Skip to main content
Top
Published in: Rare Metals 4/2014

01-08-2014

“Complexation–precipitation” metal separation method system and its application in secondary resources

Authors: Zuo-Ren Nie, Li-Wen Ma, Xiao-Li Xi

Published in: Rare Metals | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recovery processes of secondary resources usually encounter problems because of the diverse compositions of wastes. To enhance the applicability of traditional hydrometallurgical process toward secondary resources, the adjustment of components is necessary. In traditional hydrometallurgical separation, precipitation and complexation are extensively used. However, their combination as a specific metal separation method has not yet been studied in detail. This approach is very promising for solving problems caused by changeable components during recycling processes of secondary resources. This paper reviews the effects of precipitation and complexation in metal separation processes, and a metal separation method system of “complexation–precipitation” developed to adjust the components of secondary resources is introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Li JH, Li XH, Hu QY, Wang ZX, Zheng JC, Wu L, Zhang LX. Study of extraction and purification of Ni, Co and Mn from spent battery material. Hydrometallurgy. 2009;99(1–2):7.CrossRef Li JH, Li XH, Hu QY, Wang ZX, Zheng JC, Wu L, Zhang LX. Study of extraction and purification of Ni, Co and Mn from spent battery material. Hydrometallurgy. 2009;99(1–2):7.CrossRef
[2]
go back to reference Lee J, Pandey BD. Bio-processing of solid wastes and secondary resources for metal extraction—a review. Waste Manag. 2012;32(1):3.CrossRef Lee J, Pandey BD. Bio-processing of solid wastes and secondary resources for metal extraction—a review. Waste Manag. 2012;32(1):3.CrossRef
[3]
go back to reference Belardi G, Lavecchia R, Medici F, Piga L. Thermal treatment for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries. Waste Manag. 2012;32(10):1945.CrossRef Belardi G, Lavecchia R, Medici F, Piga L. Thermal treatment for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries. Waste Manag. 2012;32(10):1945.CrossRef
[4]
go back to reference Zeng G, Deng X, Luo S, Luo X, Zou J. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J Hazard Mater. 2012;199–200(15):164.CrossRef Zeng G, Deng X, Luo S, Luo X, Zou J. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J Hazard Mater. 2012;199–200(15):164.CrossRef
[5]
go back to reference Pinto Isabel SS, Soares Helena MVM. Microwave-assisted selective leaching of nickel from spent hydrodesulphurization catalyst: a comparative study between sulphuric and organic acids. Hydrometallurgy. 2013;140:20.CrossRef Pinto Isabel SS, Soares Helena MVM. Microwave-assisted selective leaching of nickel from spent hydrodesulphurization catalyst: a comparative study between sulphuric and organic acids. Hydrometallurgy. 2013;140:20.CrossRef
[6]
go back to reference Zhang SG, Yang M, Liu H, Pan DA, Tian JJ. Recovery of waste rare earth fluorescent powders by two steps acid leaching. Rare Met. 2013;32(6):609.CrossRef Zhang SG, Yang M, Liu H, Pan DA, Tian JJ. Recovery of waste rare earth fluorescent powders by two steps acid leaching. Rare Met. 2013;32(6):609.CrossRef
[7]
