Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2018

20-06-2018

Control of Carbon Content in Ultrafine Cemented Carbide by Heat Treatment in Reducing Atmospheres Containing Carbon Oxides

Authors: M. I. Dvornik, E. A. Mikhaylenko

Published in: Journal of Materials Engineering and Performance | Issue 7/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the method of control of carbon content in the ultrafine-grained cemented carbide alloy was proposed. The treating of the WC-8Co-0.4VC-0.4Cr3C2 compacts was made in a CO + CO2 gas mixture at CO concentrations from 0 to 80 vol.% during 50 min at the initial stage of the conventional sintering at a temperature of 700 °C. Conditions for increasing and decreasing the carbon content are CO concentrations of CO in gas mix more than 65 vol.% and less than 35 vol.%, respectively. It is shown that even a small deviation from the stoichiometric carbon content (0.3 wt.%) leads to an increase in porosity and a multiple decrease in the strength of the ultrafine-grained cemented carbide. A comparative analysis with literature data showed that the obtained ultrafine-grained solid alloy WC-8Co-0.4VC-0.4Cr3C2 with stoichiometric composition is not inferior in hardness and toughness to the analogs obtained by hot pressing and electrospark sintering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.E. Spriggs, A History of Fine Grained Hardmetal, Int. J. Refract. Met. Hard Mater., 1995, 13, p 241–255CrossRef G.E. Spriggs, A History of Fine Grained Hardmetal, Int. J. Refract. Met. Hard Mater., 1995, 13, p 241–255CrossRef
2.
go back to reference Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, and H.Y. Sohn, Synthesis, Sintering, and Mechanical Properties of Nanocrystalline Cemented Tungsten Carbide—A Review, Int. J. Refract. Met. Hard Mater., 2009, 27, p 288–299CrossRef Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, and H.Y. Sohn, Synthesis, Sintering, and Mechanical Properties of Nanocrystalline Cemented Tungsten Carbide—A Review, Int. J. Refract. Met. Hard Mater., 2009, 27, p 288–299CrossRef
3.
go back to reference A.V. Shatov, S.S. Ponomarev, and S.A. Firstov, Fracture and Strength of Hardmetals at Room Temperature, Compr. Hard Mater., 2014, 1, p 21 A.V. Shatov, S.S. Ponomarev, and S.A. Firstov, Fracture and Strength of Hardmetals at Room Temperature, Compr. Hard Mater., 2014, 1, p 21
4.
go back to reference A. Mukhopadhyay and B. Basu, Consolidation–Microstructure–Property Relationships in Bulk Nanoceramics and Ceramic Nanocomposites: A Review, Int. Mater. Rev., 2007, 52(5), p 257–288CrossRef A. Mukhopadhyay and B. Basu, Consolidation–Microstructure–Property Relationships in Bulk Nanoceramics and Ceramic Nanocomposites: A Review, Int. Mater. Rev., 2007, 52(5), p 257–288CrossRef
5.
go back to reference G.S. Upadhyaya, Cemented Tungsten Carbides: Production, Properties and Testing, Noyes Publications, Norwich, 1998, p 403 G.S. Upadhyaya, Cemented Tungsten Carbides: Production, Properties and Testing, Noyes Publications, Norwich, 1998, p 403
6.
go back to reference B. Gille, K. Szesny, H. van den Dreyer, J. Berg, T. Schmidt, G. Gestrich, and G. Leitner, Submicron and Ultrafine Grained Hardmetals for Microdrills and Metal Cutting Inserts, Int. J. Refract. Met. Hard Mater., 2002, 20, p 3–22CrossRef B. Gille, K. Szesny, H. van den Dreyer, J. Berg, T. Schmidt, G. Gestrich, and G. Leitner, Submicron and Ultrafine Grained Hardmetals for Microdrills and Metal Cutting Inserts, Int. J. Refract. Met. Hard Mater., 2002, 20, p 3–22CrossRef
