Skip to main content
Top

2023 | OriginalPaper | Chapter

Compatibility of Wrought Superalloys with Supercritical CO2

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Supercritical CO2 (sCO2) power cycles, particularly direct-fired cycles, have the possibility of revolutionizing clean fossil energy with peak temperatures above 700 °C and wrought precipitation strengthened alloys like Haynes 282™ for structural components. At temperatures <650 °C, it would be desirable to use less expensive alloys, however, steels are known to be susceptible to carburization. Laboratory 300 bar sCO2 autoclave results were collected on a range of alloys including less expensive Ni-based alloys like 825 compared to advanced austenitic steels like alloy 709 at 600 °C. Both alloys 825 and 709 formed thin, protective Cr-rich oxides after 1,000 h. Alloy 825 also was exposed for 1,000 h in sCO2 at 800 °C and compared to a range of Ni-based alloys. Comparing alloys 625, 825, and 282, the mass gain increased with increasing alloy Ti content under these conditions. High Al superalloys did not perform significantly better under these conditions at 800 °C.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dostal V, Hejzlar P, Driscoll MJ (2006) The supercritical carbon dioxide power cycle: Comparison to other advanced power cycles. Nucl. Technol. 154(3):283–301.CrossRef Dostal V, Hejzlar P, Driscoll MJ (2006) The supercritical carbon dioxide power cycle: Comparison to other advanced power cycles. Nucl. Technol. 154(3):283–301.CrossRef
2.
go back to reference Chen H, Goswami DY, Stefanakos EK (2010) A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable & Sustainable Energy Rev 14:3059–3067.CrossRef Chen H, Goswami DY, Stefanakos EK (2010) A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable & Sustainable Energy Rev 14:3059–3067.CrossRef
3.
go back to reference Iverson BD, Conboy TM, Pasch JJ, Kruizenga AM (2013) Supercritical CO2 Brayton cycles for solar-thermal energy. Applied Energy 111:957–970.CrossRef Iverson BD, Conboy TM, Pasch JJ, Kruizenga AM (2013) Supercritical CO2 Brayton cycles for solar-thermal energy. Applied Energy 111:957–970.CrossRef
4.
go back to reference Allam R, Martin S, Forrest B, Fetvedt J, Lu X, Freed D, Brown, Jr. GW, Sasaki T, Itoh M, Manning J (2017) Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture. Energy Procedia 114:5948–5966.CrossRef Allam R, Martin S, Forrest B, Fetvedt J, Lu X, Freed D, Brown, Jr. GW, Sasaki T, Itoh M, Manning J (2017) Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture. Energy Procedia 114:5948–5966.CrossRef
5.
go back to reference Olivares RI, Young DJ, Marvig P, Stein W (2015) Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at High Temperature. Oxid. Met. 84:585–606.CrossRef Olivares RI, Young DJ, Marvig P, Stein W (2015) Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at High Temperature. Oxid. Met. 84:585–606.CrossRef
6.
go back to reference Pint BA, Keiser JR, Initial Assessment of Ni-Base Alloy Performance in 0.1 MPa and Supercritical CO2. JOM 67(11):2615–2620. Pint BA, Keiser JR, Initial Assessment of Ni-Base Alloy Performance in 0.1 MPa and Supercritical CO2. JOM 67(11):2615–2620.
7.
go back to reference Mahaffey J, Adam D, Brittan A, Anderson M, Sridharan K (2016) Corrosion of Alloy Haynes 230 in High Temperature Supercritical Carbon Dioxide with Oxygen Impurity Additions. Oxid. Met. 86:567–580.CrossRef Mahaffey J, Adam D, Brittan A, Anderson M, Sridharan K (2016) Corrosion of Alloy Haynes 230 in High Temperature Supercritical Carbon Dioxide with Oxygen Impurity Additions. Oxid. Met. 86:567–580.CrossRef
8.
go back to reference Dheeradhada V, Thatte A, Karadge M, Drobnjak M (2016) Corrosion of Supercritical CO2 Turbomachinery Components. in Proceedings of the EPRI International Conference on Corrosion in Power Plants, EPRI, Charlotte, NC. Dheeradhada V, Thatte A, Karadge M, Drobnjak M (2016) Corrosion of Supercritical CO2 Turbomachinery Components. in Proceedings of the EPRI International Conference on Corrosion in Power Plants, EPRI, Charlotte, NC.
