Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2019

30-09-2019

Constitutive Modeling for Hot Working Behavior of SP-700 Titanium Alloy

Authors: Amir Hossein Sheikhali, Maryam Morakkabati, Seyed Mahdi Abbasi

Published in: Journal of Materials Engineering and Performance | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the constitutive modeling and hot deformation behavior of SP-700 titanium alloy was investigated by performing isothermal hot compression tests in the temperature range of 700-950 °C and strain rates of 0.001, 0.1, and 1 s−1. The flow curves of the alloy indicated that the yield point phenomenon occurs at strain rates of 0.1 and 1 s−1. The friction, adiabatic heating, and stroke-rate controlling effects were eliminated from the raw data. Then, three types of phenomenological constitutive models, considering the compensation of strain, were used to predict the flow stresses of the alloy. The correlation coefficients (R2) of the measured and predicted results for the power-law, hyperbolic-sine law, and dynamic softening models were found to be 0.9790, 0.9883, and 0.9877, respectively. The corresponding average absolute relative errors (AARE) were 6.3, 5.9, and 7.45%, respectively. The flow softening behavior of SP-700 alloy was modeled using the combined hyperbolic-sine law and dynamic softening model approach. The predicted flow stresses were in a good agreement with the experimental data, indicated that the developed models can accurately characterize flow behavior of the alloy. In addition, the strain-rate sensitivity (m) distribution map of the alloy was obtained by plotting the m-value against temperature and strain rate in the form of a contour map. There was the maximum of m-value (0.36) in the temperature ranges of 700-715 and 837-875 °C, and strain rates of 0.001-0.006 s−1. The microstructure of hot deformed at 700 °C mainly consists of globularized and lamellar α phase, while dynamic globularization was completed at 800 °C. The hot deformation activation energy of the alloy in α/β region (305.5 kJ mol−1) was higher than that in single-phase β region (165.2 kJ mol−1) due to the globularization of lamellar α.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.J. Tan and S.F. Hassan, High temperature deformation of titanium SP-700, in: M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama (Eds.), Ti-2007 Science and Technology, 2007 (Japan), p 567–570 M.J. Tan and S.F. Hassan, High temperature deformation of titanium SP-700, in: M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama (Eds.), Ti-2007 Science and Technology, 2007 (Japan), p 567–570
2.
go back to reference H. Fukai, A. Ogawa, and K. Minakawa, Mechanical properties of SP-700 titanium alloy at room temperature, in: G. Lutjering and J. Albrecht (Eds.), Ti-2003 Science and Technology, 2003 (Germany), p 1847–1854 H. Fukai, A. Ogawa, and K. Minakawa, Mechanical properties of SP-700 titanium alloy at room temperature, in: G. Lutjering and J. Albrecht (Eds.), Ti-2003 Science and Technology, 2003 (Germany), p 1847–1854
3.
go back to reference Y.H. Lin, S.M. Wu, F.H. Kao, S.H. Wang, J.R. Yang, C.C. Yang, and C.S. Chiou, Microtwin Formation in the α Phase of Duplex Titanium Alloys Affected by Strain Rate, Mater. Sci. Eng., A, 2011, 528, p 2271–2276CrossRef Y.H. Lin, S.M. Wu, F.H. Kao, S.H. Wang, J.R. Yang, C.C. Yang, and C.S. Chiou, Microtwin Formation in the α Phase of Duplex Titanium Alloys Affected by Strain Rate, Mater. Sci. Eng., A, 2011, 528, p 2271–2276CrossRef
4.
go back to reference A. Ogawa, M. Niikura, C. Ouchi, K. Minikawa, and M. Yamada, Development and Applications of Titanium Alloy SP-700 with High Formability, J. Test. Eval., 1996, 24, p 165–171 A. Ogawa, M. Niikura, C. Ouchi, K. Minikawa, and M. Yamada, Development and Applications of Titanium Alloy SP-700 with High Formability, J. Test. Eval., 1996, 24, p 165–171
5.