go back to reference Fernandes A, Afonso JC, Dutra AJB. Separation of nickel(II), cobalt(II) and lanthanides from spent Ni-MH batteries by hydrochloric acid leaching, solvent extraction and precipitation. Hydrometallurgy. 2013;133:37.CrossRef Fernandes A, Afonso JC, Dutra AJB. Separation of nickel(II), cobalt(II) and lanthanides from spent Ni-MH batteries by hydrochloric acid leaching, solvent extraction and precipitation. Hydrometallurgy. 2013;133:37.CrossRef
[8]
go back to reference Rácz R, Ilea P. Electrolytic recovery of Mn3O4 and Zn from sulphuric acid leach liquors of spent zinc–carbon–MnO2 battery powder. Hydrometallurgy. 2013;139:116.CrossRef Rácz R, Ilea P. Electrolytic recovery of Mn3O4 and Zn from sulphuric acid leach liquors of spent zinc–carbon–MnO2 battery powder. Hydrometallurgy. 2013;139:116.CrossRef
[9]
go back to reference Coman V, Robotin B, Ilea P. Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recycl. 2013;73:229.CrossRef Coman V, Robotin B, Ilea P. Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recycl. 2013;73:229.CrossRef
[10]
go back to reference Chen L, Tang X, Zhang Y, Li L, Zeng Z, Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy. 2011;108(1–2):80.CrossRef Chen L, Tang X, Zhang Y, Li L, Zeng Z, Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy. 2011;108(1–2):80.CrossRef
[11]
go back to reference Haghighi HK, Moradkhani D, Sedaghat B, Najafabadi MR, Behnamfard A. Production of copper cathode from oxidized copper ores by acidic leaching and two-step precipitation followed by electrowinning. Hydrometallurgy. 2013;133:111.CrossRef Haghighi HK, Moradkhani D, Sedaghat B, Najafabadi MR, Behnamfard A. Production of copper cathode from oxidized copper ores by acidic leaching and two-step precipitation followed by electrowinning. Hydrometallurgy. 2013;133:111.CrossRef
[12]
go back to reference Janin A, Zaviska F, Drogui P, Blais JF, Mercier G. Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy. 2009;96(4):318.CrossRef Janin A, Zaviska F, Drogui P, Blais JF, Mercier G. Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy. 2009;96(4):318.CrossRef
[13]
go back to reference Huang JH, Kargl-Simard C, Oliazadeh M, Alfantazi AM. pH-controlled precipitation of cobalt and molybdenum from industrial waste effluents of a cobalt electrodeposition process. Hydrometallurgy. 2004;75(1):77.CrossRef Huang JH, Kargl-Simard C, Oliazadeh M, Alfantazi AM. pH-controlled precipitation of cobalt and molybdenum from industrial waste effluents of a cobalt electrodeposition process. Hydrometallurgy. 2004;75(1):77.CrossRef
[14]
go back to reference Giannopoulou I, Panias D. Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy. 2008;90(2):137.CrossRef Giannopoulou I, Panias D. Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy. 2008;90(2):137.CrossRef
[15]
go back to reference Zhu Z, Pranolo Y, Zhang W, Wang W, Cheng CY. Precipitation of impurities from synthetic laterite leach solutions. Hydrometallurgy. 2010;104(1):81.CrossRef Zhu Z, Pranolo Y, Zhang W, Wang W, Cheng CY. Precipitation of impurities from synthetic laterite leach solutions. Hydrometallurgy. 2010;104(1):81.CrossRef
[16]
go back to reference Avila M, Grinbaum B, Carranza F, Mazuelos A, Romero R, Iglesias N, Lozano JL, Perez G, Valiente M. Zinc recovery from an effluent using Ionquest 290: from laboratory scale to pilot plant. Hydrometallurgy. 2011;107(3–4):63.CrossRef Avila M, Grinbaum B, Carranza F, Mazuelos A, Romero R, Iglesias N, Lozano JL, Perez G, Valiente M. Zinc recovery from an effluent using Ionquest 290: from laboratory scale to pilot plant. Hydrometallurgy. 2011;107(3–4):63.CrossRef
[17]