7.
go back to reference H. Saito, A. Iwabuchi, and T. Shimizu, Effects of Co Content and WC Grain Size on Wear of WC Cemented Carbide, Wear, 2006, 261, p 126–132CrossRef H. Saito, A. Iwabuchi, and T. Shimizu, Effects of Co Content and WC Grain Size on Wear of WC Cemented Carbide, Wear, 2006, 261, p 126–132CrossRef
8.
go back to reference K. Jia and T.E. Fischer, Sliding Wear of Conventional and Nanostructured Cemented Carbides, Wear, 1997, 203–204, p 310–318CrossRef K. Jia and T.E. Fischer, Sliding Wear of Conventional and Nanostructured Cemented Carbides, Wear, 1997, 203–204, p 310–318CrossRef
9.
go back to reference P.V. Krakhmalev, T.A. Rodil, and J. Bergstrom, Influence of Microstructure on the Abrasive Edge Wear of WC-Co Hardmetals, Wear, 2007, 263, p 240–245CrossRef P.V. Krakhmalev, T.A. Rodil, and J. Bergstrom, Influence of Microstructure on the Abrasive Edge Wear of WC-Co Hardmetals, Wear, 2007, 263, p 240–245CrossRef
10.
go back to reference C. Allen, M. Sheen, J. Williams, and V.A. Pugsley, The Wear of Ultrafine WC-Co Hard Metals, Wear, 2001, 250, p 604–610CrossRef C. Allen, M. Sheen, J. Williams, and V.A. Pugsley, The Wear of Ultrafine WC-Co Hard Metals, Wear, 2001, 250, p 604–610CrossRef
11.
go back to reference M.I. Dvornik and A.V. Zaitsev, Comparative Dry Sliding Wear Analysis of Conventional and Submicron WC-8Co-1Cr3C2 Hard Alloys, Perspektivnyye Materialy, 2015, 5, p 34–41 M.I. Dvornik and A.V. Zaitsev, Comparative Dry Sliding Wear Analysis of Conventional and Submicron WC-8Co-1Cr3C2 Hard Alloys, Perspektivnyye Materialy, 2015, 5, p 34–41
12.
go back to reference M.I. Dvornik, B.Y. Mokritsky, and A.V. Zaitsev, Comparative Analysis Microabrasive Wear Traditional Submicron Carbide and Tungsten Carbide WC-8Co-1Cr3C2, Voprosy materialovedeniya, 2015, 81(1), p 45–51 M.I. Dvornik, B.Y. Mokritsky, and A.V. Zaitsev, Comparative Analysis Microabrasive Wear Traditional Submicron Carbide and Tungsten Carbide WC-8Co-1Cr3C2, Voprosy materialovedeniya, 2015, 81(1), p 45–51
13.
go back to reference P.V. Krasovskii, Y. Blagoveshchenskii, and K.V. Grigorovich, Determination of Oxygen in W-C-Co Nanopowders, Inorg. Mater., 2008, 44(9), p 954–959CrossRef P.V. Krasovskii, Y. Blagoveshchenskii, and K.V. Grigorovich, Determination of Oxygen in W-C-Co Nanopowders, Inorg. Mater., 2008, 44(9), p 954–959CrossRef
14.
go back to reference A.S. Kurlov and A.I. Gusev, Oxidation of Tungsten Carbide Powders in Air, Int. J. Refract. Met. Hard Mater., 2013, 41, p 301–307CrossRef A.S. Kurlov and A.I. Gusev, Oxidation of Tungsten Carbide Powders in Air, Int. J. Refract. Met. Hard Mater., 2013, 41, p 301–307CrossRef
15.
go back to reference S. Xiaoliang, Y. Hua, W. Sheng, S. Gangqin, and D. Xinglong, Influences of Carbon Content on the Properties and Microstructure of Ultrafine WC-10Co Cemented Carbide, J. Wuhan Univ. Technol. Mater., 2007, 23, p 473–476 S. Xiaoliang, Y. Hua, W. Sheng, S. Gangqin, and D. Xinglong, Influences of Carbon Content on the Properties and Microstructure of Ultrafine WC-10Co Cemented Carbide, J. Wuhan Univ. Technol. Mater., 2007, 23, p 473–476
