2014)CrossRef A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Mater. Sci. Eng. A608, 130–138 (2014)CrossRef
8.
go back to reference J.-Y. Park, Y.M. Kim, Y.-H. Kim, J. Mater. Sci. Mater. Electron. 26, 5852–5862 (2015)CrossRef J.-Y. Park, Y.M. Kim, Y.-H. Kim, J. Mater. Sci. Mater. Electron. 26, 5852–5862 (2015)CrossRef
9.
go back to reference H.Y. Liu, Q.S. Zhu, Z.G. Wang, J.D. Guo, J.K. Shang, J. Mater. Sci. Mater. Electron. 24, 211–216 (2013)CrossRef H.Y. Liu, Q.S. Zhu, Z.G. Wang, J.D. Guo, J.K. Shang, J. Mater. Sci. Mater. Electron. 24, 211–216 (2013)CrossRef
10.
11.
go back to reference Y.M. Kim, C.-Y. Oh, H.-R. Roh, Y.-H. Kim, in A new Cu–Zn solder wetting layer for improved impact reliability. 2009 59th Electronic Components and Technology Conference, ECTC 2009, San Diego, 26–29 May 2009. Proceedings—Electronic Components and Technology Conference. Institute of Electrical and Electronics Engineers Inc., pp. 1008–1013. doi:10.1109/ECTC.2009.5074135 Y.M. Kim, C.-Y. Oh, H.-R. Roh, Y.-H. Kim, in A new Cu–Zn solder wetting layer for improved impact reliability. 2009 59th Electronic Components and Technology Conference, ECTC 2009, San Diego, 26–29 May 2009. Proceedings—Electronic Components and Technology Conference. Institute of Electrical and Electronics Engineers Inc., pp. 1008–1013. doi:10.​1109/​ECTC.​2009.​5074135
13.
go back to reference F.-J. Wang, F. Gao, X. Ma, Y.-Y. Qian, J. Electron. Mater. 35, 1818–1824 (2006)CrossRef F.-J. Wang, F. Gao, X. Ma, Y.-Y. Qian, J. Electron. Mater. 35, 1818–1824 (2006)CrossRef
14.
go back to reference S.C. Yang, C.E. Ho, C.W. Chang, C.R. Kao, J. Mater. Res. 21, 2436–2439 (2006)CrossRef S.C. Yang, C.E. Ho, C.W. Chang, C.R. Kao, J. Mater. Res. 21, 2436–2439 (2006)CrossRef
15.
go back to reference Y.W. Yen, C.Y. Lin, M.T. Lai, W.C. Chen, J. Electron. Mater. 45, 203–211 (2016)CrossRef Y.W. Yen, C.Y. Lin, M.T. Lai, W.C. Chen, J. Electron. Mater. 45, 203–211 (2016)CrossRef
16.
go back to reference H.R. Kotadia, O. Mokhtari, M. Bottrill, M.P. Clode, M.A. Green, S.H. Mannan, J. Electron. Mater. 39, 2720–2731 (2010)CrossRef H.R. Kotadia, O. Mokhtari, M. Bottrill, M.P. Clode, M.A. Green, S.H. Mannan, J. Electron. Mater. 39, 2720–2731 (2010)CrossRef
17.
go back to reference J. Chen, J. Shen, S.Q. Lai, D. Min, X.C. Wang, J. Alloys Compd. 489, 631–637 (2010)CrossRef J. Chen, J. Shen, S.Q. Lai, D. Min, X.C. Wang, J. Alloys Compd. 489, 631–637 (2010)CrossRef
18.
go back to reference C. Yu, D. Wang, J. Chen, J. Xu, J. Chen, H. Lu, Mater. Lett. 121, 166–169 (2014)CrossRef C. Yu, D. Wang, J. Chen, J. Xu, J. Chen, H. Lu, Mater. Lett. 121, 166–169 (2014)CrossRef
19.
go back to reference S.C. Yang, Y.W. Wang, C.C. Chang, C.R. Kao, J. Electron. Mater. 37, 1591–1597 (2008)CrossRef S.C. Yang, Y.W. Wang, C.C. Chang, C.R. Kao, J. Electron. Mater. 37, 1591–1597 (2008)CrossRef
20.
go back to reference H.R. Kotadia, O. Mokhtari, M.P. Clode, M.A. Green, S.H. Mannan, J. Alloys Compd. 511, 176–188 (2012)CrossRef H.R. Kotadia, O. Mokhtari, M.P. Clode, M.A. Green, S.H. Mannan, J. Alloys Compd. 511, 176–188 (2012)CrossRef
21.