go back to reference Lu MN, Das RP, Li W, Peng JH, Zhang LB. Microwave mediated precipitation and aging of iron oxyhydroxides at low temperature for possible hydrometallurgical applications. Hydrometallurgy. 2013;134–135:110.CrossRef Lu MN, Das RP, Li W, Peng JH, Zhang LB. Microwave mediated precipitation and aging of iron oxyhydroxides at low temperature for possible hydrometallurgical applications. Hydrometallurgy. 2013;134–135:110.CrossRef
[18]
go back to reference Silva AM, Cunha EC, Silva FDR, Leão VA. Treatment of high-manganese mine water with limestone and sodium carbonate. J Clean Prod. 2012;29–30:11.CrossRef Silva AM, Cunha EC, Silva FDR, Leão VA. Treatment of high-manganese mine water with limestone and sodium carbonate. J Clean Prod. 2012;29–30:11.CrossRef
[19]
go back to reference Formanek J, Jandova J, Capek J. Iron removal from zinc liquors originating from hydrometallurgical processing of spent Zn/MnO2 batteries. Hydrometallurgy. 2013;138:100.CrossRef Formanek J, Jandova J, Capek J. Iron removal from zinc liquors originating from hydrometallurgical processing of spent Zn/MnO2 batteries. Hydrometallurgy. 2013;138:100.CrossRef
[20]
go back to reference Lewis AE. Review of metal sulphide precipitation. Hydrometallurgy. 2010;104(2):222.CrossRef Lewis AE. Review of metal sulphide precipitation. Hydrometallurgy. 2010;104(2):222.CrossRef
[21]
go back to reference Xie Y, Xu Y, Yan L, Yang R. Recovery of nickel, copper and cobalt from low-grade Ni–Cu sulfide tailings. Hydrometallurgy. 2005;80(1–2):54.CrossRef Xie Y, Xu Y, Yan L, Yang R. Recovery of nickel, copper and cobalt from low-grade Ni–Cu sulfide tailings. Hydrometallurgy. 2005;80(1–2):54.CrossRef
[22]
go back to reference Deniz U, Bekmezci OK, Kaksonen AH, Sahinkaya E. Sequential precipitation of Cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system. Miner Eng. 2011;24(11):1100.CrossRef Deniz U, Bekmezci OK, Kaksonen AH, Sahinkaya E. Sequential precipitation of Cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system. Miner Eng. 2011;24(11):1100.CrossRef
[23]
go back to reference Paulino JF, Busnardo NG, Afonso JC. Recovery of valuable elements from spent Li-batteries. J Hazard Mater. 2008;150(3):843.CrossRef Paulino JF, Busnardo NG, Afonso JC. Recovery of valuable elements from spent Li-batteries. J Hazard Mater. 2008;150(3):843.CrossRef
[24]
go back to reference Chen X, Chen A, Zhao Z, Liu X, Shi Y, Wang D. Removal of Cu from the nickel electrolysis anolyte using nickel thiocarbonate. Hydrometallurgy. 2013;133:106.CrossRef Chen X, Chen A, Zhao Z, Liu X, Shi Y, Wang D. Removal of Cu from the nickel electrolysis anolyte using nickel thiocarbonate. Hydrometallurgy. 2013;133:106.CrossRef
[25]
go back to reference Rabah MA, Farghaly FE, Abd-El MMA. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries. Waste Manag. 2008;28(7):1159.CrossRef Rabah MA, Farghaly FE, Abd-El MMA. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries. Waste Manag. 2008;28(7):1159.CrossRef
[26]
go back to reference du Plessis CA, Slabbert W, Hallberg KB, Barrie JD. Ferredox: a biohydrometallurgical processing concept for limonitic nickel laterite. Hydrometallurgy. 2011;109(3–4):221.CrossRef du Plessis CA, Slabbert W, Hallberg KB, Barrie JD. Ferredox: a biohydrometallurgical processing concept for limonitic nickel laterite. Hydrometallurgy. 2011;109(3–4):221.CrossRef
[27]
go back to reference Song Y, Wang M, Liang J, Zhou L. High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation. Hydrometallurgy. 2014;143:23.CrossRef Song Y, Wang M, Liang J, Zhou L. High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation. Hydrometallurgy. 2014;143:23.CrossRef