go back to reference A. Wisbey, B. Geary, D.P. Davies, and C.M. Ward-Close, Superplastic Deformation and Diffusion Bonding of the Low Deformation Temperature Titanium Alloy SP700, Mater. Sci. Forum, 170–172, Trans Tech Pub., 1994 (Switzerland), p 293–29 A. Wisbey, B. Geary, D.P. Davies, and C.M. Ward-Close, Superplastic Deformation and Diffusion Bonding of the Low Deformation Temperature Titanium Alloy SP700, Mater. Sci. Forum, 170–172, Trans Tech Pub., 1994 (Switzerland), p 293–29
6.
go back to reference B. Gershon and I. Eldror, Superplastic sheet forming of aircraft parts from Ti-alloys, in: M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama (Eds.), Ti-2007 Science and Technology, 2007 (Japan), p 1287–1290 B. Gershon and I. Eldror, Superplastic sheet forming of aircraft parts from Ti-alloys, in: M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama (Eds.), Ti-2007 Science and Technology, 2007 (Japan), p 1287–1290
7.
go back to reference K. Osada, Commercial Applications of Superplastic Forming, J. Mater. Process. Technol., 1997, 68, p 241–245CrossRef K. Osada, Commercial Applications of Superplastic Forming, J. Mater. Process. Technol., 1997, 68, p 241–245CrossRef
8.
go back to reference L.W. Zhu, X.N. Wang, Y. Fei, J. Li, and Z.S. Zhu, Characterization of Hot Deformation Behavior of Ti-4.5Al-3 V-2Mo-2Fe Titanium Alloy, Mater. Sci. Forum 849, Trans. Tech. Pub., 2016 (Switzerland), p 309–316CrossRef L.W. Zhu, X.N. Wang, Y. Fei, J. Li, and Z.S. Zhu, Characterization of Hot Deformation Behavior of Ti-4.5Al-3 V-2Mo-2Fe Titanium Alloy, Mater. Sci. Forum 849, Trans. Tech. Pub., 2016 (Switzerland), p 309–316CrossRef
9.
go back to reference H. Fukai, A. Ogawa, K. Minakawa, H. Sato, and T. Tsuzuku, Hot forming characteristics of SP-700 titanium alloy, in: G. Lutjering and J. Albrecht (Eds.), Ti-2003 Science and Technology, 2003 (Germany), p 635–642 H. Fukai, A. Ogawa, K. Minakawa, H. Sato, and T. Tsuzuku, Hot forming characteristics of SP-700 titanium alloy, in: G. Lutjering and J. Albrecht (Eds.), Ti-2003 Science and Technology, 2003 (Germany), p 635–642
10.
go back to reference Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
11.
go back to reference F. Pilehva, A. Zarei-Hanzaki, M. Ghambari, and H.R. Abedi, Flow Behavior Modeling of a Ti-6Al-7Nb Biomedical Alloy During Manufacturing at Elevated Temperatures, Mater. Des., 2013, 51, p 457–465CrossRef F. Pilehva, A. Zarei-Hanzaki, M. Ghambari, and H.R. Abedi, Flow Behavior Modeling of a Ti-6Al-7Nb Biomedical Alloy During Manufacturing at Elevated Temperatures, Mater. Des., 2013, 51, p 457–465CrossRef
12.
go back to reference J. Cai, F. Li, T. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef J. Cai, F. Li, T. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef
13.
go back to reference F.S. Qu, Z.Y. Reng, R.R. Ma, Z.H. Wang, and D.M. Chen, The Research on the Constitutive Modeling and Hot Working Characteristics of As-Cast V-5Cr-5Ti Alloy During Hot Deformation, J. Alloys Compd., 2016, 663, p 552–559CrossRef F.S. Qu, Z.Y. Reng, R.R. Ma, Z.H. Wang, and D.M. Chen, The Research on the Constitutive Modeling and Hot Working Characteristics of As-Cast V-5Cr-5Ti Alloy During Hot Deformation, J. Alloys Compd., 2016, 663, p 552–559CrossRef
14.