16.
go back to reference G.-H. Lee and S. Kang, Sintering of Nano-Sized WC-Co Powders Produced by a Gas Reduction–Carburization Process, J. Alloys Compd., 2006, 419(1–2), p 281–289CrossRef G.-H. Lee and S. Kang, Sintering of Nano-Sized WC-Co Powders Produced by a Gas Reduction–Carburization Process, J. Alloys Compd., 2006, 419(1–2), p 281–289CrossRef
17.
go back to reference C. Wei, X. Song, J. Fu, X. Lv, H. Wang, Y. Gao, S. Zhao, and X. Liu, Effect of Carbon Addition on Microstructure and Properties of WC-Co Cemented Carbides, J. Mater. Sci. Technol., 2012, 28(9), p 837–843CrossRef C. Wei, X. Song, J. Fu, X. Lv, H. Wang, Y. Gao, S. Zhao, and X. Liu, Effect of Carbon Addition on Microstructure and Properties of WC-Co Cemented Carbides, J. Mater. Sci. Technol., 2012, 28(9), p 837–843CrossRef
18.
go back to reference S.R. Parker, M.J. Whiting, and J.A. Yeomans, Control of Carbon Content in WC-Co Hardmetal by Heat Treatment in Reducing Atmospheres Containing Methane, Int. J. Refract. Met. Hard Mater., 2016, 66, p 204–210CrossRef S.R. Parker, M.J. Whiting, and J.A. Yeomans, Control of Carbon Content in WC-Co Hardmetal by Heat Treatment in Reducing Atmospheres Containing Methane, Int. J. Refract. Met. Hard Mater., 2016, 66, p 204–210CrossRef
19.
go back to reference M.I. Dvornil, A.V. Zaytsev, and T.B. Ershova, Improvement of Strength and Hardness of Submicron Cemented Carbide WC-8%Co-1%Cr3C2 Due to the Carbonization During Sintering Process, Voprosy materialovedeniya, 2011, 68(4), p 81–88 M.I. Dvornil, A.V. Zaytsev, and T.B. Ershova, Improvement of Strength and Hardness of Submicron Cemented Carbide WC-8%Co-1%Cr3C2 Due to the Carbonization During Sintering Process, Voprosy materialovedeniya, 2011, 68(4), p 81–88
20.
go back to reference H. Suzuki and K. Hayashi, The Strength of WC-Co Cemented Carbide in Relation to Structural Defects, Trans. Jpn. Inst. Met., 1975, 16(6), p 353–360CrossRef H. Suzuki and K. Hayashi, The Strength of WC-Co Cemented Carbide in Relation to Structural Defects, Trans. Jpn. Inst. Met., 1975, 16(6), p 353–360CrossRef
21.
go back to reference S. Sheikh, R. M’Saoubi, P. Flasar, M. Schwind, T. Persson, J. Yang, and L. Llanes, Fracture Toughness of Cemented carbides: Testing Method and Microstructural Effects, Int. J. Refract. Met. Hard Mater., 2014, 49, p 153–160CrossRef S. Sheikh, R. M’Saoubi, P. Flasar, M. Schwind, T. Persson, J. Yang, and L. Llanes, Fracture Toughness of Cemented carbides: Testing Method and Microstructural Effects, Int. J. Refract. Met. Hard Mater., 2014, 49, p 153–160CrossRef
22.
go back to reference C.M. Fernandes and A.M.R. Senos, Cemented Carbide Phase Diagrams: A Review, Int. J. Refract. Met. Hard Mater., 2011, 29, p 405–418CrossRef C.M. Fernandes and A.M.R. Senos, Cemented Carbide Phase Diagrams: A Review, Int. J. Refract. Met. Hard Mater., 2011, 29, p 405–418CrossRef
23.
go back to reference O. Eso, Z. Fang, and A. Griffo, Liquid Phase Sintering of Functionally Graded WC-Co Composites, Int. J. Refract. Met. Hard Mater., 2005, 23(4–6), p 233–241CrossRef O. Eso, Z. Fang, and A. Griffo, Liquid Phase Sintering of Functionally Graded WC-Co Composites, Int. J. Refract. Met. Hard Mater., 2005, 23(4–6), p 233–241CrossRef
24.
