Skip to main content
Top
Published in: Cellulose 1/2013

01-02-2013 | Original Paper

Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

Authors: Xiawa Wu, Robert J. Moon, Ashlie Martini

Published in: Cellulose | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The elastic modulus of cellulose in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive force field was used that explicitly describes hydrogen bond, coulombic and van der Waals interactions, allowing each contribution to the inter- and intra-molecular forces to be analyzed as a function of crystallographic direction. The uniform deformation studies showed that the forces dominating elastic behavior differed in the axial and transverse directions because of the relationship between the direction of the applied strain and the hydrogen bonding planes. Simulations of nanoscale indentation were then introduced to model the interaction between a hemispherical indenter with the \((1\bar{1}0)\) surface of a cellulose Iβ rod. The role of indenter size, loading force and indentation speed on the transverse elastic modulus was studied and, for optimized parameters, the results found to be in good agreement with experimentally-measured transverse elastic modulus for individual cellulose crystals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bergenstråle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111(30):9138–9145CrossRef Bergenstråle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111(30):9138–9145CrossRef
go back to reference Cousins SK, Brown RM (1995) Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36(20):3885–3888CrossRef Cousins SK, Brown RM (1995) Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36(20):3885–3888CrossRef
go back to reference Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRef Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRef
go back to reference Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRef Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRef
go back to reference Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef
go back to reference Jakes JE, Frihart CR, Beecher JF, Moon RJ, Stone DS (2008) Experimental method to account for structural compliance in nanoindentation measurements. J Mater Res 23(4):1113–1127CrossRef Jakes JE, Frihart CR, Beecher JF, Moon RJ, Stone DS (2008) Experimental method to account for structural compliance in nanoindentation measurements. J Mater Res 23(4):1113–1127CrossRef
go back to reference Jakes JE, Frihart CR, Beecher JF, Moon RJ, Resto PJ, Melgarejo ZH, Suárez OM, Baumgart H, Elmustafa AA, Stone DS (2009) Nanoindentation near the edge. J Mater Res 24(3):1016–1031CrossRef Jakes JE, Frihart CR, Beecher JF, Moon RJ, Resto PJ, Melgarejo ZH, Suárez OM, Baumgart H, Elmustafa AA, Stone DS (2009) Nanoindentation near the edge. J Mater Res 24(3):1016–1031CrossRef
go back to reference Kroon-Batenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconj J 14:677–690CrossRef Kroon-Batenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconj J 14:677–690CrossRef
go back to reference Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488CrossRef Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488CrossRef
go back to reference Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23(13):3266–3275CrossRef Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23(13):3266–3275CrossRef
go back to reference Mattsson TR, Lane JMD, Cochrane KR, Desjarlais MP, Thompson AP, Pierce F, Grest GS (2010) First-principles and classical molecular dynamics simulation of shocked polymers. Phys Rev B 81:054103CrossRef Mattsson TR, Lane JMD, Cochrane KR, Desjarlais MP, Thompson AP, Pierce F, Grest GS (2010) First-principles and classical molecular dynamics simulation of shocked polymers. Phys Rev B 81:054103CrossRef
go back to reference McAllister QP, Gillespie JW, VanLandingham MR (2012) Evaluation of the three-dimensional properties of Kevlar across length scales. J Mater Res, Available on CJO 28 March 2012 McAllister QP, Gillespie JW, VanLandingham MR (2012) Evaluation of the three-dimensional properties of Kevlar across length scales. J Mater Res, Available on CJO 28 March 2012
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef
go back to reference Neyertz S, Pizzi A, Merlin A, Maigret B, Brown D, Deglise X (2000) A new all-atom force field for crystalline cellulose I. J Appl Polym Sci 78(11):1939–1946CrossRef Neyertz S, Pizzi A, Merlin A, Maigret B, Brown D, Deglise X (2000) A new all-atom force field for crystalline cellulose I. J Appl Polym Sci 78(11):1939–1946CrossRef
go back to reference Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249CrossRef Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249CrossRef
go back to reference Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
go back to reference Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc (47):14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc (47):14300–14306CrossRef
go back to reference Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRef Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRef
go back to reference Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRef
go back to reference Pakzad A, Simonsen J, Heiden PA, Yassar RS (2012) Size effects on the nanomechanical properties of cellulose I nanocrystals. J Mater Res 27:528–536CrossRef Pakzad A, Simonsen J, Heiden PA, Yassar RS (2012) Size effects on the nanomechanical properties of cellulose I nanocrystals. J Mater Res 27:528–536CrossRef
go back to reference Postek MT, Vladár A, Dagata J, Farkas N, Ming B, Sabo R, Wegner TH, Beecher J (2008) Cellulose nanocrystals the next big nano-thing? In: Proceedings of SPIE 7042:70420D–1 Postek MT, Vladár A, Dagata J, Farkas N, Ming B, Sabo R, Wegner TH, Beecher J (2008) Cellulose nanocrystals the next big nano-thing? In: Proceedings of SPIE 7042:70420D–1
go back to reference Postek MT, Vladár A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005CrossRef Postek MT, Vladár A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005CrossRef
go back to reference Reiling S, Brickmann J (1995) Theoretical Investigations on the structure and physical properties of cellulose. Macromol Theory Simul 4:725–743CrossRef Reiling S, Brickmann J (1995) Theoretical Investigations on the structure and physical properties of cellulose. Macromol Theory Simul 4:725–743CrossRef
go back to reference Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using raman spectroscopy. Appl Phys Lett 93:033111CrossRef Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using raman spectroscopy. Appl Phys Lett 93:033111CrossRef
go back to reference Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymere. J Polym Sci 57:651–660CrossRef Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymere. J Polym Sci 57:651–660CrossRef
go back to reference Sakurada I, Ito T, Nakamae K (1964) Elastic moduli of polymer crystals for the chain axial direction. Makromol Chem 75(1):1–10CrossRef Sakurada I, Ito T, Nakamae K (1964) Elastic moduli of polymer crystals for the chain axial direction. Makromol Chem 75(1):1–10CrossRef
go back to reference Samir MASA, Alloin FA, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef Samir MASA, Alloin FA, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef
go back to reference Sturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef Sturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef
go back to reference Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517CrossRef Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517CrossRef
go back to reference Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526CrossRef Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526CrossRef
go back to reference Wagner R, Raman A, Moon RJ (2010) Transverse elasticity of cellulose nanocrystals via atomic force microscopy. In: 10th international conference on wood & biofiber plastic composites and cellulose nanocomposites symposium, May 11–13, Madison, WI, USA, pp 309–317 Wagner R, Raman A, Moon RJ (2010) Transverse elasticity of cellulose nanocrystals via atomic force microscopy. In: 10th international conference on wood & biofiber plastic composites and cellulose nanocomposites symposium, May 11–13, Madison, WI, USA, pp 309–317
go back to reference Wagner R, Moon RJ, Pratt J, Shaw G, Raman A (2011) Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 22(45):455703CrossRef Wagner R, Moon RJ, Pratt J, Shaw G, Raman A (2011) Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 22(45):455703CrossRef
go back to reference Wu X, Moon RJ, Martini A (2011) Calculation of single chain cellulose elasticity using fully atomistic modeling. TAPPI J 10(4):37–43 Wu X, Moon RJ, Martini A (2011) Calculation of single chain cellulose elasticity using fully atomistic modeling. TAPPI J 10(4):37–43
Metadata
Title
Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation
Authors
Xiawa Wu
Robert J. Moon
Ashlie Martini
Publication date
01-02-2013
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2013
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9823-0

Other articles of this Issue 1/2013

Cellulose 1/2013 Go to the issue