go back to reference P.M. Souza, H. Beladi, R. Singh, B. Rolfe, and P.D. Hodgson, Constitutive Analysis of Hot Deformation Behavior of a Ti6Al4V Alloy Using Physical Based Model, Mater. Sci. Eng., A, 2015, 648, p 265–273CrossRef P.M. Souza, H. Beladi, R. Singh, B. Rolfe, and P.D. Hodgson, Constitutive Analysis of Hot Deformation Behavior of a Ti6Al4V Alloy Using Physical Based Model, Mater. Sci. Eng., A, 2015, 648, p 265–273CrossRef
15.
go back to reference Y.C. Lin, J. Huang, H.B. Li, and D.D. Chen, Phase Transformation and Constitutive Models of a Hot Compressed TC18 Titanium Alloy in the α + β Regime, Vacuum, 2018, 157, p 83–91CrossRef Y.C. Lin, J. Huang, H.B. Li, and D.D. Chen, Phase Transformation and Constitutive Models of a Hot Compressed TC18 Titanium Alloy in the α + β Regime, Vacuum, 2018, 157, p 83–91CrossRef
16.
go back to reference A. Hajari, M. Morakabati, S.M. Abbasi, and H. Badri, Constitutive Modeling for High-Temperature Flow Behavior of Ti-6242S Alloy, Mater. Sci. Eng., A, 2017, 681, p 103–113CrossRef A. Hajari, M. Morakabati, S.M. Abbasi, and H. Badri, Constitutive Modeling for High-Temperature Flow Behavior of Ti-6242S Alloy, Mater. Sci. Eng., A, 2017, 681, p 103–113CrossRef
17.
go back to reference Y.C. Lin, K.K. Li, H.B. Li, J. Chen, X.M. Chen, and D.X. Wen, New Constitutive Model for High-Temperature Deformation Behavior Of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118CrossRef Y.C. Lin, K.K. Li, H.B. Li, J. Chen, X.M. Chen, and D.X. Wen, New Constitutive Model for High-Temperature Deformation Behavior Of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118CrossRef
18.
go back to reference Y.C. Lin, D.-X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRef Y.C. Lin, D.-X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRef
19.
go back to reference AMS 4964C: Titanium Alloy Bars, Wire, Forgings, and Rings Ti-4.5Al-3 V-2Fe-2Mo Annealed, ASTM International, 2011 AMS 4964C: Titanium Alloy Bars, Wire, Forgings, and Rings Ti-4.5Al-3 V-2Fe-2Mo Annealed, ASTM International, 2011
20.
go back to reference ASTM E209: Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates, ASTM International, 2005 ASTM E209: Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates, ASTM International, 2005
21.
go back to reference R.W. Evans and P.J. Scharning, Axisymmetric Compression Test and Hot Working Properties of Alloys, Mater. Sci. Technol., 2001, 17, p 995–1004CrossRef R.W. Evans and P.J. Scharning, Axisymmetric Compression Test and Hot Working Properties of Alloys, Mater. Sci. Technol., 2001, 17, p 995–1004CrossRef
22.
go back to reference R.L. Goetz and S.L. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10, p 710–717CrossRef R.L. Goetz and S.L. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10, p 710–717CrossRef
23.
go back to reference Y.P. Li, H. Matsumoto, and A. Chiba, Correcting the Stress–Strain Curve in the Stroke-Rate Controlling Forging Process, Metall. Mater. Trans. A, 2009, 40, p 1203–1211CrossRef Y.P. Li, H. Matsumoto, and A. Chiba, Correcting the Stress–Strain Curve in the Stroke-Rate Controlling Forging Process, Metall. Mater. Trans. A, 2009, 40, p 1203–1211CrossRef
24.
go back to reference ASTM E3: Standard Guide for Preparation of Metallographic Specimens, ASTM International, 1995 ASTM E3: Standard Guide for Preparation of Metallographic Specimens, ASTM International, 1995
28.
go back to reference R. Srinivasan and I. Weiss, High temperature deformation of the near beta Ti-15 V-3Cr-3Sn-3Al alloy, in: D. Eylon, R.R. Boyer, D.A. Koss (Eds.), Proceedings of a Symposium on Beta titanium alloys in the 1990’s, 1993 (Colorado), p 283–295 R. Srinivasan and I. Weiss, High temperature deformation of the near beta Ti-15 V-3Cr-3Sn-3Al alloy, in: D. Eylon, R.R. Boyer, D.A. Koss (Eds.), Proceedings of a Symposium on Beta titanium alloys in the 1990’s, 1993 (Colorado), p 283–295
29.