go back to reference S.K. Kang, D.-Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.-I. Cho, J. Yu, W.K. Choi, JOM 56, 34–38 (2004)CrossRef S.K. Kang, D.-Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.-I. Cho, J. Yu, W.K. Choi, JOM 56, 34–38 (2004)CrossRef
22.
go back to reference S.K. Kang, D. Leonard, D.A.Y. Shih, L. Gignac, D.W. Henderson, S. Cho, J. Yu, J. Electron. Mater. 35, 479–485 (2006)CrossRef S.K. Kang, D. Leonard, D.A.Y. Shih, L. Gignac, D.W. Henderson, S. Cho, J. Yu, J. Electron. Mater. 35, 479–485 (2006)CrossRef
24.
go back to reference M.G. Cho, S.K. Kang, S.-K. Seo, D.-Y. Shih, H.M. Lee, J. Electron. Mater. 38, 2242–2250 (2009)CrossRef M.G. Cho, S.K. Kang, S.-K. Seo, D.-Y. Shih, H.M. Lee, J. Electron. Mater. 38, 2242–2250 (2009)CrossRef
25.
26.
go back to reference W.-Y. Chen, W. Tu, H.-C. Chang, T.-T. Chou, J.-G. Duh, Mater. Lett. 134, 184–186 (2014)CrossRef W.-Y. Chen, W. Tu, H.-C. Chang, T.-T. Chou, J.-G. Duh, Mater. Lett. 134, 184–186 (2014)CrossRef
27.
go back to reference Y.M. Kim, T.J. Kim, M.Y. Choi, Y.-H. Kim, J. Alloys Compd. 575, 350–358 (2013)CrossRef Y.M. Kim, T.J. Kim, M.Y. Choi, Y.-H. Kim, J. Alloys Compd. 575, 350–358 (2013)CrossRef
28.
29.
30.
go back to reference H.F. Zou, Q.K. Zhang, Z.F. Zhang, J. Electron. Mater. 40, 1542–1548 (2011)CrossRef H.F. Zou, Q.K. Zhang, Z.F. Zhang, J. Electron. Mater. 40, 1542–1548 (2011)CrossRef
32.
33.
go back to reference Y.M. Kim, H.R. Roh, S. Kim, Y.H. Kim, J. Electron. Mater. 39, 2504–2512 (2010)CrossRef Y.M. Kim, H.R. Roh, S. Kim, Y.H. Kim, J. Electron. Mater. 39, 2504–2512 (2010)CrossRef
34.
36.
go back to reference J. Jiang, J.-E. Lee, K.-S. Kim, K. Suganuma, J. Alloys Compd. 462, 244–251 (2008)CrossRef J. Jiang, J.-E. Lee, K.-S. Kim, K. Suganuma, J. Alloys Compd. 462, 244–251 (2008)CrossRef
37.
38.
go back to reference J.H. Lee, Y.M. Kim, J.H.H. Wang, Y.-H. Kim, J. Alloys Compd. 567, 10–14 (2013)CrossRef J.H. Lee, Y.M. Kim, J.H.H. Wang, Y.-H. Kim, J. Alloys Compd. 567, 10–14 (2013)CrossRef
41.
44.
go back to reference M. Oh, Growth Kinetics in Intermetallic Phases in the Cu–Sn Binary and the Cu–Ni–Sn Ternary Systems at Low Temperatures. Ph.D. thesis, Lehigh University (1994) M. Oh, Growth Kinetics in Intermetallic Phases in the Cu–Sn Binary and the Cu–Ni–Sn Ternary Systems at Low Temperatures. Ph.D. thesis, Lehigh University (1994)
45.
go back to reference H.П. Лякишeв, The Manual of Metal Binary Phase Diagram (Chemical Industry Press, Beijing, 2008) H.П. Лякишeв, The Manual of Metal Binary Phase Diagram (Chemical Industry Press, Beijing, 2008)
Metadata
Title
Comparative study on the wettability and interfacial structure in Sn–xZn/Cu and Sn/Cu–xZn system
Authors
Fengjiang Wang
Dongyang Li
Jiheng Wang
Xiaojing Wang
Changhui Dong
Publication date
12-09-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5705-9

Other articles of this Issue 2/2017

Journal of Materials Science: Materials in Electronics 2/2017 Go to the issue