9.
go back to reference Pint BA, Brese RG, Keiser JR (2017) Effect of Pressure on Supercritical CO2 Compatibility of Structural Alloys at 750°C. Mater. Corros. 68:151–158.CrossRef Pint BA, Brese RG, Keiser JR (2017) Effect of Pressure on Supercritical CO2 Compatibility of Structural Alloys at 750°C. Mater. Corros. 68:151–158.CrossRef
10.
go back to reference Oleksak RP, Tylczak JH, Carney CS, Holcomb GR, Dogan ON (2018) High-Temperature Oxidation of Commercial Alloys in Supercritical CO2 and Related Power Cycle Environments JOM 70:1527–1534. Oleksak RP, Tylczak JH, Carney CS, Holcomb GR, Dogan ON (2018) High-Temperature Oxidation of Commercial Alloys in Supercritical CO2 and Related Power Cycle Environments JOM 70:1527–1534.
11.
go back to reference Pint BA (2018) Performance of Wrought Superalloys in Extreme Environments. in E. Ott et al. (Eds.), Proceedings of the 9th International Symposium on Superalloy 718 and Derivatives, TMS, Warrendale, PA, pp.165–178. Pint BA (2018) Performance of Wrought Superalloys in Extreme Environments. in E. Ott et al. (Eds.), Proceedings of the 9th International Symposium on Superalloy 718 and Derivatives, TMS, Warrendale, PA, pp.165–178.
12.
go back to reference Pint BA, Lehmusto J, Lance MJ, Keiser JR (2019) The Effect of Pressure and Impurities on Oxidation in Supercritical CO2. Mater. Corros. 70:1400–1409.CrossRef Pint BA, Lehmusto J, Lance MJ, Keiser JR (2019) The Effect of Pressure and Impurities on Oxidation in Supercritical CO2. Mater. Corros. 70:1400–1409.CrossRef
13.
go back to reference Pint BA, Pillai R, Lance MJ, Keiser JR (2020) Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2. Oxid. Met. 94:505–526.CrossRef Pint BA, Pillai R, Lance MJ, Keiser JR (2020) Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2. Oxid. Met. 94:505–526.CrossRef
14.
go back to reference Feher EG (1968) The Supercritical Thermodynamic Power Cycle. Energy Conversion 8:85–90.CrossRef Feher EG (1968) The Supercritical Thermodynamic Power Cycle. Energy Conversion 8:85–90.CrossRef
15.
go back to reference Viswanathan R, Shingledecker J, Purgert R (2010) Evaluating Materials Technology for Advanced Ultrasupercritical Coal-Fired Plants. Power 154(8):41–45. Viswanathan R, Shingledecker J, Purgert R (2010) Evaluating Materials Technology for Advanced Ultrasupercritical Coal-Fired Plants. Power 154(8):41–45.
16.
go back to reference Zhao SQ, Xie XS, Smith GD, Patel SJ (2003) Microstructural stability and mechanical properties of a new nickel based superalloy. Mater. Sci. Eng. A 355:96–105.CrossRef Zhao SQ, Xie XS, Smith GD, Patel SJ (2003) Microstructural stability and mechanical properties of a new nickel based superalloy. Mater. Sci. Eng. A 355:96–105.CrossRef
17.
go back to reference Pike LM (2008) Development of a Fabricable Gamma-Prime (γ´) Strengthened Superalloy. In: Superalloys 2008, R. C. Reed et al. eds, TMS, Warrendale, PA, pp.191–200. Pike LM (2008) Development of a Fabricable Gamma-Prime (γ´) Strengthened Superalloy. In: Superalloys 2008, R. C. Reed et al. eds, TMS, Warrendale, PA, pp.191–200.
18.
go back to reference Gong Y, Young DJ, Kontis P, Chiu YL, Larsson H, Shin A, Pearson JM, Moody MP, Reed RC (2017) On the breakaway oxidation of Fe9Cr1Mo steel in high pressure CO2. Acta Mater. 130:361–374. Gong Y, Young DJ, Kontis P, Chiu YL, Larsson H, Shin A, Pearson JM, Moody MP, Reed RC (2017) On the breakaway oxidation of Fe9Cr1Mo steel in high pressure CO2. Acta Mater. 130:361–374.
19.
go back to reference Sarrade S, Férona D, Rouillard F, Perrin S, Robin R, Ruiz JC, Turc HA (2017) Overview on corrosion in supercritical fluids. J. Supercritical Fluids 120:335–344.CrossRef Sarrade S, Férona D, Rouillard F, Perrin S, Robin R, Ruiz JC, Turc HA (2017) Overview on corrosion in supercritical fluids. J. Supercritical Fluids 120:335–344.CrossRef
20.
go back to reference Shingledecker JP, Pint BA, Sabau AS, Fry AT, Wright IG (2013) Managing Steam-Side Oxidation and Exfoliation in USC Boiler Tubes. Adv. Mater. Processing, 171(1):23–25. Shingledecker JP, Pint BA, Sabau AS, Fry AT, Wright IG (2013) Managing Steam-Side Oxidation and Exfoliation in USC Boiler Tubes. Adv. Mater. Processing, 171(1):23–25.