go back to reference S.L. Semiatin and T.R. Bieler, The Effect of Alpha Platelet Thickness on Plastic Flow During hot Working of Ti-6Al-4V with a Transformed Microstructure, Acta Mater., 2001, 49, p 3565–3573CrossRef S.L. Semiatin and T.R. Bieler, The Effect of Alpha Platelet Thickness on Plastic Flow During hot Working of Ti-6Al-4V with a Transformed Microstructure, Acta Mater., 2001, 49, p 3565–3573CrossRef
30.
go back to reference F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, New York, 2004, p 534–560 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, New York, 2004, p 534–560
31.
go back to reference I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys—An Overview, Mater. Sci. Eng., A, 1998, 243, p 46–65CrossRef I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys—An Overview, Mater. Sci. Eng., A, 1998, 243, p 46–65CrossRef
32.
go back to reference V.V. Balasubrahmanyam and Y.V.R.K. Prasad, Deformation Behaviour of Beta Titanium Alloy Ti-10 V-4.5Fe-1.5Al in Hot Upset Forging, Mater. Sci. Eng., A, 2002, 336, p 150–158CrossRef V.V. Balasubrahmanyam and Y.V.R.K. Prasad, Deformation Behaviour of Beta Titanium Alloy Ti-10 V-4.5Fe-1.5Al in Hot Upset Forging, Mater. Sci. Eng., A, 2002, 336, p 150–158CrossRef
33.
go back to reference I. Balasundar, T. Raghu, and B.P. Kashyap, Modeling the Hot Working Behavior of Near-α Titanium Alloy IMI834, Prog. Nat. Sci. Mater. Int., 2013, 23, p 598–607CrossRef I. Balasundar, T. Raghu, and B.P. Kashyap, Modeling the Hot Working Behavior of Near-α Titanium Alloy IMI834, Prog. Nat. Sci. Mater. Int., 2013, 23, p 598–607CrossRef
34.
go back to reference Y.Q. Ning, B.C. Xie, H.Q. Liang, H. Li, X.M. Yang, and H.Z. Guo, Dynamic Softening Behavior of TC18 Titanium Alloy During Hot Deformation, Mater. Des., 2015, 71, p 68–77CrossRef Y.Q. Ning, B.C. Xie, H.Q. Liang, H. Li, X.M. Yang, and H.Z. Guo, Dynamic Softening Behavior of TC18 Titanium Alloy During Hot Deformation, Mater. Des., 2015, 71, p 68–77CrossRef
35.
go back to reference H.Q. Liang, Y. Nan, Y.Q. Ning, H. Li, J.L. Zhang, Z.F. Shi, and H.Z. Guo, Correlation Between Strain-Rate Sensitivity and Dynamic Softening Behavior During Hot Processing, J. Alloys Compd., 2015, 632, p 478–485CrossRef H.Q. Liang, Y. Nan, Y.Q. Ning, H. Li, J.L. Zhang, Z.F. Shi, and H.Z. Guo, Correlation Between Strain-Rate Sensitivity and Dynamic Softening Behavior During Hot Processing, J. Alloys Compd., 2015, 632, p 478–485CrossRef
36.
go back to reference O. Sivakesavam and Y.V.R.K. Prasad, Characteristics of Superplasticity Domain in the Processing Map for Hot Working of As-Cast Mg-11.5Li-1.5Al alloy, Mater. Sci. Eng., A, 2002, 323, p 270–277CrossRef O. Sivakesavam and Y.V.R.K. Prasad, Characteristics of Superplasticity Domain in the Processing Map for Hot Working of As-Cast Mg-11.5Li-1.5Al alloy, Mater. Sci. Eng., A, 2002, 323, p 270–277CrossRef
37.