[28]
go back to reference Wang M, Zhou L. Simultaneous oxidation and precipitation of iron using jarosite immobilized acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Hydrometallurgy. 2012;125–126:152.CrossRef Wang M, Zhou L. Simultaneous oxidation and precipitation of iron using jarosite immobilized acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Hydrometallurgy. 2012;125–126:152.CrossRef
[29]
go back to reference Dutrizac JE, Chen TT. The behaviour of phosphate during jarosite precipitation. Hydrometallurgy. 2010;102(1):55.CrossRef Dutrizac JE, Chen TT. The behaviour of phosphate during jarosite precipitation. Hydrometallurgy. 2010;102(1):55.CrossRef
[30]
go back to reference Mohapatra M, Anand S, Das RP. Behaviour of Co(II) in solutions obtained by dissolution of cobalto–cobaltic oxide in NH3–SO2–H2O medium. Hydrometallurgy. 2001;61(3):169.CrossRef Mohapatra M, Anand S, Das RP. Behaviour of Co(II) in solutions obtained by dissolution of cobalto–cobaltic oxide in NH3–SO2–H2O medium. Hydrometallurgy. 2001;61(3):169.CrossRef
[31]
go back to reference Zhang W, Zhao Z, Chen X. The behaviour of phosphorus impurities in the novel selective precipitation process. Hydrometallurgy. 2013;139:111.CrossRef Zhang W, Zhao Z, Chen X. The behaviour of phosphorus impurities in the novel selective precipitation process. Hydrometallurgy. 2013;139:111.CrossRef
[32]
go back to reference Nathsarma KC, Rout PC, Sarangi K. Manganese precipitation kinetics and cobalt adsorption on MnO2 from the ammoniacal ammonium sulfate leach liquor of Indian Ocean manganese nodule. Hydrometallurgy. 2013;133:133.CrossRef Nathsarma KC, Rout PC, Sarangi K. Manganese precipitation kinetics and cobalt adsorption on MnO2 from the ammoniacal ammonium sulfate leach liquor of Indian Ocean manganese nodule. Hydrometallurgy. 2013;133:133.CrossRef
[33]
go back to reference Zhang W, Singh P, Muir D. Oxidative precipitation of manganese with SO2/O2 and separation from cobalt and nickel. Hydrometallurgy. 2002;63(2):127.CrossRef Zhang W, Singh P, Muir D. Oxidative precipitation of manganese with SO2/O2 and separation from cobalt and nickel. Hydrometallurgy. 2002;63(2):127.CrossRef
[34]
go back to reference Zhang W, Cheng CY, Pranolo Y. Investigation of methods for removal and recovery of manganese in hydrometallurgical processes. Hydrometallurgy. 2010;101(1–2):58.CrossRef Zhang W, Cheng CY, Pranolo Y. Investigation of methods for removal and recovery of manganese in hydrometallurgical processes. Hydrometallurgy. 2010;101(1–2):58.CrossRef
[35]
go back to reference Zhao HP, Guo YF, Zhang XX. Electrolytic recovery of nickel powder from acid-washing solution containing nickel in artificial diamond production. Chin J Process Eng. 2004;4(4):310. Zhao HP, Guo YF, Zhang XX. Electrolytic recovery of nickel powder from acid-washing solution containing nickel in artificial diamond production. Chin J Process Eng. 2004;4(4):310.
[36]
go back to reference Nishimura T, Umetsu Y. Oxidative precipitation of arsenic(III)/with manganese(II)/and iron(II) in dilute acidic solution by ozone. Hydrometallurgy. 2001;62(2):83.CrossRef Nishimura T, Umetsu Y. Oxidative precipitation of arsenic(III)/with manganese(II)/and iron(II) in dilute acidic solution by ozone. Hydrometallurgy. 2001;62(2):83.CrossRef
[37]
