Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 4/2016

05-05-2016

Crystallographic, Microstructural, and Mechanical Characterization of Dynamically Processed EP741NP Superalloy

Authors: A. D. Sharma, A. K. Sharma, N. Thakur

Published in: Metallurgical and Materials Transactions B | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Considerable progress has been made for the solidification of metal powders with improved properties by using varieties of metallurgical methods. However, solidification of superalloy powders offers many difficulties under traditional processes. This article outlines an extensive program being undertaken to produce monoliths of superalloys with enhanced microstructural and mechanical properties. EP741NP superalloy has been subjected to explosive shock wave loading to obtain uniform and crack-free monoliths. An axisymmetric cylindrical configuration with a plastic explosive of high-detonation velocity has been used to consolidate the superalloy powder nearer to its theoretical density (~98 pct). By careful design of experiments, detonation velocity has been measured vis-à-vis compaction of metal powders in a single-shot experiment by employing instrumented detonics. The shock-processed specimens characterized for phase, lattice parameter, and structural variation by X-ray diffraction technique show intact crystalline structure. Results obtained from Williamson-Hall method indicate small micro-strain (2.8 × 10−3) and decreased crystallite size. Energy-dispersive spectroscopy suggests no segregation within the specimens. Scanning electron microscopy shows fracture-less and micro-cracks/void-free compacts of superalloy indicating satisfactory sub-structural strength. Indentation experiments with variable loads (1.96 N and 2.94 N) performed on the shock-processed specimen cut along transverse section show high order of Vicker’s micro-hardness value up to 486 H v. The tensile and compressive strengths of the superalloy monoliths cut along the consolidation axes have been found to be 824 and 834 MPa, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ASM Handbook, Properties and selections: Iron, Steel and High Performance Alloys, ASM International, Materials Park, 1990, vol. 1. ASM Handbook, Properties and selections: Iron, Steel and High Performance Alloys, ASM International, Materials Park, 1990, vol. 1.
2.
go back to reference ASM Handbook, Metallography and Microstructures, 2004, vol. 9, ASM International, Materials Park. ASM Handbook, Metallography and Microstructures, 2004, vol. 9, ASM International, Materials Park.
3.
go back to reference M.J. Donalchie and S. J. Donalchie: Superalloys, ASM International, , Materials Park, 2002. M.J. Donalchie and S. J. Donalchie: Superalloys, ASM International, , Materials Park, 2002.
4.
go back to reference R.C. Reed: The superalloys- Fundamental and Applications, Cambridge University Press, Cambridge, 2006.CrossRef R.C. Reed: The superalloys- Fundamental and Applications, Cambridge University Press, Cambridge, 2006.CrossRef
6.
go back to reference H. Fischemeister, E. Arzt and L.R. Olsson: Powder Metall., 1978, vol. 21, pp. 179–87.CrossRef H. Fischemeister, E. Arzt and L.R. Olsson: Powder Metall., 1978, vol. 21, pp. 179–87.CrossRef
7.
go back to reference K. Shivakumar, T. BalakrishnaBhat and P. J. Ramakrishnan: Mater. Process. Technol., 1998, vol. 73, pp. 268–75.CrossRef K. Shivakumar, T. BalakrishnaBhat and P. J. Ramakrishnan: Mater. Process. Technol., 1998, vol. 73, pp. 268–75.CrossRef
8.
10.
go back to reference D.G. Morris and M.A. Morris: Mater. Sci. Eng. A, 1998, vol. 104, pp. 201–04.CrossRef D.G. Morris and M.A. Morris: Mater. Sci. Eng. A, 1998, vol. 104, pp. 201–04.CrossRef
11.
go back to reference V.F. Nesterenko and A.V. Muzykantov: Combust. Explos. Shock. Waves. 1985, vol. 21, pp. 730–40.CrossRef V.F. Nesterenko and A.V. Muzykantov: Combust. Explos. Shock. Waves. 1985, vol. 21, pp. 730–40.CrossRef
12.
go back to reference M.A. Meyers: Dynamic Behavior of Materials, Univ. of California, JWS, 1994.CrossRef M.A. Meyers: Dynamic Behavior of Materials, Univ. of California, JWS, 1994.CrossRef
13.
go back to reference Y. Chino, K. Sassa and M. Mabuchi: Mater. Sci. Eng. A, 2009, vol. 513, pp. 394–400.CrossRef Y. Chino, K. Sassa and M. Mabuchi: Mater. Sci. Eng. A, 2009, vol. 513, pp. 394–400.CrossRef
14.
16.
