Skip to main content
Top
Published in: Wood Science and Technology 2/2015

01-03-2015 | Original

Composition and structure of balsa (Ochroma pyramidale) wood

Authors: Marc Borrega, Patrik Ahvenainen, Ritva Serimaa, Lorna Gibson

Published in: Wood Science and Technology | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Balsa, with its low density and relatively high mechanical properties, is frequently used as the core in structural sandwich panels, in applications ranging from wind turbine blades to racing yachts. Here, both the cellular and cell wall structure of balsa are described, to enable multi-scale modeling and an improved understanding of its mechanical properties. The cellular structure consists of fibers (66–76 %), rays (20–25 %) and vessels (3–9 %). The density of balsa ranges from roughly 60 to 380 kg/m3; the large density variation derives largely from the fibers, which decrease in edge length and increase in wall thickness as the density increases. The increase in cell wall thickness is predominantly due to a thicker secondary S2 layer. Cellulose microfibrils in the S2 layer are highly aligned with the fiber axis, with a mean microfibril angle (MFA) of about 1.4°. The cellulose crystallites are about 3 nm in width and 20–30 nm in length. The degree of cellulose crystallinity appears to be between 80 and 90 %, considerably higher than previously reported for other woods. The outstanding mechanical properties of balsa wood in relation to its weight are likely explained by the low MFA and the high cellulose crystallinity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andersson S, Serimaa R, Tokkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Microfibril angle of Norway spruce (Picea abies (L.) Karst.) compression wood: comparison of measuring techniques. J Wood Sci 46:343–349CrossRef Andersson S, Serimaa R, Tokkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Microfibril angle of Norway spruce (Picea abies (L.) Karst.) compression wood: comparison of measuring techniques. J Wood Sci 46:343–349CrossRef
go back to reference Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537 Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537
go back to reference Andersson S, Wikberg H, Pesonen E, Maunu SL, Serimaa R (2004) Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees-Struct Funct 18:346–353CrossRef Andersson S, Wikberg H, Pesonen E, Maunu SL, Serimaa R (2004) Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees-Struct Funct 18:346–353CrossRef
go back to reference Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472CrossRefPubMed Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472CrossRefPubMed
go back to reference Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37:151–156CrossRef Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37:151–156CrossRef
go back to reference Bonham VA, Barnett JR (2001) Fibre length and microfibril angle in Silver birch (Betula pendula Roth). Holzforschung 55:159–162CrossRef Bonham VA, Barnett JR (2001) Fibre length and microfibril angle in Silver birch (Betula pendula Roth). Holzforschung 55:159–162CrossRef
go back to reference Burgert I, Eckstein D (2001) The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees-Struct Funct 15:168–170CrossRef Burgert I, Eckstein D (2001) The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees-Struct Funct 15:168–170CrossRef
go back to reference Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278CrossRef Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278CrossRef
go back to reference Cave ID (1997) Theory of X-ray measurement of microfibril angle in wood. Part 2: the diffraction diagram. X-ray diffraction by materials with fibre type symmetry. Wood Sci Technol 31:225–234CrossRef Cave ID (1997) Theory of X-ray measurement of microfibril angle in wood. Part 2: the diffraction diagram. X-ray diffraction by materials with fibre type symmetry. Wood Sci Technol 31:225–234CrossRef
go back to reference Da Silva A, Kyriakides S (2007) Compressive response and failure of balsa wood. Int J Solids Struct 44:8685–8717CrossRef Da Silva A, Kyriakides S (2007) Compressive response and failure of balsa wood. Int J Solids Struct 44:8685–8717CrossRef
go back to reference Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRefPubMed Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRefPubMed
go back to reference Donaldson L (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA J 29:345–386CrossRef Donaldson L (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA J 29:345–386CrossRef
go back to reference Easterling KE, Harrysson R, Gibson LJ, Ashby MF (1982) On the mechanics of balsa and other woods. P R Soc Lond A 383:31–41CrossRef Easterling KE, Harrysson R, Gibson LJ, Ashby MF (1982) On the mechanics of balsa and other woods. P R Soc Lond A 383:31–41CrossRef