go back to reference Kim T-H, Senanayake G, Kang J-G, Sohn J-S, Rhee K-I, Lee S-W, Shin S-M. Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite nanoparticles. Hydrometallurgy. 2009;96(1–2):154.CrossRef Kim T-H, Senanayake G, Kang J-G, Sohn J-S, Rhee K-I, Lee S-W, Shin S-M. Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite nanoparticles. Hydrometallurgy. 2009;96(1–2):154.CrossRef
[38]
go back to reference Yin Z, Ding Z, Hu H, Liu K, Chen Q. Dissolution of zinc silicate (hemimorphite) with ammonia–ammonium chloride solution. Hydrometallurgy. 2010;103(1–4):215.CrossRef Yin Z, Ding Z, Hu H, Liu K, Chen Q. Dissolution of zinc silicate (hemimorphite) with ammonia–ammonium chloride solution. Hydrometallurgy. 2010;103(1–4):215.CrossRef
[39]
go back to reference Park K-H, Mohapatra D, Reddy BR, Nam C-W. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu–Ni–Co–Fe) matte. Hydrometallurgy. 2007;86(3):164.CrossRef Park K-H, Mohapatra D, Reddy BR, Nam C-W. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu–Ni–Co–Fe) matte. Hydrometallurgy. 2007;86(3):164.CrossRef
[40]
go back to reference Ma B, Wang C, Yang W, Yin F, Chen Y. Screening and reduction roasting of limonitic laterite and ammonia-carbonate leaching of nickel–cobalt to produce a high-grade iron concentrate. Miner Eng. 2013;50–51:106.CrossRef Ma B, Wang C, Yang W, Yin F, Chen Y. Screening and reduction roasting of limonitic laterite and ammonia-carbonate leaching of nickel–cobalt to produce a high-grade iron concentrate. Miner Eng. 2013;50–51:106.CrossRef
[41]
go back to reference Li L, Ge J, Chen RJ, Wu AF, Chen S, Zhang XX. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag. 2010;30(12):2615.CrossRef Li L, Ge J, Chen RJ, Wu AF, Chen S, Zhang XX. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag. 2010;30(12):2615.CrossRef
[42]
go back to reference Li L, Ge J, Wu F, Chen R, Chen S, Wu B. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater. 2010;176(1–3):288.CrossRef Li L, Ge J, Wu F, Chen R, Chen S, Wu B. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater. 2010;176(1–3):288.CrossRef
[43]
go back to reference Goel S, Gautam A. Effect of chelating agents on mobilization of metal from waste catalyst. Hydrometallurgy. 2010;101(3–4):120.CrossRef Goel S, Gautam A. Effect of chelating agents on mobilization of metal from waste catalyst. Hydrometallurgy. 2010;101(3–4):120.CrossRef
[44]
go back to reference Wang XF, Kong XH, Zhao ZY. Recovery of noble metal in lithium ion battery. Battery. 2001;31(1):14. Wang XF, Kong XH, Zhao ZY. Recovery of noble metal in lithium ion battery. Battery. 2001;31(1):14.
[45]
go back to reference Zhang X, Ji L, Wang J, Li R, Liu Q, Zhang M, Liu L. Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: kinetic and thermodynamic investigation. Colloids Surf A Physicochem Eng Asp. 2012;414:220.CrossRef Zhang X, Ji L, Wang J, Li R, Liu Q, Zhang M, Liu L. Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: kinetic and thermodynamic investigation. Colloids Surf A Physicochem Eng Asp. 2012;414:220.CrossRef
[46]
go back to reference Wang T, Liu W, Xiong L, Xu N, Ni J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chem Eng J. 2013;215–216(1):366.CrossRef Wang T, Liu W, Xiong L, Xu N, Ni J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chem Eng J. 2013;215–216(1):366.CrossRef
[47]
go back to reference Cao HZ, Zheng GQ, Zhi B, Tang MT. Cathodic process of zinc electrowinning in solution containing ammonia complex. Chin J Nonferr Met. 2005;15(4):655. Cao HZ, Zheng GQ, Zhi B, Tang MT. Cathodic process of zinc electrowinning in solution containing ammonia complex. Chin J Nonferr Met. 2005;15(4):655.