21.
go back to reference Furukawa T, Inagaki Y, Aritomi M (2011) Compatibility of FBR structural materials with supercritical carbon dioxide. Progress in Nuclear Energy 53:1050–1055.CrossRef Furukawa T, Inagaki Y, Aritomi M (2011) Compatibility of FBR structural materials with supercritical carbon dioxide. Progress in Nuclear Energy 53:1050–1055.CrossRef
22.
go back to reference McCoy HE (1965) Type 304 Stainless Steel vs Flowing CO2 at Atmospheric Pressure and 1100–1800°F. Corrosion 21:84–94.CrossRef McCoy HE (1965) Type 304 Stainless Steel vs Flowing CO2 at Atmospheric Pressure and 1100–1800°F. Corrosion 21:84–94.CrossRef
23.
go back to reference Fujii CT, Meussner RA (1967) Carburization of Fe-Cr Alloys During Oxidation in Dry Carbon Dioxide. J. Electrochem. Soc. 114:435–442.CrossRef Fujii CT, Meussner RA (1967) Carburization of Fe-Cr Alloys During Oxidation in Dry Carbon Dioxide. J. Electrochem. Soc. 114:435–442.CrossRef
24.
go back to reference Meier GH, Coons WC, R. A. Perkins RA (1982) Corrosion of Iron-, Nickel- and Cobalt-Base Alloys in Atmospheres Containing Carbon and Oxygen. Oxid. Met. 17:235–262. Meier GH, Coons WC, R. A. Perkins RA (1982) Corrosion of Iron-, Nickel- and Cobalt-Base Alloys in Atmospheres Containing Carbon and Oxygen. Oxid. Met. 17:235–262.
25.
go back to reference Young DJ, Zhang J, Geers C, Schütze M (2011) Recent advances in understanding metal dusting: A review. Mater. Corros. 62:7–28.CrossRef Young DJ, Zhang J, Geers C, Schütze M (2011) Recent advances in understanding metal dusting: A review. Mater. Corros. 62:7–28.CrossRef
26.
go back to reference Gheno T, Monceau D, Young DJ (2013) Kinetics of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide. Corrosion Science 77:246–256.CrossRef Gheno T, Monceau D, Young DJ (2013) Kinetics of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide. Corrosion Science 77:246–256.CrossRef
27.
go back to reference Pint BA, Pillai R, Keiser JR (2021) Effect of Supercritical CO2 on Steel Ductility at 450°–650°C. ASME Paper #GT2021–59383, for Turbo Expo 2021, New York, NY. Pint BA, Pillai R, Keiser JR (2021) Effect of Supercritical CO2 on Steel Ductility at 450°–650°C. ASME Paper #GT2021–59383, for Turbo Expo 2021, New York, NY.
28.
go back to reference Pint BA, Keiser JR (2022) Exploring Material Solutions for Supercritical CO2 Applications above 800°C,” Oxid. Met. 98:545–559.CrossRef Pint BA, Keiser JR (2022) Exploring Material Solutions for Supercritical CO2 Applications above 800°C,” Oxid. Met. 98:545–559.CrossRef
29.
go back to reference Pint BA (1996) Experimental Observations in Support of the Dynamic Segregation Theory to Explain the Reactive Element Effect. Oxid. Met. 45:1–37.CrossRef Pint BA (1996) Experimental Observations in Support of the Dynamic Segregation Theory to Explain the Reactive Element Effect. Oxid. Met. 45:1–37.CrossRef
30.
go back to reference Lehmusto J, Ievlev AV, Keiser JR, Pint BA (2021) A tracer study on sCO2 corrosion with multiple oxygen-bearing impurities. Oxid. Met. 96 (2021) 571–587.CrossRef Lehmusto J, Ievlev AV, Keiser JR, Pint BA (2021) A tracer study on sCO2 corrosion with multiple oxygen-bearing impurities. Oxid. Met. 96 (2021) 571–587.CrossRef
31.
go back to reference Pint BA, Lance MJ, Pillai R, Keiser JR (2022) Compatibility of Steels at 450°–650°C in Supercritical CO2 with O2 and H2O Additions. AMPP (formerly NACE) Paper C 2022–18018, Houston, TX. Pint BA, Lance MJ, Pillai R, Keiser JR (2022) Compatibility of Steels at 450°–650°C in Supercritical CO2 with O2 and H2O Additions. AMPP (formerly NACE) Paper C 2022–18018, Houston, TX.
Metadata
Title
Compatibility of Wrought Superalloys with Supercritical CO2
Author
B. A. Pint
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-27447-3_16

Premium Partners