go back to reference Evans R, Stringer S, Kibblewhite RP (2000) Variation of microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita 53:450–457 Evans R, Stringer S, Kibblewhite RP (2000) Variation of microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita 53:450–457
go back to reference Fang S, Yang W, Tian Y (2006) Clonal and within-tree variation in microfibril angle in poplar clones. New For 31:373–383CrossRef Fang S, Yang W, Tian Y (2006) Clonal and within-tree variation in microfibril angle in poplar clones. New For 31:373–383CrossRef
go back to reference Fengel D, Stoll M (1973) On the variation of the cell cross area, the thickness of the cell wall and of the wall layers of sprucewood tracheids within an annual ring. Holzforschung 27:1–7CrossRef Fengel D, Stoll M (1973) On the variation of the cell cross area, the thickness of the cell wall and of the wall layers of sprucewood tracheids within an annual ring. Holzforschung 27:1–7CrossRef
go back to reference Fengel D, Wegener G (2003) Wood—chemistry, ultrastructure, reactions. Verlag Kessel, Remagen Fengel D, Wegener G (2003) Wood—chemistry, ultrastructure, reactions. Verlag Kessel, Remagen
go back to reference Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. P Natl Acad Sci USA 108:E1195–E1203CrossRef Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. P Natl Acad Sci USA 108:E1195–E1203CrossRef
go back to reference Fletcher MI (1951) Balsa—production and utilization. Econ Bot 5:107–125CrossRef Fletcher MI (1951) Balsa—production and utilization. Econ Bot 5:107–125CrossRef
go back to reference Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461CrossRef Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461CrossRef
go back to reference Hori R, Müller M, Watanabe U, Lichtenegger HC, Fratzl P, Sugiyama J (2002) The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties. J Mater Sci 37:4279–4284CrossRef Hori R, Müller M, Watanabe U, Lichtenegger HC, Fratzl P, Sugiyama J (2002) The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties. J Mater Sci 37:4279–4284CrossRef
go back to reference Kellogg RM, Wangaard FF (1969) Variation in the cell wall density of wood. Wood Fiber Sci 1:180–204 Kellogg RM, Wangaard FF (1969) Variation in the cell wall density of wood. Wood Fiber Sci 1:180–204
go back to reference Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269CrossRefPubMed Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269CrossRefPubMed
go back to reference Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMed Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMed
go back to reference Paakkari T, Blomberg M, Serimaa R, Järvinen M (1988) A texture correction for quantitative X-ray powder diffraction analysis of cellulose. J Appl Crystallogr 21:393–397CrossRef Paakkari T, Blomberg M, Serimaa R, Järvinen M (1988) A texture correction for quantitative X-ray powder diffraction analysis of cellulose. J Appl Crystallogr 21:393–397CrossRef
go back to reference Penttilä PA, Kilpeläinen P, Tolonen L, Suuronen JP, Sixta H, Willför S, Serimaa R (2013) Effects of pressurized hot water extraction on the nanoscale structure of birch sawdust. Cellulose 20:2335–2347CrossRef Penttilä PA, Kilpeläinen P, Tolonen L, Suuronen JP, Sixta H, Willför S, Serimaa R (2013) Effects of pressurized hot water extraction on the nanoscale structure of birch sawdust. Cellulose 20:2335–2347CrossRef
go back to reference Peura M, Müller M, Vainio U, Sarén MP, Saranpää P, Serimaa R (2008) X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids. Trees-Struct Funct 22:49–61CrossRef Peura M, Müller M, Vainio U, Sarén MP, Saranpää P, Serimaa R (2008) X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids. Trees-Struct Funct 22:49–61CrossRef
go back to reference Solden PD, McLeish RD (1976) Variables affecting the strength of balsa wood. J Strain Anal 11:225–234CrossRef Solden PD, McLeish RD (1976) Variables affecting the strength of balsa wood. J Strain Anal 11:225–234CrossRef
go back to reference Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70CrossRef Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70CrossRef
go back to reference Vural M, Ravichandran G (2003) Microstructural aspects and modeling of failure in naturally occurring porous composites. Mech Mater 35:523–536CrossRef Vural M, Ravichandran G (2003) Microstructural aspects and modeling of failure in naturally occurring porous composites. Mech Mater 35:523–536CrossRef
go back to reference Wikberg H, Maunu SL (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58:461–466CrossRef Wikberg H, Maunu SL (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58:461–466CrossRef
Metadata
Title
Composition and structure of balsa (Ochroma pyramidale) wood
Authors
Marc Borrega
Patrik Ahvenainen
Ritva Serimaa
Lorna Gibson
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Wood Science and Technology / Issue 2/2015
Print ISSN: 0043-7719
Electronic ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-015-0700-5

Other articles of this Issue 2/2015

Wood Science and Technology 2/2015 Go to the issue