[48]
go back to reference Zhang LJ, Tao HC, Wei XY, Lei T, Li JB, Wang AJ, Wu WM. Bioelectrochemical recovery of ammonia–copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere. 2012;89(10):1177.CrossRef Zhang LJ, Tao HC, Wei XY, Lei T, Li JB, Wang AJ, Wu WM. Bioelectrochemical recovery of ammonia–copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere. 2012;89(10):1177.CrossRef
[49]
go back to reference Almeida MRH, Barbano EP, Carvalho MF, Carlos IA, Siqueira JLP, Barbosa LL. Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surf Coat Technol. 2011;206(1):95.CrossRef Almeida MRH, Barbano EP, Carvalho MF, Carlos IA, Siqueira JLP, Barbosa LL. Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surf Coat Technol. 2011;206(1):95.CrossRef
[50]
go back to reference Liu ZX, Yin ZL, Xiong SF, Chen YG, Chen QY. Leaching and kinetic modeling of calcareous bornite in ammonia ammonium sulfate solution with sodium persulfate. Hydrometallurgy. 2014;144–145:86.CrossRef Liu ZX, Yin ZL, Xiong SF, Chen YG, Chen QY. Leaching and kinetic modeling of calcareous bornite in ammonia ammonium sulfate solution with sodium persulfate. Hydrometallurgy. 2014;144–145:86.CrossRef
[51]
go back to reference Deutsch JL, Dreisinger DB. Silver sulfide leaching with thiosulfate in the presence of additives Part I: copper–ammonia leaching. Hydrometallurgy. 2013;137:156.CrossRef Deutsch JL, Dreisinger DB. Silver sulfide leaching with thiosulfate in the presence of additives Part I: copper–ammonia leaching. Hydrometallurgy. 2013;137:156.CrossRef
[52]
go back to reference Zhang W, Tsang DCW, Lo IMC. Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing. Chemosphere. 2007;66(11):2025.CrossRef Zhang W, Tsang DCW, Lo IMC. Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing. Chemosphere. 2007;66(11):2025.CrossRef
[53]
go back to reference Hernández CMF, Banza AN, Gock E. Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation. J Hazard Mater. 2007;139(1):25.CrossRef Hernández CMF, Banza AN, Gock E. Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation. J Hazard Mater. 2007;139(1):25.CrossRef
[54]
go back to reference Senanayake G. Catalytic role of ammonia in the anodic oxidation of gold in copper-free thiosulfate solutions. Hydrometallurgy. 2005;77(3–4):287.CrossRef Senanayake G. Catalytic role of ammonia in the anodic oxidation of gold in copper-free thiosulfate solutions. Hydrometallurgy. 2005;77(3–4):287.CrossRef
[55]
go back to reference Pedersen AJ, Ottosen LM, Villumsen A. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent. J Hazard Mater. 2005;122(1–2):103.CrossRef Pedersen AJ, Ottosen LM, Villumsen A. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent. J Hazard Mater. 2005;122(1–2):103.CrossRef
[56]
go back to reference Zhang W, Cheng CY. Manganese metallurgy review. Part II: manganese separation and recovery from solution. Hydrometallurgy. 2007;89(3–4):160.CrossRef Zhang W, Cheng CY. Manganese metallurgy review. Part II: manganese separation and recovery from solution. Hydrometallurgy. 2007;89(3–4):160.CrossRef
[57]
go back to reference Shen QF, Yang XW. Solubility of Fe2+/Mn2+/Zn2+ in NH3–H2O system. Nonferr Met. 2003;55(4):65. Shen QF, Yang XW. Solubility of Fe2+/Mn2+/Zn2+ in NH3–H2O system. Nonferr Met. 2003;55(4):65.
[58]
go back to reference Nadirov RK, Syzdykova LI, Zhussupova AK, Usserbaev MT. Recovery of value metals from copper smelter slag by ammonium chloride treatment. Int J Miner Process. 2013;124:145.CrossRef Nadirov RK, Syzdykova LI, Zhussupova AK, Usserbaev MT. Recovery of value metals from copper smelter slag by ammonium chloride treatment. Int J Miner Process. 2013;124:145.CrossRef
[59]
go back to reference Chen L, Tang XC, Zhang Y, Qu Y, Wang ZM. Separation and recovery of Ni, Co and Mn from spent lithium-ion batteries. Chin J Nonferr Met. 2011;21(5):1192. Chen L, Tang XC, Zhang Y, Qu Y, Wang ZM. Separation and recovery of Ni, Co and Mn from spent lithium-ion batteries. Chin J Nonferr Met. 2011;21(5):1192.
[60]
go back to reference Zhao ZW, Wang DD, Chen AL, Huo GS, Chen XY. Application and prospect of leaching processes of cobalt from Cu–Co alloy and slag. Hydrometall China. 2008;27(4):195. Zhao ZW, Wang DD, Chen AL, Huo GS, Chen XY. Application and prospect of leaching processes of cobalt from Cu–Co alloy and slag. Hydrometall China. 2008;27(4):195.
[61]
go back to reference Dean JA, Wei J (Translator). Lange’s Handbook of Chemistry. 2nd edition. Beijing: Science Press; 2003. 8.80. Dean JA, Wei J (Translator). Lange’s Handbook of Chemistry. 2nd edition. Beijing: Science Press; 2003. 8.80.