go back to reference V.G. Krishna, Y.V.R.K. Prasad, N.C. Birla, and G. Sambasiva Rao, Processing Map for the Hot Working of Near-α Titanium Alloy 685, J. Mater. Process. Technol., 1997, 71, p 377–383CrossRef V.G. Krishna, Y.V.R.K. Prasad, N.C. Birla, and G. Sambasiva Rao, Processing Map for the Hot Working of Near-α Titanium Alloy 685, J. Mater. Process. Technol., 1997, 71, p 377–383CrossRef
38.
go back to reference D. He, J.C. Zhu, Z.H. Lai, Y. Liu, and X.W. Yang, An Experimental Study of Deformation Mechanism and Microstructure Evolution During Hot Deformation of Ti-6Al-2Zr-1Mo-1 V Alloy, Mater. Des., 2013, 46, p 38–48CrossRef D. He, J.C. Zhu, Z.H. Lai, Y. Liu, and X.W. Yang, An Experimental Study of Deformation Mechanism and Microstructure Evolution During Hot Deformation of Ti-6Al-2Zr-1Mo-1 V Alloy, Mater. Des., 2013, 46, p 38–48CrossRef
39.
go back to reference Z.L. Zhao, H. Li, M.W. Fu, H.Z. Guo, and Z.K. Yao, Effect of the Initial Microstructure on the Deformation Behavior of Ti60 Titanium Alloy at High Temperature Processing, J. Alloys Compd., 2014, 671, p 525–533CrossRef Z.L. Zhao, H. Li, M.W. Fu, H.Z. Guo, and Z.K. Yao, Effect of the Initial Microstructure on the Deformation Behavior of Ti60 Titanium Alloy at High Temperature Processing, J. Alloys Compd., 2014, 671, p 525–533CrossRef
40.
go back to reference F. Warchomicka, C. Poletti, and M. Stockinger, Study of the Hot Deformation Behaviour in Ti-5Al-5Mo-5 V-3Cr-1Zr, Mater. Sci. Eng., A, 2011, 528, p 8277–8285CrossRef F. Warchomicka, C. Poletti, and M. Stockinger, Study of the Hot Deformation Behaviour in Ti-5Al-5Mo-5 V-3Cr-1Zr, Mater. Sci. Eng., A, 2011, 528, p 8277–8285CrossRef
41.
go back to reference D.G. Robertson and H.B. McShane, Analysis of High Temperature Flow Stress of Titanium Alloys IMI, 550 and Ti-10 V-2Fe-3Al During Isothermal Forging, Mater. Sci. Technol., 1998, 14, p 339–345CrossRef D.G. Robertson and H.B. McShane, Analysis of High Temperature Flow Stress of Titanium Alloys IMI, 550 and Ti-10 V-2Fe-3Al During Isothermal Forging, Mater. Sci. Technol., 1998, 14, p 339–345CrossRef
42.
go back to reference A. Momeni and S.M. Abbasi, Effect of Hot Working on Flow Behavior of Ti-6Al-4V Alloy in Single Phase and Two Phase Regions, Mater. Des., 2010, 31, p 3599–3604CrossRef A. Momeni and S.M. Abbasi, Effect of Hot Working on Flow Behavior of Ti-6Al-4V Alloy in Single Phase and Two Phase Regions, Mater. Des., 2010, 31, p 3599–3604CrossRef
43.
go back to reference S.M. Abbasi, A. Momeni, A. Akhondzadeh, and S.M. Ghazi Mirsaed, Microstructure and mechanical behavior of hot compressed Ti-6 V-6Mo-6Fe-3Al, Mater. Sci. Eng., A, 2015, 639, p 21–28CrossRef S.M. Abbasi, A. Momeni, A. Akhondzadeh, and S.M. Ghazi Mirsaed, Microstructure and mechanical behavior of hot compressed Ti-6 V-6Mo-6Fe-3Al, Mater. Sci. Eng., A, 2015, 639, p 21–28CrossRef
Metadata
Title
Constitutive Modeling for Hot Working Behavior of SP-700 Titanium Alloy
Authors
Amir Hossein Sheikhali
Maryam Morakkabati
Seyed Mahdi Abbasi
Publication date
30-09-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04355-x

Other articles of this Issue 10/2019

Journal of Materials Engineering and Performance 10/2019 Go to the issue

Premium Partners