go back to reference S.L.Wang, M.A. Meyers and A. Szecket: J. Mater. Sci., 1988, vol. 23, pp. 1786–804.CrossRef S.L.Wang, M.A. Meyers and A. Szecket: J. Mater. Sci., 1988, vol. 23, pp. 1786–804.CrossRef
17.
go back to reference S.A. Kononov, A.S. Perevozov, B.A. Kolachev: Russian Metall., 2007, vol. 5, pp. 415-17.CrossRef S.A. Kononov, A.S. Perevozov, B.A. Kolachev: Russian Metall., 2007, vol. 5, pp. 415-17.CrossRef
18.
go back to reference M.A. Meyers, B.B. Gupta and L. Murr: J. Metals., 1981, vol. 33, pp. 21–26. M.A. Meyers, B.B. Gupta and L. Murr: J. Metals., 1981, vol. 33, pp. 21–26.
19.
go back to reference N.N. Thadhani, A.H. Mutz and T. Vreeland: Acta. Metall., 1989, vol. 37, pp. 897–908.CrossRef N.N. Thadhani, A.H. Mutz and T. Vreeland: Acta. Metall., 1989, vol. 37, pp. 897–908.CrossRef
20.
go back to reference K. Sivakumar and K. Hokamoto, J. Mater. Sci., 2000, vol. 35, pp. 5823–28.CrossRef K. Sivakumar and K. Hokamoto, J. Mater. Sci., 2000, vol. 35, pp. 5823–28.CrossRef
21.
go back to reference K. Sivakumar, K.S. Prasad, T. BalakrishnaBhat and P. Ramakrishan: J. Mater. Sci., 1997, vol. 32, pp. 5271–78.CrossRef K. Sivakumar, K.S. Prasad, T. BalakrishnaBhat and P. Ramakrishan: J. Mater. Sci., 1997, vol. 32, pp. 5271–78.CrossRef
22.
go back to reference B.D. Cullity: Elements of XRD, Addison-Wesley Pub, Boston (1956). B.D. Cullity: Elements of XRD, Addison-Wesley Pub, Boston (1956).
23.
go back to reference A.A. Bukaemskii and E.N. Fedorova: Combust. Explos. Shock Waves., 2008, vol. 44, pp. 717–28.CrossRef A.A. Bukaemskii and E.N. Fedorova: Combust. Explos. Shock Waves., 2008, vol. 44, pp. 717–28.CrossRef
24.
go back to reference V. Singh and E.I. Meletis: Surf. Coat.Technol., 2006, vol. 201, pp. 1093-101.CrossRef V. Singh and E.I. Meletis: Surf. Coat.Technol., 2006, vol. 201, pp. 1093-101.CrossRef
25.
go back to reference L. Wenchang, X. Furen, Y. Mei, C. Zonglin, W. Shaogang and L. Weinhong: J. Mater. Sci. Lett., 1997, vol. 16, pp. 769–77.CrossRef L. Wenchang, X. Furen, Y. Mei, C. Zonglin, W. Shaogang and L. Weinhong: J. Mater. Sci. Lett., 1997, vol. 16, pp. 769–77.CrossRef
26.
go back to reference Z. Zhao, X.J. Li and TAO Gang: J. Alloy. Compd., 2009, vol. 478, pp. 237–39.CrossRef Z. Zhao, X.J. Li and TAO Gang: J. Alloy. Compd., 2009, vol. 478, pp. 237–39.CrossRef
27.
go back to reference B.G. Adamenko, P.G. Pashkov and L.N. Tambovtseva: Poroshk. Metallurg., 1978, vol. 10, pp. 93–97. B.G. Adamenko, P.G. Pashkov and L.N. Tambovtseva: Poroshk. Metallurg., 1978, vol. 10, pp. 93–97.
28.
29.
30.
go back to reference A.D. Sharma, A.K. Sharma and N. Thakur: J. Alloy. Comp., 2014, vol. 597, pp. 175–80.CrossRef A.D. Sharma, A.K. Sharma and N. Thakur: J. Alloy. Comp., 2014, vol. 597, pp. 175–80.CrossRef
31.
go back to reference A.D. Sharma, A.K. Sharma and N. Thakur: Appl. Phys. A, 2013, vol. 111 pp. 783–89.CrossRef A.D. Sharma, A.K. Sharma and N. Thakur: Appl. Phys. A, 2013, vol. 111 pp. 783–89.CrossRef
32.
go back to reference M.A. Meyers, D.J. Benson and E.A. Olevsky: Acta. Mater., 1999, vol. 47, pp. 2089-108.CrossRef M.A. Meyers, D.J. Benson and E.A. Olevsky: Acta. Mater., 1999, vol. 47, pp. 2089-108.CrossRef
33.
go back to reference W. Salas, N.G. Alba-baena and L.E. Murr: Meta. Mater. Trans. A., 2007, vol. 38, pp. 2928–45.CrossRef W. Salas, N.G. Alba-baena and L.E. Murr: Meta. Mater. Trans. A., 2007, vol. 38, pp. 2928–45.CrossRef
34.
go back to reference T. Rzychon and K. Rodak: Archives of Mater. Sci. Eng., 2007, vol. 28, pp. 605–08. T. Rzychon and K. Rodak: Archives of Mater. Sci. Eng., 2007, vol. 28, pp. 605–08.
35.
go back to reference N.G. Alba-Baena, W. Salas and L.E. Murr: Mater. Charact., 2008, vol. 59, pp. 1152–60.CrossRef N.G. Alba-Baena, W. Salas and L.E. Murr: Mater. Charact., 2008, vol. 59, pp. 1152–60.CrossRef
36.
go back to reference A.D. Sharma, A.K. Sharma and N. Thakur: Phil. Mag., 2012, vol. 92, pp. 2108–16.CrossRef A.D. Sharma, A.K. Sharma and N. Thakur: Phil. Mag., 2012, vol. 92, pp. 2108–16.CrossRef
37.
Metadata
Title
Crystallographic, Microstructural, and Mechanical Characterization of Dynamically Processed EP741NP Superalloy
Authors
A. D. Sharma
A. K. Sharma
N. Thakur
Publication date
05-05-2016
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 4/2016
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-016-0688-8

Other articles of this Issue 4/2016

Metallurgical and Materials Transactions B 4/2016 Go to the issue

Premium Partners