go back to reference P. Fan, Z.Z. Fang, and J. Guo, A Review of Liquid Phase Migration and Methods for Fabrication of Functionally Graded Cemented Tungsten Carbide, Int. J. Refract. Met. Hard Mater., 2013, 36, p 2–9CrossRef P. Fan, Z.Z. Fang, and J. Guo, A Review of Liquid Phase Migration and Methods for Fabrication of Functionally Graded Cemented Tungsten Carbide, Int. J. Refract. Met. Hard Mater., 2013, 36, p 2–9CrossRef
25.
go back to reference M.I. Dvornik and E.A. Mikhailenko, The Modeling of the Crack Propagation Process in Submicron and Nanostructured Hard Alloys, Nanomech. Sci. Technol. Int. J., 2013, 4(3), p 127–210 M.I. Dvornik and E.A. Mikhailenko, The Modeling of the Crack Propagation Process in Submicron and Nanostructured Hard Alloys, Nanomech. Sci. Technol. Int. J., 2013, 4(3), p 127–210
26.
go back to reference A.S. Kurlov, A.I. Gusev, and A.A. Rempel, Vacuum Sintering of WC-8 wt.% Co Hardmetals From WC Powders with Different Dispersity, Int. J. Refract. Met. Hard Mater., 2011, 29(2), p 221–231CrossRef A.S. Kurlov, A.I. Gusev, and A.A. Rempel, Vacuum Sintering of WC-8 wt.% Co Hardmetals From WC Powders with Different Dispersity, Int. J. Refract. Met. Hard Mater., 2011, 29(2), p 221–231CrossRef
27.
go back to reference J.W. Friederichs, Articles of Ultra Fine Grained Cemented Carbide and Process for Making Same. U.S. Patent 5368628, Filed 21 Dec 1992, Issued 29 Nov 1994 J.W. Friederichs, Articles of Ultra Fine Grained Cemented Carbide and Process for Making Same. U.S. Patent 5368628, Filed 21 Dec 1992, Issued 29 Nov 1994
28.
go back to reference M.S. El-Eskandarany, A.A. Mahday, H.A. Ahmed, and A.H. Amer, Synthesis and Characterizations of Ball-Milled Nanocrystalline WC and Nanocomposite WC-Co Powders and Subsequent Consolidations, J. Alloys Compd., 2000, 312, p 315–325CrossRef M.S. El-Eskandarany, A.A. Mahday, H.A. Ahmed, and A.H. Amer, Synthesis and Characterizations of Ball-Milled Nanocrystalline WC and Nanocomposite WC-Co Powders and Subsequent Consolidations, J. Alloys Compd., 2000, 312, p 315–325CrossRef
29.
go back to reference H.-C. Kim, I.-J. Shon, J.-K. Yoon, and J.-M. Doh, Consolidation of Ultra Fine WC and WC-Co Hard Materials by Pulsed Current Activated Sintering and Its Mechanical Properties, Int. J. Refract. Met. Hard Mater., 2007, 25(1), p 46–52CrossRef H.-C. Kim, I.-J. Shon, J.-K. Yoon, and J.-M. Doh, Consolidation of Ultra Fine WC and WC-Co Hard Materials by Pulsed Current Activated Sintering and Its Mechanical Properties, Int. J. Refract. Met. Hard Mater., 2007, 25(1), p 46–52CrossRef
30.
go back to reference H.C. Kim, I.K. Jeong, I.J. Shon, I.Y. Ko, and J.M. Doh, Fabrication of WC-8 wt% Co Hard Materials by Two Rapid Sintering Processes, Int. J. Refract. Met. Hard Mater., 2007, 25(4), p 336–340CrossRef H.C. Kim, I.K. Jeong, I.J. Shon, I.Y. Ko, and J.M. Doh, Fabrication of WC-8 wt% Co Hard Materials by Two Rapid Sintering Processes, Int. J. Refract. Met. Hard Mater., 2007, 25(4), p 336–340CrossRef
Metadata
Title
Control of Carbon Content in Ultrafine Cemented Carbide by Heat Treatment in Reducing Atmospheres Containing Carbon Oxides
Authors
M. I. Dvornik
E. A. Mikhaylenko
Publication date
20-06-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3460-1

Other articles of this Issue 7/2018

Journal of Materials Engineering and Performance 7/2018 Go to the issue

Premium Partners