[62]
go back to reference Zhang P. Advanced Chemistry for Engineering. Changsha: Hunan Educational Press; 2002. 337. Zhang P. Advanced Chemistry for Engineering. Changsha: Hunan Educational Press; 2002. 337.
[63]
go back to reference Zhang CF, Yao YL, Zhan J. Thermodynamics of precipitation–coordination equilibrium in Fe2+–Ni2+–NH3–NH4+–C2O4 2−–H2O system. Chin J Nonferr Met. 2012;22(10):2938. Zhang CF, Yao YL, Zhan J. Thermodynamics of precipitation–coordination equilibrium in Fe2+–Ni2+–NH3–NH4+–C2O4 2−–H2O system. Chin J Nonferr Met. 2012;22(10):2938.
[64]
go back to reference Chai LY, Chang H, Wang YY, Shu YD, Li J, Yuan L, Wang P, Fang Y, Zhao K. Equilibrium of hydroxyl complex ions in Cd2+–H2O system. Chin J Nonferr Met. 2007;17(3):487. Chai LY, Chang H, Wang YY, Shu YD, Li J, Yuan L, Wang P, Fang Y, Zhao K. Equilibrium of hydroxyl complex ions in Cd2+–H2O system. Chin J Nonferr Met. 2007;17(3):487.
[65]
go back to reference Su JT, Su YC, Lai ZG, Yu P, He XD. Thermodynamic analysis of preparation of multiple carbonate of Ni, Co and Mn by coprecipitation method. J Chin Ceram Soc. 2006;34(6):695. Su JT, Su YC, Lai ZG, Yu P, He XD. Thermodynamic analysis of preparation of multiple carbonate of Ni, Co and Mn by coprecipitation method. J Chin Ceram Soc. 2006;34(6):695.
[66]
go back to reference Ma LW, Nie ZR, Xi XL, Han XG. Thermodynamic equilibrium in Co–Ni–Fe–Mn complexation–precipitation system. Chin J Nonferr Met. 2013;23(2):516. Ma LW, Nie ZR, Xi XL, Han XG. Thermodynamic equilibrium in Co–Ni–Fe–Mn complexation–precipitation system. Chin J Nonferr Met. 2013;23(2):516.
[67]
go back to reference Ma LW, Nie ZR, Xi XL, Li XK. Theoretical simulation and experimental study on nickel, cobalt, manganese separation in complexation–precipitation system. Sep Purif Technol. 2013;108(19):124.CrossRef Ma LW, Nie ZR, Xi XL, Li XK. Theoretical simulation and experimental study on nickel, cobalt, manganese separation in complexation–precipitation system. Sep Purif Technol. 2013;108(19):124.CrossRef
[68]
go back to reference Ma LW, Nie ZR, Xi XL, Han XG. Cobalt recovery from cobalt-bearing waste in sulphuric and citric acid systems. Hydrometallurgy. 2013;136:1.CrossRef Ma LW, Nie ZR, Xi XL, Han XG. Cobalt recovery from cobalt-bearing waste in sulphuric and citric acid systems. Hydrometallurgy. 2013;136:1.CrossRef
[69]
go back to reference Zhu ZY, Zhu LW. Synthesis of layered cathode material 0.5Li2MnO3 0.5LiMn1/3Ni1/3Co1/3O2 by an improved co-precipitation method for lithium-ion battery. J Power Sources. 2014;256(6):178.CrossRef Zhu ZY, Zhu LW. Synthesis of layered cathode material 0.5Li2MnO3 0.5LiMn1/3Ni1/3Co1/3O2 by an improved co-precipitation method for lithium-ion battery. J Power Sources. 2014;256(6):178.CrossRef
Metadata
Title
“Complexation–precipitation” metal separation method system and its application in secondary resources
Authors
Zuo-Ren Nie
Li-Wen Ma
Xiao-Li Xi
Publication date
01-08-2014
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 4/2014
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-014-0352-x

Other articles of this Issue 4/2014

Rare Metals 4/2014 Go to the issue

Premium Partners